Author: AOML Communications

New hurricane research supports advances to NOAA’s 2022 forecasts

This summer during the 2022 Atlantic hurricane season, scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) will once again be on the frontlines helping NOAA prepare the public for severe weather. They will also conduct new research on the complex processes of how tropical cyclones form, develop, and dissipate.

Read Full Article

New study highlights major step forward in monitoring ocean health

In a major step forward for monitoring the biodiversity of marine systems, a new study published in Environmental DNA details how Monterey Bay Aquarium Research Institute (MBARI) and NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) researchers are using autonomous underwater robots to sample environmental DNA (eDNA). eDNA allows scientists to detect the presence of aquatic species from the tiny bits of genetic material they leave behind. This DNA soup offers clues about biodiversity changes in sensitive areas, the presence of rare or endangered species, and the spread of invasive species—all critical to understanding, promoting, and maintaining a healthy ocean.

Read Full Article

Scientists Observe Rainfall Under Tropical Cyclones Reduces Sea Surface Cooling

Tropical cyclones intensify by extracting heat energy from the ocean surface, making the sea surface temperature under storms crucial for storm development. A recent study by researchers at the Pacific Northwest National Laboratory and NOAA’s Atlantic Oceanographic and Meteorological Laboratory found that large amounts of rain under tropical cyclones can reduce the sea surface cooling induced by them. 

Read Full Article

Pre-Exposure to a Variable Temperature Treatment Improves the Response of Acropora Cervicornis to Acute Thermal Stress

DEMERLIS, A., A. Kirkland, M.L. Kaufman, A.B. MAYFIELD, N. FORMEL, G. KOLODZIEJ, D.P. Manzello, D. Lirman, N. Traylor-Knowles, and I.C. ENOCHS. Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. Coral Reefs, 41(2):435-445 (https://doi.org/10.1007/s00338-022-02232-z) (2022). 

Abstract: Given that global warming is the greatest threat to coral reefs, coral restoration projects have expanded worldwide with the goal of replenishing habitats whose reef-building corals succumbed to various stressors. In many cases, however, these efforts will be futile if outplanted corals are unable to withstand warmer oceans and an increased frequency of extreme temperature events. Stress-hardening is one approach proposed to increase the thermal tolerance of coral genotypes currently grown for restoration…

Read the Full Paper.

Read Full Article

How the Ocean’s Tiniest Creatures Respond to Changes in the Marine Environment, Revealed by Machine Learning Analysis of ‘Omics Data

Although too tiny to be seen by the naked eye, microscopic organisms have a big impact on our planet – supporting fisheries, degrading pollutants, and helping regulate the earth’s climate. A new study published in Nature Communications employed cutting edge research techniques (collectively referred to as ‘omics) to reveal how the ocean’s tiniest creatures respond to changes in the marine environment. This work addressed a number of objectives in the NOAA ‘Omics Strategic Plan, which calls for the characterization of food webs that sustain fisheries and vulnerable species.

Read Full Article

Coyote Small Uncrewed Aircraft System Data Improved Hurricane Maria Forecasts

Observations obtained by the Coyote small Uncrewed Aircraft System led to a significant improvement in the analyses of Hurricane Maria’s (2017) position, intensity, and structure, according to new ­research published in the journal Monthly Weather Review. The study by scientists with the University of Miami’s Cooperative ­Institute for Marine and Atmospheric Studies and Atlantic Oceanographic and Meteorological Laboratory (AOML) highlights how ­the ­Coyote’s novel near-surface measurements helped to more ­accurately depict ­Hurricane Maria’s inner core, ­demonstrating their ability to improve forecasts.

Read Full Article

Hurricane Model that Follows Multiple Storms Improves Intensity Forecasts

Warning the public of the damaging winds in tropical cyclones is critical for safeguarding communities in harm’s way. A new study by hurricane scientists at AOML is the first to quantify the value added to tropical cyclone intensity forecasts by storm-­following nests. The research, published in the Bulletin of the American Meteorological Society, demonstrates that storm-­following nests applied to multiple hurricanes in the same forecast cycle can improve intensity predictions by as much as 30%.

Read Full Article

Exploring Environmental DNA

Have you ever wondered what animals might be present in a particular habitat or traveled through a certain area of the ocean? Scientists are able to use environmental DNA or “eDNA” sampling to help answer those questions. NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) has recently released a new educational video series, “Exploring Environmental DNA” on their website and Youtube channel.

Read Full Article

Study Links Red Tide and Dead Zones off West Coast of Florida

This article is adapted from an article originally published by the University of Miami  Red tides caused by the algae Karenia brevis have become a near annual occurrence along the west coast of Florida, causing widespread ecological and economic harm. A new study analyzed 16 years of oceanographic data from across the West Florida Shelf […]

Read Full Article