Category: Featured at NOAA

Braving the Eye of the Storm

The most dangerous part of the hurricane is the eyewall close to the ocean. It’s where the storm draws energy from heat in the water, which influences how strong – and how quickly – the storm will develop. It’s also where the strongest winds lurk.Direct and continuous observations of the lower eye-wall would help forecasters understand critical information about the storm’s development. NOAA P-3 “Hurricane Hunters” routinely fly through hurricane eyewalls to gather storm data, but avoid flying close to the ocean because conditions are too hazardous.

Read Full Article

AOML’s Ian Enochs Awarded DOC Silver Medal Award

AOML coral ecologist, Ian Enochs, was recently awarded with the Department of Commerce Silver Medal Award for his leadership in developing and implementing the Sub-Surface Automated Sampler (SAS).  The DOC Silver Medal is awarded to federal employees for exceptional performance characterized by noteworthy contributions which have a direct and lasting impact.

Read Full Article

Weather Program Leader Tapped to Head NOAA’s Atlantic Oceanographic and Meteorological Laboratory

John Cortinas, Ph.D., director of NOAA’s Office of Weather and Air Quality, today was named the new director of NOAA’s Atlantic Oceanographic and Meteorological Laboratory in Miami. He will begin the new position on July 8.“John Cortinas brings proven vision and leadership experience in NOAA to the Atlantic Oceanographic and Meteorological Laboratory where he will lead the lab’s basic and applied research to improve the prediction of severe storms and deliver an enriched scientific understanding of our oceans for all of NOAA,” said Craig McLean, NOAA assistant administrator for NOAA Oceanic and Atmospheric Research.

Read Full Article

Best of Miami: AOML’s Molly Baringer Stands Out as a Leader in Science

Authors: Heidi Van Buskirk Date: 5/31/19 Each year Miami Today publishes The Best of Miami edition to highlight people and organizations from multiple fields that make a difference in the community. The special edition articles focus on the best in each respective field from arts and culture to health and medicine to international business and role […]

Read Full Article

New NOAA, Partner Buoy in American Samoa Opens Window into a Changing Ocean

NOAA and partners have launched a new buoy in Fagatele Bay within NOAA’s National Marine Sanctuary of American Samoa to measure the amount of carbon dioxide in the waters around a vibrant tropical coral reef ecosystem. “This new monitoring effort in a remote area of the Pacific Ocean will not only advance our understanding of changing ocean chemistry in this valuable and vibrant coral ecosystem but will also help us communicate these changes to diverse stakeholders in the Pacific Islands and across the United States,” said Derek Manzello, coral ecologist with NOAA’s Atlantic Oceanographic and Meteorological Laboratory.

Read Full Article

Global Ocean is Absorbing More Carbon from Fossil Fuel Emissions

The new research published by NOAA and international partners in Science finds as carbon dioxide emissions have increased in the atmosphere, the ocean has absorbed a greater volume of emissions. Though the volume of carbon dioxide going into the ocean is increasing, the percentage of emissions — about 31 percent — absorbed by it has remained relatively stable when compared to the first survey of carbon in the global ocean published in 2004.

Read Full Article

Unmanned Ocean Gliders Help Improve Hurricane Forecasts

NOAA will soon launch a fleet of 15 unmanned gliders in the Caribbean Sea and tropical Atlantic Ocean this hurricane season to collect important oceanic data that could prove useful to forecasters. “If you want to improve prediction of how hurricanes gain strength or weaken as they travel over the ocean, it’s critical to take the ocean’s temperature and measure how salty it is,” said Gustavo Goni, an oceanographer at NOAA’s Atlantic Oceanographic and Meteorological Laboratory who is helping lead the glider research. “Not just at the surface, which we measure with satellites, but down into deeper layers of ocean waters.”

Read Full Article