Homepage

NOAA's Atlantic Oceanographic and Meteorological Laboratory

Our research portfolio encompasses ocean, coastal, and atmospheric studies to ready the Nation for changes driven by weather, climate, and pressures on marine ecosystems.

Improving Hurricane Forecasts

We fly into storms to directly observe the processes that drive intensity change, employ new technology such as ocean gliders and unmanned aircraft to observe where humans cannot safely go, and get these observations into our evolving and improving hurricane models like the Hurricane Weather Research Forecast (HWRF) model to help NOAA provide the best forecasts possible.

Identifying Solutions for Coastal Ecosystems

AOML takes an ecosystem-based approach to describing how the physical, chemical, and human environment is connected to and influences marine species. We consider impacts and relationships to coastal systems such as coral reefs, and economically important fish stocks managed by our NOAA and state partners, so that they can best manage resources.

Understanding the Global Carbon Cycle

AOML works with our partners to describe the ocean’s role in the global carbon cycle. Using ships of opportunity, we monitor carbon as it moves between the ocean and the atmosphere. We also look at the impact of increasing amounts of carbon in the ocean, which causes ocean acidification.

Understanding the Ocean's Role in Climate & Weather

AOML leverages data from its ocean observing systems to examine patterns of change in ocean features and how these patterns of change can explain, and even predict, severe weather events such as hurricanes. We also study how the ocean can influence seasonal patterns such as extreme temperatures and drought.

Maintaining Ocean Observing Systems

AOML designs, optimizes, and maintains key ocean observing systems with global partners to monitor ocean currents and other properties. We study how ocean changes affect climate and marine ecosystems and build on the current state of knowledge by maintaining valuable, long-term datasets of ocean changes over time to improve earth system predictions.

Advancing Environmental Modeling

Computer simulations of the natural world help inform decision making and save lives. We work closely with federal, university, and international communities to advance the state of hurricane modeling, inform sound economic investment in observing systems, and understand the impact of resource management decisions.

Recent News

November 30th marked the official end to the 2022 Atlantic hurricane season. Scientists and forecasters from across NOAA worked tirelessly throughout the season to conduct critical tropical cyclone research. This year, NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) coordinated the longest series of missions into a single tropical system, arranged multiple observing assets for simultaneous data collection, deployed new sUAS technology, and included a novel “moving nest” to our next-generation hurricane model.
Wrapping up the 2022 Atlantic Hurricane Season

November 30th marked the official end to the 2022 Atlantic hurricane season. Scientists and forecasters from across NOAA worked tirelessly throughout the season to conduct critical tropical cyclone research. This year, NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) coordinated the longest series of missions into a single tropical system, arranged multiple observing assets for simultaneous data collection, deployed new sUAS technology, and included a novel “moving nest” to our next-generation hurricane model.

Read More News

A close up image of Acropora cervicornis coral at the Coral City Camera Site near the Port of Miami.
AOML Coral Program demonstrate the importance of teamwork, tackling coral conservation from various angles
The ability to predict whether and when a tropical cyclone will become vertically aligned is critical for intensity change forecasts, as storms can intensify quickly after achieving an aligned structure. A recent study from researchers at NOAA’s Atlantic Oceanographic and Meteorological Laboratory and the University of Miami’s Cooperative Institute for Marine and Atmospheric Studies shows how weak, disorganized tropical cyclones containing different center locations with height, called misalignment, can develop a vertically aligned structure. This study works to improve forecasts of when this alignment might occur by identifying key times of the day and other tropical cyclone characteristics when alignment is likely.
How do weak, misaligned tropical cyclones evolve towards alignment? A multi-case study using the Hurricane Analysis and Forecast System
Study links spread of deadly coral disease to ship ballast water
Study links spread of deadly coral disease to ship ballast water
Heat extremes are the number one weather-related cause of death in the United States, prompting the climate community to study the driving forces behind these extreme events to improve their prediction. A new study published in the Journal of Geophysical Research finds an increase in summertime heat wave occurrence over the US Great Plains is linked to a larger than normal tropical Atlantic warm pool. 
Study Finds that a Larger than Normal Atlantic Warm Pool Can Lead to an Increase in US Heat Waves
A close up image of Acropora cervicornis coral at the Coral City Camera Site near the Port of Miami.
The ability to predict whether and when a tropical cyclone will become vertically aligned is critical for intensity change forecasts, as storms can intensify quickly after achieving an aligned structure. A recent study from researchers at NOAA’s Atlantic Oceanographic and Meteorological Laboratory and the University of Miami’s Cooperative Institute for Marine and Atmospheric Studies shows how weak, disorganized tropical cyclones containing different center locations with height, called misalignment, can develop a vertically aligned structure. This study works to improve forecasts of when this alignment might occur by identifying key times of the day and other tropical cyclone characteristics when alignment is likely.
Study links spread of deadly coral disease to ship ballast water
Heat extremes are the number one weather-related cause of death in the United States, prompting the climate community to study the driving forces behind these extreme events to improve their prediction. A new study published in the Journal of Geophysical Research finds an increase in summertime heat wave occurrence over the US Great Plains is linked to a larger than normal tropical Atlantic warm pool. 
Congratulations to the Winners of 2022 Department of Commerce Awards!
President Biden has selected John Cortinas, Ph.D, NOAA’s Director at the Atlantic Oceanographic and Meteorological Laboratory, as one of the recipients of the 2022 Presidential Rank Award. The award is one of the most prestigious in the federal career civil service and recognizes the hard work and important contributions of dedicated civil servants in the American federal workforce.
Mangroves seen above the water and below the water.
GOES Satellite Image of Hurricane Dorian from September 1st, 2019. Photo Credit: GOES.
Genetic variants of the coral Acropora cervicornis linked to elevated nutrient and heat stress resistance
Scientists at NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) and the University of Miami’s Cooperative Institute of Marine & Atmospheric Studies (CIMAS) examine the challenges of accurately predicting when a tropical cyclone will begin a quick and sudden increase in intensity (called rapid intensification or RI) in a new study published in Monthly Weather Review.
Hurricane Dorian. Image Credit: NOAA.
An Area-I Altius-600 uncrewed aircraft system was deployed from a NOAA WP-3D Orion Hurricane Hunter aircraft (N42RF, “Kermit”) into Hurricane Ian by scientists from NOAA’s Atlantic Oceanographic and Meteorological Laboratory

Hurricane, Climate, Coastal and Ocean Research.

ADVANCING Environmental Modeling

Computer simulations of the natural world help inform decision making and save lives. We work closely with federal, academic, and international communities to advance the state of hurricane modeling, inform sound economic investment in observing systems, and understand the impact of resource management decisions.

UNDERSTANDING The Global Carbon Cycle

AOML works with our partners to describe the ocean’s role in the global carbon cycle. Using ships of opportunity, we monitor carbon as it moves between the ocean and the atmosphere. We also look at the impact of increasing amounts of carbon in the ocean, which causes ocean acidification.

IMPROVING Hurricane Forecasts

We fly into storms to directly observe the processes that drive intensity change, employ new technology such as ocean gliders and unmanned aircraft to observe where humans cannot safely go, and get these observations into our evolving and improving hurricane models like the Hurricane Weather Research Forecast (HWRF) model to help NOAA provide the best forecasts possible.

UNDERSTANDING THE OCEAN'S ROLE In Climate & Weather

AOML leverages data from its ocean observing systems to examine  patterns of change in ocean features and how these patterns of change can explain, and even predict, severe weather events such as hurricanes. We also study how the ocean can influence seasonal patterns such as extreme temperatures and drought.

MAINTAINING Ocean Observing Systems

AOML designs, optimizes, and maintains key ocean observing systems with global partners to monitor ocean currents and other properties. We study how ocean changes affect climate and marine ecosystems and build on the current state of knowledge by maintaining valuable, long-term datasets of ocean changes over time to improve earth system predictions.

IDENTIFYING SOLUTIONS For Coastal Ecosystems

AOML takes an ecosystem-based approach to describing how the physical, chemical, and human environment is connected to and influences marine species. We consider impacts and relationships to coastal systems such as coral reefs and economically important fish stocks managed by our NOAA and state partners, so that they can best manage resources.

Our Research Makes an Impact

Project: Monitoring the Ocean Improves Weather Forecasts

AOML plays a key role in collecting and maintaining sustained ocean observations that monitor the temperature and salinity of ocean features using drifters, Argo floats, XBTs, moorings, and other platforms.

Impact: Adding Ocean Data from Directly Beneath a Storm Leads to More Accurate Hurricane Forecasts

Unmanned Ocean Glider data improve our understanding of the current ocean state and are used to initialize hurricane models. Data from gliders passing under Hurricane Gonzalo improved the intensity forecast by one category on the Saffir Simpson Scale.

Project: Monitoring Commercially Important Sportfish Populations

AOML developed a sportfish model that the US Army Corps of Engineers adopted to evaluate the impacts of Everglades Restoration on south Florida’s economically and ecologically important sportfish populations.

Impact: Empowers Managers to Evaluate Different Scenarios and Plan for the Future

The majority of sportfish in south Florida are dependent upon healthy estuaries with natural freshwater runoff. The model shows how sea trout would respond to different management scenarios, giving managers actionable information.

Project: HWRF's High Resolution Moving Nest Module

AOML developed a high resolution moving nest in NOAA's regional hurricane model known as HWRF, increasing resolution over the storm environment. We transition the HWRF model into operations in joint partnership with NOAA's Environmental Modeling Center.

Impact: Improved Forecast Accuracy Better Informs Coastal Communities

The HWRF model has improved intensity forecasts by 10- 5 kts in the critical decision making period of 48-72 hours before landfall. This allows people to make informed decisions to prepare their families, homes, and communities.

Monitoring the Ocean Improves Weather Forecasts

AOML plays a key role in collecting and maintaining sustained ocean observations that monitor the temperature and salinity of ocean features using drifters, Argo floats, XBTs, moorings, and other platforms.

Impact: Adding Ocean Data from Directly Beneath a Storm Leads to More Accurate Hurricane Forecasts

Unmanned Ocean Glider data improve our understanding of the current ocean state and are used to initialize hurricane models. Data from gliders passing under Hurricane Gonzalo improved the intensity forecast by one category on the Saffir Simpson Scale.

Monitoring Commercially Important Sportfish Populations

AOML developed a sportfish model that the US Army Corps of Engineers adopted to evaluate the impacts of Everglades Restoration on south Florida’s economically and ecologically important sportfish populations.

Impact: Empowers Managers to Evaluate Different Scenarios and Plan for the Future

The majority of sportfish in south Florida are dependent upon healthy estuaries with natural freshwater runoff. The model shows how sea trout would respond to different management scenarios, giving managers actionable information.

HWRF's High Resolution Moving Nest

AOML developed a high resolution moving nest in NOAA’s regional hurricane model known as HWRF, increasing resolution over the storm environment. We transition the HWRF model into operations in joint partnership with NOAA’s Environmental Modeling Center.

Impact: Improved Forecast Accuracy Better Informs Coastal Communities

The HWRF model has improved intensity forecasts by 10- 5 kts in the critical decision making period of 48-72 hours before landfall. This allows people to make informed decisions to prepare their families, homes, and communities.

Featured Publication

State of the Climate in 2021

Blunden, J. and T. Boyer, Eds., 2022: “State of the Climate in 2021”. Bull. Amer. Meteor. Soc., 1038), Si–S465, https://doi.org/10.1175/2022BAMSStateoftheClimate.1

In 2021, the dominant greenhouse gases released into Earth’s atmosphere continued to increase. The annual global average carbon dioxide (CO2) concentration was 414.7 ± 0.1 ppm, an increase of 2.6 ± 0.1 ppm over 2020, the fifth-highest growth rate since the start of the instrumental record in 1958. This brings the concentration of CO2 to, once again, the highest in the modern record and ice core records dating back 800,000 years. The growth rate for methane (CH4) was the highest on record and the third highest for nitrous oxide (N2O), contributing to new record high atmospheric concentration levels for both gases….

Chapter 3 “Global Oceans” was co-edited by Rick Lumpkin, the Director of AOML’s Physical Oceanography Division, and Greg Johnson (NOAA). AOML authors are Francis Bringas, Shenfu Dong, Gustavo Goni, Rick Lumpkin, Renellys Perez, Claudia Schmid, Denis Volkov, and Rik Wanninkhof. Chapter 4 “Tropics” was edited by Howard Diamond (NOAA) and Carl Schreck (NC State), with AOML authors Stanley Goldenberg, Gustavo Goni, and Francis Bringas contributing to the chapter.

Download Full Report.

SOC 2021

Blunden, J. and T. Boyer, Eds., 2022: “State of the Climate in 2021”. Bull. Amer. Meteor. Soc., 1038), Si–S465, https://doi.org/10.1175/2022BAMSStateoftheClimate.1

In 2021, the dominant greenhouse gases released into Earth’s atmosphere continued to increase. The annual global average carbon dioxide (CO2) concentration was 414.7 ± 0.1 ppm, an increase of 2.6 ± 0.1 ppm over 2020, the fifth-highest growth rate since the start of the instrumental record in 1958. This brings the concentration of CO2 to, once again, the highest in the modern record and ice core records dating back 800,000 years. The growth rate for methane (CH4) was the highest on record and the third highest for nitrous oxide (N2O), contributing to new record high atmospheric concentration levels for both gases….

Chapter 3 “Global Oceans” was co-edited by Rick Lumpkin, the Director of AOML’s Physical Oceanography Division, and Greg Johnson (NOAA). AOML authors are Francis Bringas, Shenfu Dong, Gustavo Goni, Rick Lumpkin, Renellys Perez, Claudia Schmid, Denis Volkov, and Rik Wanninkhof. Chapter 4 “Tropics” was edited by Howard Diamond (NOAA) and Carl Schreck (NC State), with AOML authors Stanley Goldenberg, Gustavo Goni, and Francis Bringas contributing to the chapter.

Download Full Report.

AOML & GFDL’s Grassroots Collaboration

New Opportunities in a Virtual Environment

“This is a great starting point; it gave people a list of more than 10 topics with researchers at both labs working on similar problems. We now know who is a  person we can contact, and that they are interested in collaborating because they gave a talk at the workshop.”

-Renellys Perez, Organizer and Participant

Frequently Asked Questions about Hurricanes

Why Don't Nuclear Weapons Destroy Hurricanes?

The amount of energy that a storm produces far outweighs the energy produced by one nuclear weapon. Additionally, the downside of radioactive fallout from such an operation would far outweigh the benefits and may not even alter the storm.

For more info click here.

How Much Energy is Released from a Hurricane?

The energy released from a hurricane can be explained in two ways: the total amount of energy released by the condensation of water droplets (latent heat), or the amount of kinetic energy generated to maintain the strong, swirling winds of a hurricane. The vast majority of the latent heat released is used to drive the convection of a storm, but the total energy released from condensation is 200 times the world-wide electrical generating capacity, or 6.0 x 1014 watts per day. If you measure the total kinetic energy instead, it comes out to about 1.5 x 1012 watts per day, or ½ of the world-wide electrical generating capacity. It would seem that although wind energy seems the most obvious energetic process, it is actually the latent release of heat that feeds a hurricane’s momentum.

For more info click here.

What Causes Tropical Cyclones?

The tropical atmosphere is often unstable.  The amount of energy accumulated in the lower layers though the evaporation of water eventually overcomes any stable cap.  This allows clusters of thunderstorms to form.  These clusters move along with the prevailing winds as tropical disturbances.  Occasionally, cyclonic circulations will develop within these disturbances.  These circulations can be amplified and the disturbance will form a tropical cyclone.  Only about 10% of disturbances become tropical cyclones, so large-scale influences impinging on such disturbances play a big role in cyclone formation.

For more info click here.

Why are Tropical Cyclone Winds Usually Stronger on One Side?

A hurricane is usually a symmetrical spiral.  But if it is moving forward, then this motion makes the wind field asymmetrical.  The side of the spiral with winds blowing in the direction of movement will add the forward speed to the wind speed. The side of the spiral with the wind blowing in the opposite direction will be subtract the forward speed from the wind speed.

For example, a hurricane with 90mph winds moving forward at 10mph would have a 100mph wind speed on the forward-moving side and 80 mph on the side with winds blowing backward to the motion.

For more info click here.

How are Hurricanes Named?

Names are assigned to organized tropical cyclones once their winds exceed 39 mph (17.5 m/s, 34 knots).  The names are drawn from a list that is created prior to the season by the United Nations’ World Meteorological Organization.  Each tropical cyclone basin has its own name list, which is maintained by a WMO Regional Committee. If a particularly damaging storm occurs, the name of that storm can be retired.  If a storm happens to move across basins, it keeps the original name. The only time it is renamed if it dissipates to a tropical disturbance and then reforms.

For more info click here.