Skip to Content

About: AOML Communications

Recent Posts by AOML Communications

Location, Location, Location: How Habitat and Microbiomes May Contribute to Coral Outplant Success

A new study by coral researchers from the University of Miami’s Cooperative Institute for Marine and Atmospheric Studies (CIMAS) and NOAA’s Atlantic Oceanographic and Meteorological Laboratory suggests that the physical oceanographic habitat characteristics-such as, temperature, light availability, and water flow, of corals, may influence microbe communities and health of coral reefs.  The results showed a link between physical habitat and coral microbiology in coral reefs in southeast Florida. 

Continue Reading →

AOML & Norwegian Scientists use eDNA to Survey Mesopelagic Fishes

Dr. Luke Thompson, a Northern Gulf Institute Assistant Research Professor at AOML, sailed aboard the Norwegian icebreaker RV Kronprins Haakon in May as part of a research effort focused on characterizing species that dwell in the mesopelagic zone—the region of the ocean 200–1000 meters below the surface. The cruise was undertaken to explore the potential for developing a new fishery based on ­mesopelagic fish.

Continue Reading →

11 Days in Dorian: AOML Hurricane Scientists Gather Data in Catastrophic Category 5 Storm

Catastrophic Hurricane Dorian will be long remembered as one of the Atlantic basin’s most powerful landfalling hurricanes.  NOAA Hurricane Hunters measured Dorian’s intensification from a weak tropical storm in the Caribbean to one of the Atlantic’s fiercest hurricanes.  The data they gathered were vital to protecting life and property, supporting NOAA’s efforts to warn vulnerable communities of approaching severe weather through accurate forecasts.

Continue Reading →

Follow the Sargassum: Tracking algae in the Atlantic , Caribbean, and Gulf of Mexico

AOML researchers released an assortment of GPS equipped drifters into the tropical Atlantic Ocean and Caribbean Sea to study how ocean currents and winds play a role in the distribution of Sargassum.  With the data obtained from the sargassum drifters along with satellite data from the University of South Florida, AOML researchers now have the ability to distribute weekly experimental Sargassum Index Reports. 

Continue Reading →

Azimuthal Distribution of Deep Convection, Environmental Factors, and Tropical Cyclone Rapid Intensification: A Perspective from HWRF Ensemble Forecasts of Hurricane Edouard (2014)

Abstract: Forecasts from the operational Hurricane Weather Research and Forecasting (HWRF)-based ensemble prediction system for Hurricane Edouard (2014) are analyzed to study the differences in both the tropical cyclone inner-core structure and large-scale environment between rapidly intensifying (RI) and non intensifying (NI) ensemble members. An analysis of the inner-core structure reveals that as deep convection wraps around from the downshear side of the storm to the upshear-left quadrant for RI members, vortex tilt and asymmetry reduce rapidly, and rapid intensification occurs. For NI members, deep convection stays trapped in the downshear/downshear-right quadrant, and storms do not intensify. The budget calculation of tangential wind tendency reveals that the positive radial eddy vorticity flux for RI members contributes significantly to spinning up the tangential wind in the middle and upper levels and reduces vortex tilt. The negative eddy vorticity flux for NI members spins down the tangential wind in the middle and upper levels and does not help the vortex become vertically aligned. An analysis of the environmental flow shows that the cyclonic component of the storm-relative upper-level environmental flow in the left-of-shear quadrants aids the cyclonic propagation of deep convection and helps establish the configuration that leads to the positive radial vorticity flux for RI members. In contrast, the anticyclonic component of the storm relative mid- and upper-level environmental flow in the left-of-shear quadrants inhibits the cyclonic propagation of deep convection and suppresses the positive radial eddy vorticity flux for NI members. Environmental moisture in the downshear-right quadrant is also shown to be important for the formation of deep convection for RI members.

Continue Reading →

AOML Hurricane Researchers Capture Hurricane Dorian’s Eye During Rapid Intensification

NOAA researchers have been working around the clock to collect vital data during Hurricane Dorian which is being used to improve present and future forecasts to protect and save vulnerable lives and property. Using technology aboard the NOAA Hurricane Hunter P-3 aircraft, AOML hurricane researchers were able to document the rapid intensification of Dorian as it approached the Bahamas.

Continue Reading →

The Impact of the Saharan Air Layer on Atlantic Tropical Cyclone Activity

Abstract: A deep well-mixed, dry adiabatic layer forms over the Sahara Desert and Shale regions of North Africa during the late spring, summer, and early fall. As this air mass advances westward and emerges from the northwest African coast, it is undercut by cool, moist low-level air and becomes the Saharan air layer (SAL). The SAL contains very dry air and substantial mineral dust lifted from the arid desert surface over North Africa, and is often associated with a midlevel easterly jet. A temperature inversion occurs at the base of the SAL where very warm Saharan air overlies relatively cooler air above the ocean surface. Recently developed multispectral Geostationary Operational Environmental Satellite (GOES) infrared imagery detects the SAL’s entrained dust and dry air as it moves westward over the tropical Atlantic. This imagery reveals that when the SAL engulfs tropical waves, tropical disturbances, or preexisting tropical cyclones (TCs), its dry air, temperature inversion, and strong vertical wind shear (associated with the mid-level easterly jet) can inhibit their ability to strengthen. The SAL’s influence on TCs may be a factor in the TC intensity forecast problem in the Atlantic and may also contribute to this ocean basin’s relatively reduced level of TC activity.

Continue Reading →

NOAA is developing underwater robots to map, measure toxicity of Great Lakes algal blooms

Two underwater robots will be gliding throughout the western Lake Erie basin this week, as NOAA and its partners at the Monterey Bay Aquarium Research Institute (MBARI) test technology to autonomously monitor and measure the toxicity of harmful algal blooms in the Great Lakes. 

Continue Reading →

Study shows nutrients entering Biscayne Bay

An analysis of 20 years of water quality data shows that Biscayne Bay, a NOAA Habitat Focus Area off southeast Florida, is degrading, as scientists have identified early warning signs that could help inform managers to prevent a regime shift of the bay’s ecosystem.In a recent study published in Estuaries and Coasts, scientists from NOAA and partner organizations detected an increasing trend in chlorophyll and nutrient levels from 48 monitoring stations throughout Biscayne Bay.

Continue Reading →

AOML Director and Researchers to be Honored at AMS Awards

AOML Director Dr. John Cortinas has been elected to become a Fellow of the American Meteorological Society. Fellows are elected for their “­outstanding contributions to the atmospheric or ­related oceanic or hydrologic sciences or their ­applications during a substantial ­period of years.” John has been member of the American Meteorological Society since 1983, supporting the organization as an associate editor for the journals Weather and Forecasting and Monthly Weather Review. Additionally, John has served as the AMS Chairperson of the Minority Scholarship Committee, a member of the Board on Women and Minorities, and as a member of the Weather Analysis and Forecasting Committee. 

Continue Reading →

 

Recent Comments by AOML Communications

    No comments by AOML Communications