Author: AOML Communications

AOML Oceanographer, Dr. Gustavo Goni, Retires After Over 25 Years of Federal Service 

After over 25 years of federal service as a physical oceanographer, we celebrate the career of Dr. Gustavo Goni as he retires from NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML). Gustavo began his career at AOML in 1991 when he accepted a Research Associate position with the University of Miami’s Cooperative Institute of Marine and Atmospheric Studies. Gustavo began his federal career with NOAA in 1997 as an oceanographer with the Physical Oceanography Division of AOML. In May 2009, he became the Director of the Division, a position he held until March 2021.

Read Full Article

NOAA Measures Hurricane Tammy from Satellites through the Sea

NOAA hurricane researchers successfully deployed a new uncrewed aircraft system (UAS) into Tropical Storm Tammy (2023) near an uncrewed surfance vehicle, saildrone, to measure parts of the storm too dangerous for humans to go. The Altius 600 UAS was launched from the NOAA WP-3D Orion Hurricane Hunter aircraft by scientists from NOAA’s Atlantic Oceanographic and Meteorological Laboratory during missions into the storm in coordination with the saildrone researchers and pilots.

Read Full Article

Multidecadal Intensification of Atlantic Tropical InstabilityWaves

Tuchen, F. P., Perez, R. C., Foltz, G. R., Brandt, P., & Lumpkin, R. (2022). Multidecadal intensification of Atlantic tropical instability waves. Geophysical Research Letters, 49(22), e2022GL101073.

Abstract: In the equatorial Atlantic, temperature, salinity, sea level anomaly, and ocean velocity variations on time scales of tens of days are dominated by the presence and westward passage of large-scale Tropical Instability Waves (TIWs). Several decades of satellite and surface drifter data as well as moored velocity observations show a long-term intensification of TIW activity in all of these variables in the tropical North Atlantic where TIWs are most pronounced. We find that increased high-frequency flow variability, and not long-term changes of the mean zonal current system, drives the TIW intensification. One consequence of increased Atlantic Ocean TIW activity is the corresponding intensification of the horizontal eddy temperature advection pattern in boreal summer leading to stronger cooling of surface waters north of the equator…

Read Full Paper.

Read Full Article

NOAA Deploys New Black Swift Drone into Tropical Storm Tammy

NOAA hurricane researchers successfully deployed a new uncrewed aircraft system (UAS) into Tropical Storm Tammy (2023) to measure parts of the storm too dangerous for humans to go. The Black Swift Technologies S0™ UAS was launched from the NOAA WP-3D Orion Hurricane Hunter aircraft by scientists from NOAA’s Atlantic Oceanographic and Meteorological Laboratory during missions into the storm as it strengthened and headed closer to the Leeward Islands of the Caribbean.

Read Full Article

ERDDAP Server Increases Access to Drifting Buoy Data

The Global Drifter Program at AOML has a new ERDDAP, or Environmental Research Division Data Access Program, server that is now publicly available and hosts both hourly and 6-hour quality-controlled interpolated drifter datasets. This new scientific data server uses free and open-source software created by the Environmental Research Division of NOAA’s Southwest Fisheries Science Center.

Read Full Article

NOAA’s Multi-Faceted Hurricane Data Collection Efforts Provide a Detailed View of Hurricanes Franklin and Idalia

As Hurricanes Franklin and Idalia strengthened in late August, NOAA scientists collected critical data from the air, sea surface, and underwater to enhance forecasts and increase scientific knowledge.  In less than two weeks, a fleet of strategically placed oceanographic instruments gathered temperature, salinity, and surface wind speed data, while NOAA’s Hurricane Hunter aircraft repeatedly flew […]

Read Full Article

Study Finds Atlantic Meridional Overturning Circulation Increases Flood Risk Along the United States Southeastern Coast

Sea level rise is one of the most challenging consequences of global warming. A new collaborative study led by Dr. Denis Volkov from NOAA-AOML and the University of Miami’s Cooperative Institute of Marine and Atmospheric Studies found that Atlantic Meridional Overturning Circulation (AMOC) induced changes in basin-wide ocean heat content are influencing the frequency of floods along the United States southeastern coast. 

Read Full Article

Low Net Carbonate Accretion Characterizes Florida’s Coral Reef

John T. Morris, Ian C. Enochs, et al.

Coral reef habitat is created when calcium carbonate production by calcifiers exceeds removal by physical and biological erosion. Carbonate budget surveys provide a means of quantifying the framework-altering actions of diverse assemblages of marine species to determine net carbonate production, a single metric that encapsulates reef habitat persistence. In this study, carbonate budgets were calculated for 723 sites across the Florida Reef Tract (FRT) using benthic cover and parrot fish demographic data from NOAA’s National Coral Reef Monitoring Program, as well as high resolution LiDAR topobathymetry. Results highlight the erosional state of the majority of the study sites, with a trend towards more vulnerable habitat in the northern FRT, especially in the Southeast Florida region (− 0.51 kg CaCO3m−2 year−1), which is in close proximity to urban centers. Detailed comparison of reef types reveals that mid-channel reefs in the Florida Keys have the highest net carbonate production (0.84 kg CaCO3 m−2 year− 1) and indicates that these reefs may be hold-outs for reef development throughout the region. This study reports that Florida reefs, specifically their physical structure, are in a net erosional state. As these reefs lose structure, the ecosystem services they provide will be diminished, signifying the importance of increased protections and management efforts to offset these trends.

Download the full paper

Read Full Article

Landmark study analyzes global ocean carbon storage over two decades, indicates weakening of ocean carbon sink

A landmark study published last week demonstrates that the ocean’s role as a carbon sink and its ability to store anthropogenic, or human-caused, carbon may be weakening. A collaboration among international researchers led by Jens Daniel Müller, Ph.D. (ETH Zurich), this study captures a snapshot of three decades of global interior ocean measurements to determine […]

Read Full Article