New Research Showing Link between Florida Current and Pacific Ocean could Improve Sea Level, Climate Prediction

A recent study by scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) is the first to demonstrate that El Niño-Southern Oscillation (ENSO) temperature variations in the equatorial Pacific Ocean can help predict Florida Current transport anomalies three months later. The connection between Florida Current transport and ENSO is through ENSO’s impact on sea level on the eastern side of the Florida Straits, which plays a dominant role in the Florida Current transport variability on interannual time scales.

Read Full Article

Remote Impact of the Equatorial Pacific on Florida Current Transport

Dong, S., Volkov, D. L., Goni, G., Pujiana, K., Tagklis, F., & Baringer, M. (2022). Remote Impact of the Equatorial Pacific on Florida Current Transport. Geophysical Research Letters, e2021GL096944.

Using in-situ and satellite observations, this study is the first to demonstrate that ENSO temperature anomalies in the equatorial Pacific force Florida Current transport (FCT) anomalies 3 months later.  The connection between FCT and ENSO is through ENSO’s impact on sea level on the eastern side of the Florida Straits, which is associated with anomalous oceanic convergence/divergence in the Caribbean region and the Bahamas forced by ENSO-induced wind stress curl changes. This established relationship gives some predictability of the Florida Current transport and coastal sea level changes with a 3-month lead time, which can benefit coastal communities, particularly during strong El Niño and La Niña events.

Read Full Paper

Read Full Article

Researchers and Forecasters Team Up to Improve Forecasts in the New Hurricane and Ocean Testbed

After a year and a half of concerted effort between NOAA’s National Hurricane Center (NHC), Atlantic Oceanographic and Meteorological Laboratory (AOML), and other NOAA offices, including the Weather Program Office, the Hurricane and Ocean Testbed (HOT) has been successfully launched in the newly designed William M. Lapenta Laboratory, named in memory of the late director of the National Centers for Environmental Protection. This testbed establishes a physical and virtual collaboration space for researchers and forecasters.

Read Full Article

River Runoff Creates a Buffer Zone for Ocean Acidification in the Gulf of America

A new study by scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and Northern Gulf Institute (NGI) has revealed the alkalinity of river runoff to be a crucial factor for slowing the pace of ocean acidification along the Gulf of America’s northern coast. This valuable, first-time finding may be indicative of ocean carbon chemistry patterns for other U.S. coastal areas significantly connected to rivers.

Read Full Article

Frontiers in Ocean Observing

Kappel, E.S., S.K. Juniper, S. Seeyave, E. Smith, and M. Visbeck, eds. 2021. Frontiers in Ocean Observing: Documenting Ecosystems, Understanding Environmental Changes, Forecasting Hazards. A Supplement to Oceanography 34(4), 102 pp., https://doi.org/10.5670/oceanog.2021.supplement.02.

Articles in this inaugural Frontiers in Ocean Observing supplement to Oceanography describe new technologies and reveal some exciting results that advance our understanding of the world ocean and its resources and support its sustainable use and management. Topics covered align with the priorities of the UN Decade of Ocean Science for Sustainable Development (2021–2030). Five articles in this Supplement were co-authored by AOML scientists and science support personnel: Climate-Relevant Ocean Transport Measurements in the Atlantic and Arctic Oceans, Monitoring Boundary Currents Using Ocean Observing Infrastructure, An Integrated Observing Effort for Sargassum Monitoring and Warning in the Caribbean Sea, Tropical Atlantic, and Gulf of America, Uncrewed Ocean Gliders and Saildrones Support Hurricane Forecasting and Research, and The Technological, Scientific, and Sociological Revolution of Global Subsurface Ocean Observing.

Read Full Article

Environmental DNA Sampling Gets an Upgrade and Transitions to New Open-Source Technology

Scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML),the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami Rosenstiel School of Marine and Atmospheric Science, and the Northern Gulf Institute at Mississippi State University have engineered a new instrument that will provide valuable information about the biodiversity of aquatic ecosystems. A recently published paper in Hardware X describes the design and creation of a low-cost, open-source sub-surface automated environmental DNA (eDNA) sampler (SASe), for sampling eDNA in the water column. The SASe represents a milestone for AOML as one of the first pieces of technology to go through a rigorous transition process from the desks of scientists in the laboratory, through organizational approval channels, to the wider scientific community with full accessibility to the public.

Read Full Article