Tag: Sang-Ki Lee

NOAA AOML Scientists Project Future Changes in ENSO Variability

In a new study published in Nature Communications, scientists at NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) investigate the projected changes in the seasonal evolution of El Niño – Southern Oscillation (ENSO) in the 21st century under the influence of increasing greenhouse gases. The study found that global climate impacts on temperature and precipitation are projected to become more significant and persistent, due to the larger amplitude and extended persistence of El Niño in the second half of the 21st Century (2051-2100).

Read More

River Runoff Creates a Buffer Zone for Ocean Acidification in the Gulf of Mexico

A new study by scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and Northern Gulf Institute (NGI) has revealed the alkalinity of river runoff to be a crucial factor for slowing the pace of ocean acidification along the Gulf of Mexico’s northern coast. This valuable, first-time finding may be indicative of ocean carbon chemistry patterns for other U.S. coastal areas significantly connected to rivers.

Read More

An Experimental Outlook Model Shows a Useful Skill for Predicting Seasonal US Tornado Activity

A new paper published in Monthly Weather Review shows some promise for predicting subseasonal to seasonal tornado activity based on how key atmospheric parameters over the US respond to various climate signals, including El Niño and La Niña activity in the Pacific. In this study, a team of researchers from NOAA’s Atlantic Oceanographic and Meteorological Laboratory, Geophysical Fluid Dynamics Laboratory, and Climate Prediction Center presented an experimental seasonal tornado outlook model, named SPOTter (Seasonal Probabilistic Outlook for Tornadoes), and evaluated its prediction skill.

Read More

AOML and SEFSC Researchers Embark on a New Collaborative Effort to Understand the Impacts of Climate on Economically Important Fish Species

NOAA’s Modeling, Analysis, Predictions, and Projections (MAPP) program is funding a new collaborative project between the Atlantic Oceanographic and Meteorological Laboratory (AOML) and the Southeast Fisheries Science Center (SEFSC) to understand how a changing climate might be influencing commercially important fish stocks. This project will identify key climate and oceanic processes that affect the biology and chemistry of the ocean of relevance to the coastal open ocean species in the U.S. Gulf of Mexico and South Atlantic Bight, managed by NOAA Fisheries and the regional Fishery Management Councils.

Read More

The Atlantic Niño: El Niño’s Little Brother

Despite their differences, it is still widely thought that Atlantic Niño is analogous to El Niño in many ways. Specifically, the atmosphere-ocean feedback responsible for the onset of Atlantic Niño is believed to be similar to that of El Niño, a process known as Bjerknes feedback. The near-surface trade winds blow steadily from east to west along the equator. When weaker-than-normal trade winds develop in the western Atlantic basin, downwelling equatorial Kelvin waves propagate to the eastern basin, deepening the thermocline and making it harder for the colder, deeper water to affect the surface.

Read More

AOML Scientists Tackle one of the Most Challenging Problems in U.S. Seasonal Rainfall Prediction

In a recent article published in Geophysical Research Letters, AOML and CIMAS scientists investigated U.S. rainfall variability, focusing on the late summer to mid-fall (August-October) season. The main goal of the study was to identify potential predictors of U.S. precipitation during August-October and to explore the underlying physical mechanisms.

Read More

Connection between Madden-Julian Oscillation and U.S Tornadoes may Provide Earlier Warning for Storms

Recently, scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) explored the physical causes between U.S. tornado activity and the Madden-Julian Oscillation. In a study recently published in the Journal of Climate (Kim et al., 2020), they showed that a series of key atmosphere-ocean processes are involved in the remote impact of Madden-Julian Oscillation on U.S. tornado activity.

Read More

Climate change may fuel more heat waves in the western U.S. and Great Lakes

AOML scientists, Hosmay Lopez and his colleagues used observations as well as model simulations of 20th Century climate and 21st Century projections to show that the occurrence of heat waves in the U.S. are on the rise and will continue to do so in the coming decades. This research was recently published in Nature Climate Change.

Read More