Author: AOML Communications

NOAA Premieres Strategies Focused on Emerging Science and Technology

At the 2020 international Ocean Sciences meeting, AOML microbiologist Kelly Goodwin helped NOAA unveil a new strategy for how the agency will dramatically expand its use of ‘Omics in the coming years. The ‘Omics strategy is one of four blueprints NOAA premiered that will guide transformative advancements in the quality and timeliness of its science, products, and services. 

Read Full Article

Women’s History Month: Ocean Acidification with Leticia Barbero

Dr. Leticia Barbero is a chemical oceanographer at NOAA’s Cooperative Institute for Marine and Atmospheric Studies at the University of Miami. In her role, she works with AOML to study the carbon dioxide system in the ocean, specifically ocean acidification in the coastal waters of the  U.S. East Coast and Gulf of America.

Read Full Article

Modeling Michael: Using NOAA’s HFV3 to predict rapid intensification in Hurricane Michael

In a recently published study, AOML hurricane researchers used multiple computer model forecasts to gain a better understanding of how Hurricane Michael, which made landfall in the panhandle of Florida with winds up to 162 mph, rapidly intensified despite strong upper-level wind shear which usually weakens hurricanes. By contrasting two sets of forecasts, the study found that Michael only rapidly intensified when rainfall completely surrounded Michael’s center, and when the eye of the storm itself was located in nearly the same place at different heights.

Read Full Article

Pods Away! New Autonomous Data Pods Will Provide Low-Cost, Reliable Data Retrieval

AOML is preparing to deploy two autonomous data pod systems with Pressure Inverted Echo Sounders near the eastern boundary of the North Atlantic during March 2020.  This will be the first full scale operational deployment of data pods, with a goal of providing a low-cost solution for the sustained Atlantic Meridional Overturning Circulation monitoring without the continuous use of a research vessel. 

Read Full Article

Out at Sea With Our Heads in the Clouds

AOML is deploying drifting buoys as part of a large multinational project that aims to improve our current understanding of the complicated interactions between the air and sea which create shallow convective clouds.  NOAA scientists are interested in studying shallow cloud and air-sea interactions because of their influence on global conditions from temperature and precipitation to more extreme weather events.

Read Full Article

Nutrients Entering Biscayne Bay: Tracking the Source with New Technology

AOML scientists are collaborating with partners from the Northern Gulf Institute of the University of Mississippi, and the University of Miami’s Cooperative Institute for Marine and Atmospheric Studies to tackle increasing nutrient levels throughout Biscayne Bay. A previous study detected the slow but steady eutrophication and warned of a regime shift towards murky algal dominated waters if better water quality management practices were not implemented.

Read Full Article

Argo Biogeochemical Sensors Poised to Enhance Ocean Observing Capability

Scientists are now looking to expand their observing capabilities to include the biology and chemistry of the oceans, currently available globally from ocean color satellites that measure chlorophyll, indicating algal blooms at the ocean surface. A recent paper in the Journal of Atmospheric and Oceanic Technology by AOML postdoctoral scientist Cyril Germineaud of the University of Miami’s Cooperative Institute for Marine and Atmospheric Studies and colleagues shows that in close synergy with ocean color satellites, a global array of biogeochemical sensors complementing the existing core Argo network could revolutionize our knowledge of the changing state of primary productivity, ocean carbon cycling, ocean acidification, and the patterns of marine ecosystem variability from seasonal to interannual time scales. 

Read Full Article

Chasing Sargassum: New Insights on Coastal Sargassum Invasions

The ways in which Sargassum has invaded the tropical Atlantic have been a mystery, but we may now have an answer. A new study in Progress in Oceanography, led by researchers at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML), identifies possible mechanisms and pathways by which Sargassum entered and flourished in the tropical Atlantic and Caribbean.

Read Full Article