Author: AOML Communications

NOAA and Saildrone Launch Seven Hurricane-Tracking Surface Drones

In partnership with NOAA, Saildrone Inc. is deploying seven ocean drones to collect data from hurricanes during the 2022 hurricane season with the goal of improving hurricane forecasting. For the first year, two saildrones will track hurricanes in the Gulf of America.

Read Full Article

Climate Refugia on the Great Barrier Reef

Jennifer McWhorter, PhD, started at NOAA AOML in April  2022 as an Oceanographer with the Ocean Chemistry and Ecosystems Division. Jennifer’s research spans climate science, physical oceanography, and coral reef ecology to better understand climate threats to reef ecosystems. She is now researching the influence of open ocean processes on mesophotic coral reefs using the biogeochemical Argo array in the Gulf of America.

Read Full Article

Twenty Years of Ocean Current Observations for an Improved Understanding of Climate Variability

AOML welcomes Philip Tuchen, Postdoctoral Research Associate. Learn more about his research below. Press release originally published at GEOMAR on June 30th, 2022. Data from one of the longest time series in the tropical Atlantic now publicly available For more than 20 years an observatory at 23°W on the equator has been measuring velocities of […]

Read Full Article

New hurricane research supports advances to NOAA’s 2022 forecasts

This summer during the 2022 Atlantic hurricane season, scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) will once again be on the frontlines helping NOAA prepare the public for severe weather. They will also conduct new research on the complex processes of how tropical cyclones form, develop, and dissipate.

Read Full Article

New study highlights major step forward in monitoring ocean health

In a major step forward for monitoring the biodiversity of marine systems, a new study published in Environmental DNA details how Monterey Bay Aquarium Research Institute (MBARI) and NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) researchers are using autonomous underwater robots to sample environmental DNA (eDNA). eDNA allows scientists to detect the presence of aquatic species from the tiny bits of genetic material they leave behind. This DNA soup offers clues about biodiversity changes in sensitive areas, the presence of rare or endangered species, and the spread of invasive species—all critical to understanding, promoting, and maintaining a healthy ocean.

Read Full Article

Scientists Observe Rainfall Under Tropical Cyclones Reduces Sea Surface Cooling

Tropical cyclones intensify by extracting heat energy from the ocean surface, making the sea surface temperature under storms crucial for storm development. A recent study by researchers at the Pacific Northwest National Laboratory and NOAA’s Atlantic Oceanographic and Meteorological Laboratory found that large amounts of rain under tropical cyclones can reduce the sea surface cooling induced by them. 

Read Full Article

Pre-Exposure to a Variable Temperature Treatment Improves the Response of Acropora Cervicornis to Acute Thermal Stress

DEMERLIS, A., A. Kirkland, M.L. Kaufman, A.B. MAYFIELD, N. FORMEL, G. KOLODZIEJ, D.P. Manzello, D. Lirman, N. Traylor-Knowles, and I.C. ENOCHS. Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. Coral Reefs, 41(2):435-445 (https://doi.org/10.1007/s00338-022-02232-z) (2022). 

Abstract: Given that global warming is the greatest threat to coral reefs, coral restoration projects have expanded worldwide with the goal of replenishing habitats whose reef-building corals succumbed to various stressors. In many cases, however, these efforts will be futile if outplanted corals are unable to withstand warmer oceans and an increased frequency of extreme temperature events. Stress-hardening is one approach proposed to increase the thermal tolerance of coral genotypes currently grown for restoration…

Read the Full Paper.

Read Full Article