Tag: Joaquin Trinanes

State of the Climate in 2023 Released

Adapted from NOAA press release on August 22, 2024 Today, August 22, the 2023 State of the Climate report was released by the American Meteorological Society, showing Greenhouse gas concentrations, the global temperature across land and the ocean, global sea level and ocean heat content all reached record highs in 2023.  The international annual review […]

Read Full Article

Improving Monitoring of Coastal Inundations of Sargassum with Wind and Citizen Science Data

In a new study, scientists from NOAA, University of South Florida, Florida International University, University of Miami, and LGL Ecological Associates, compared wind information alongside Sargassum Inundation Risk (SIR) maps against citizen science reports of inundation in the coasts of Florida, Gulf of Mexico, Bahamas, and Caribbean regions. With present SIR maps, inundation is considered as more likely if large densities of satellite-detected Sargassum are near a coast. The scientists in the study found that shoreward wind velocity used in conjunction with SIR indicators greatly improves the agreement with coastal observations of Sargassum beaching compared to SIR indicators alone. Including wind metrics in SIR maps will allow for improved understanding of Sargassum trajectories in coastal areas for forecast purposes. 

Read Full Article

Study Explores the Relationship of Anthropogenic Carbon and Ocean Circulation

In a recently published study in Nature Geoscience, scientists at AOML and international partners quantified the strength and variability of anthropogenic (man-made) carbon (Canth) transport in the North Atlantic Ocean. The study found that buildup of Canth in the North Atlantic is sensitive to the Atlantic Meridional Overturning Circulation (AMOC) strength and to Canth uptake at the ocean’s surface.

Read Full Article

Does the Risk of Vibrio Infection Increase in a Warming Planet?

In a recent study published in Lancet Planetary Health, Joaquin Trinanes, a scientist at NOAA’s Atlantic Oceanographic Meteorological Laboratory (AOML), uses a new generation of climate, population, and socioeconomic projections to map future scenarios of distribution and season suitability for the pathogenic bacteria, Vibrio. For the first time, a global estimate of the population at risk of vibriosis for different time periods is provided.

Read Full Article

Tracking Sargassum Inundation Potential for Coastal Communities

A recently published paper presents the Sargassum Inundation Report (SIR), a product that uses a satellite-based methodology to monitor from space areas with coastal inundation of pelagic Sargassum in the tropical Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. The SIR was created as a response to the need to improve the monitoring and management of Sargassum influxes (e.g., coordinate clean-up), which have major economic, social, environmental, and public health impacts.

Read Full Article

The New Tools Revolutionizing Vibrio Science

According to AOML scientists, the advancements made in genomics and whole genome sequencing has completely redefined the understanding of Vibrio. These advances have helped provide a clearer picture of how bacteria spread, emerge, and cause disease. Vibrio is a genus of bacteria that has a strong affinity for the environmental conditions in freshwater and marine […]

Read Full Article

Early Warning System: Study Explores Future Risk of Waterborne Disease in a Warming Climate

In a new study published in Environmental Health Perspectives, a team of scientists including researchers from NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) explore the future risk of waterborne disease in a warming climate. Recently, the European Center for Disease Prevention and Control (ECDC) developed an interactive online tool that can be used to monitor coastal marine areas with environmental conditions favorable to Vibrio growth, aquatic bacteria that can cause human illness. The Vibrio Map Viewer is a real-time global model that uses daily updated remote sensing data to determine marine areas vulnerable to higher levels of Vibrio.

Read Full Article

Oceanographic conditions in the Gulf of Mexico in July 2010, during the Deepwater Horizon oil spill

Results from collaborative research conducted by AOML and NOAA’s Southeast Fisheries Science Center (SEFSC) in response to the 2010 Deepwater Horizon oil spill, were recently published in Continental Shelf Research (December, 2013). PhOD oceanographers R. Smith, E. Johns, G. Goni, J. Trinanes, and R. Lumpkin, in collaboration with other researchers at AOML (M. Wood, C. Kelble, and S. Cummings) and SEFSC (J. Lamkin and S. Privoznik) report on the surface and subsurface connectivity across the eastern Gulf of Mexico (GOM) during July 2010.

Read Full Article