Physical Oceanography Division

Physical Oceanography

The Physical Oceanography Division is comprised of scientists, engineers, and technical support staff that aid NOAA’s mission by observing and studying ocean and climate dynamics, the physical drivers of ecosystem variability, and the impacts of natural and anthropogenic activities on marine resources. We study how ocean changes affect climate, marine ecosystems, and coastal and inland communities. We also share and build on the current state of knowledge by maintaining valuable, long-term datasets of changes over time.

Visit the Physical Oceanography Division

Overturning Oceans & Societal Impacts

The overturning circulation is one of the primary ways that the oceans move heat, salt, carbon and nutrients throughout the global oceans. Changes in the AMOC over time have a pronounced impact on a variety of socially important weather and climate phenomena, on the blue economy, and on commerce. AOML scientists have shown that these changes predict precipitation changes around the world.

Visit the Meridional Overturning Circulation Page

Global Ocean Observing System

AOML works with partners around the world to develop and maintain key components of these systems of observing technologies, known collectively as the Global Ocean Observing System. The resulting observations have been shown to improve weather forecasts and advance our knowledge of climate fluctuations.

Visit the Global Ocean Observing System Page

Ocean Monitoring to Protect Marine Mammals and Manage Fisheries

AOML scientists have developed several tools and reporting systems in conjunction with our partners to reduce ship strikes for endangered right whales, track larval distributions for better stock assessments, and provide information to track bluefin tuna fisheries.

Visit the Observations for the Blue Economy Page

Oceanographers Help Improve Outlooks of Extreme Weather

Scientists at AOML are working to extend the forecast for extreme weather events (such as heatwaves, tornadoes, and hurricanes).  Improved forecasts serve to provide emergency managers, government officials, businesses, and the public with better advanced warning to minimize catastrophic loss of life and damage to critical infrastructure.

Visit the Extreme Weather Page

Featured Projects

Physical Oceanography Data

Data from buoys, satellites, and instruments on the sea floor can be accessed on our Data page or by clicking the links below.

Science Seminars

The Physical Oceanography Division at AOML hosts seminars to share its latest work and strengthen collaborations for an Earth Systems approach to research. Watch seminars from previous years on Youtube.

Upcoming Seminars

There are no upcoming seminars at this time.

saildrone

Project Highlight

Saildrone 1054 equipped with a new compact wing designed for extreme high-wind events. Image credit: Saildrone

Saildrone 1054 equipped with a new compact wing designed for extreme high-wind events. Image credit: Saildrone

Observations for Weather & Climate

Saildrone

Five uncrewed surface vehicles (USVs), known as saildrones, are being deployed from the US Virgin Islands and Florida in July to gather key data throughout the 2021 Tropical Atlantic hurricane season. The mission is in support of hurricane monitoring and prediction and is a joint project between AOML, CIMAS, PMEL, CICOES, and Saildrone, Inc. These saildrones are equipped with specially designed “hurricane wings” to enable them to operate in extreme conditions. The mission aims to improve understanding and predictability of tropical cyclone intensity changes and advance knowledge of the ocean-atmosphere interactions that fuel them.

To learn more visit the AOML/ PMEL Saildrone webpage.

Recent News

GOES Satellite Image of Hurricane Dorian from September 2nd, 2019. Photo Credit: GOES.
Scientists Observe Rainfall Under Tropical Cyclones Reduces Sea Surface Cooling

Tropical cyclones intensify by extracting heat energy from the ocean surface, making the sea surface temperature under storms crucial for storm development. A recent study by researchers at the Pacific Northwest National Laboratory and NOAA’s Atlantic Oceanographic and Meteorological Laboratory found that large amounts of rain under tropical cyclones can reduce the sea surface cooling induced by them. 

Featured Publication

Lopez, H., Lee, S. K., Kim, D., Wittenberg, A., & Yeh, S. W. (2021). Projected Increase in Fast-Growing and Slow-Dissipating El Niño Events in the 21st Century.

Abstract: Future changes in the seasonal evolution of El Niño – Southern Oscillation (ENSO) during the onset and decay phases have received little attention by the research community. This work investigates the projected changes in the spatio-temporal evolution of El Niño events in the 21st Century (21C) using a large ensemble simulation of a couple general circulation model under anthropogenic forcing. Here we show that El Niño is projected to (1) initiate sooner in boreal spring, (2) to grow at a faster rate, (3) to persist longer over the eastern and far eastern Pacific, and (4) to have a broader impact on remote teleconnections. Significant changes in the tropical Pacific mean state, dominant feedback processes, and a projected increase in stochastic westerly wind burst forcing largely explain the fast growing and slow dissipating El Niño in the late 21C. Important implications of these findings are that the global climate impacts are projected to become more significant and persistent, owing to the extended persistence of El Niño.

Read Full Paper.

Projections of faster onset and slower decay of El Niño in the 21st century

Lopez, H., Lee, S. K., Kim, D., Wittenberg, A., & Yeh, S. W. (2021). Projected Increase in Fast-Growing and Slow-Dissipating El Niño Events in the 21st Century.

Abstract: Future changes in the seasonal evolution of El Niño – Southern Oscillation (ENSO) during the onset and decay phases have received little attention by the research community. This work investigates the projected changes in the spatio-temporal evolution of El Niño events in the 21st Century (21C) using a large ensemble simulation of a couple general circulation model under anthropogenic forcing. Here we show that El Niño is projected to (1) initiate sooner in boreal spring, (2) to grow at a faster rate, (3) to persist longer over the eastern and far eastern Pacific, and (4) to have a broader impact on remote teleconnections. Significant changes in the tropical Pacific mean state, dominant feedback processes, and a projected increase in stochastic westerly wind burst forcing largely explain the fast growing and slow dissipating El Niño in the late 21C. Important implications of these findings are that the global climate impacts are projected to become more significant and persistent, owing to the extended persistence of El Niño.

Read Full Paper.

ENSO_featured_pub

Looking for scientific literature? Visit our Publication Database.

Driving Innovative Science

Project Report

This project report provides highlights of ongoing research projects that are either led by or involve AOML scientists together with essential science support personnel from NOAA, the University of Miami/Cooperative Institute for Marine and Atmospheric Studies (CIMAS), and our international partners.

Contact

| Rick Lumpkin, Ph.D.

Director, Physical Oceanography Division

| Sundararaman Gopalakrishnan, Ph. D.

Acting Deputy Director, Physical Oceanography Division

For current job opportunities click the button below to explore our career page