Tag: ocean observations

Ocean Conditions Played a Major Role in the Intensification of Hurricane Michael (2018)

In a recent study published in AGU’s Journal of Geophysical Research – Oceans, scientists at AOML identified key ocean features that supported the rapid intensification of Hurricane Michael (2018), despite unfavorable atmospheric conditions for development. The study demonstrates the importance of using realistic ocean conditions for coupled (ocean-atmosphere) hurricane models in order to achieve the most accurate hurricane intensity forecasts.

Read Full Article

AOML Scientists Develop First-ever Daily Estimates of the Heat Transport in the South Atlantic Ocean

In a recent article published in the Journal of Geophysical Research – Oceans, scientists at AOML evaluate the variability of the heat transport in the South Atlantic by developing a new method to measure its changes on a daily basis. This study presents, for the first time, full‐depth, daily measurements of the volume and heat transported by the Meridional Overturning Circulation (MOC) in the South Atlantic at 34.5°S based on direct observations.

Read Full Article

AOML Scientists Monitor How Heat and Water are Transported Through the Atlantic Ocean Using Field and Satellite Observations

In a recently published study, scientists at AOML present 28-year long (1993-2020) estimates of the Atlantic Meridional Overturning Circulation (AMOC) volume and heat transports at multiple latitudes by merging in-situ oceanographic and satellite observations. By combining ocean observations with satellite data, they were able to estimate the AMOC volume and heat transports in near real time. These data can be used to validate ocean models, to detect climate variability, and to investigate their impact on extreme weather events.

Read Full Article

AOML and Fearless Fund Team Up to Tackle Questions of Sargassum’s Life Cycle for Better Inundation Prediction Capabilities

The PIRATA (Prediction and Research Moored Array in the Tropical Atlantic) 2021 cruise aboard NOAA’s Ronald H. Brown has returned home! During their 41 days at sea, the cruise facilitated a collaboration between researchers with NOAA’s Atlantic Oceanographic and Meteorological Lab (AOML) and Fearless Fund, an organization dedicated to ocean solutions, supported by the U.S. Department of Energy (DOE). This collaboration targets the removal of carbon dioxide from ocean waters by the growth and harvest of seaweed biomass, known as Sargassum.

Read Full Article

Scientists Discover New Current Structure in Gulf of America off Cuban Coast

Scientists at AOML in collaboration with partners at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science (RSMAS) have identified Loop Current related anticyclonic eddies along the northwest coast of Cuba in the southern Gulf of America, named “CubAns” (“Cuba anticyclones”). These eddies play an important role in the ocean circulation associated with the Loop Current. This team of scientists is the first to study CubANs.

Read Full Article

The Argo Program: Two Decades of Ocean Observations

In a recent article published in Frontiers in Marine Science, the history of the Argo program is examined and discussed. The Argo program began in 1998 when a team of international scientists, known as the “Argo Science Team,” proposed the idea for a global array of autonomous floats to obtain temperature and salinity measurements of the upper 2,000 meters of the global ocean. The new array of floats, called Argo, would go on to be endorsed as a pilot program of the Global Ocean Observing System and be used to fill in the large data gaps in ocean observations.

Read Full Article

First-ever Daily Time Series Reveals the Strength of the Deep Ocean Circulation in the South Atlantic

In a recent study published in the journal Science Advances, oceanographers at AOML and the Cooperative Institute for Marine and Atmospheric Studies for the first time describe the daily variability of the circulation of key deep currents in the South Atlantic Ocean that are linked to climate and weather. The study found that the circulation patterns in the upper and deeper layers of the South Atlantic often vary independently of each other, an important new result about the broader Meridional Overturning Circulation (MOC) in the Atlantic.

Read Full Article