Author: AOML Communications

AOML Contributes to Global Carbon Budget 2020

On December 11, 2020 researchers with the Global Carbon Project released their annual update for the Global Carbon Budget. Daily global CO2 emissions are estimated to have decreased by a maximum of about 17% by early April 2020 compared to average levels in 2019. About half of this change is due to changes in surface transport, especially road transport, during the COVID-19 pandemic.

Read More

Inferring Florida Current Volume Transport From Satellite Altimetry

Volkov, D. L., Domingues, R., Meinen, C. S., Garcia, R., Baringer, M., Goni, G., & Smith, R. H. (2020). Inferring Florida Current volume transport from satellite altimetry. Journal of Geophysical Research: Oceans, e2020JC016763.

Plain Language Summary: Florida Current (FC) is one of the major conduits of heat, salt, carbon, nutrients and other properties in the subtropical North Atlantic, with profound influences on regional weather, climate, sea‐level, and ecosystems. Daily monitoring of the FC volume transport with a submarine cable has been maintained nearly continuously since 1982. Because of the extremely high value of these measurements for Earth system studies, efforts are underway to find a suitable backup observing system for the inevitable future when the cable fails. Satellites have been providing accurate measurements of sea level for nearly 3 decades. Due to the Earth’s rotation, the direction of major oceanic currents is parallel to the lines of constant sea level, which for the FC translates into sea level near the Bahamas being about 1‐m higher than sea level along Florida east coast. Variations in the FC…

Read Full Paper.

Read More

Interannual Variability of the South Atlantic Ocean Heat Content in a High‐Resolution Versus a Low‐Resolution General Circulation Model

Gronholz, A., Dong, S., Lopez, H., Lee, S. K., Goni, G., & Baringer, M. (2020). Interannual variability of the South Atlantic Ocean heat content in a high‐resolution versus a low‐resolution General Circulation Model. Geophysical Research Letters, e2020GL089908.

Plain Language Summary: In this study we analyze heat content changes of the upper South Atlantic Ocean and the impact of model resolution on these changes. Results from two numerical simulations are compared. One simulation with high‐resolution allows smaller‐scale processes directly, while the other simulation with low‐resolution does not. In both simulations oceanic heat transport dominates the ocean heat content changes on interannual time scale, while atmospheric fluxes play a secondary role. The heat anomalies, however, originate from different regions in the two simulations. While the oceanic heat transport from the south dominates in the high‐resolution simulation, oceanic heat transport from the north dominates in the low‐resolution simulation. Furthermore, wind‐induced surface heat transport plays a significant role in the low‐resolution while the heat transport in the high‐resolution simulation is dominated by…

Read Full Paper.

Read More

The Global Drifter Program Launches a New Interactive Map Tool

The Global Drifter Program’s (GDP) Drifter Data Assembly Center (DAC) at AOML has launched a new interactive map of the global drifter array. This new tool features the ability to zoom and scroll, hover the cursor over drifters to get their identification numbers, and click to see data and metadata including deployment information, manufacturer, and drifter type in an ID card that can be viewed as a high-resolution image with an additional click.

Read More

UN Environment Programme 2020 Projections of Future Coral Bleaching Conditions

Recently the UN Environment Programme Report on coral bleaching projections for 2020 was published, updating work that was done in 2017 using a previous generation of global climate models to project coral reef bleaching globally. The report shows some interesting new results. Ruben van Hooidonk, a coral researcher at AOML and the University of Miami Rosenstiel School Cooperative Institute for Marine and Atmospheric Studies, was the lead author of the report.

Read More

Hurricane Gliders Return Home from 2020 Season

NOAA’s hurricane gliders are returning home after a successful journey during the 2020 hurricane season. These gliders were deployed off the coasts of Puerto Rico, Dominican Republic, the U.S. Virgin Islands, the Gulf of Mexico, and the eastern U.S. to collect data for scientists to use to improve the accuracy of hurricane forecast models.

Read More

The Importance of ‘Omics in NOAA Research

In February 2020, the NOAA ‘Omics Strategy was launched. The Strategy was informed by a whitepaper that recently became available on the NOAA Institutional Repository. This document titled NOAA ‘Omics White Paper: Informing the NOAA ‘Omics Strategy and Implementation Plan, identifies NOAA’s priorities in ‘omics research, promotes integration and communication among line offices, and proposes possible solutions to implementation challenges in this quickly advancing sector of research.

Read More

Subsurface Automated Samplers (SAS) for Ocean Acidification Research

ENOCHS, I.C., N. FORMEL, L. SHEA, L. CHOMIAK, A. Piggot, A. KIRKLAND, and D. MANZELLO. Subsurface automated samplers (SAS) for ocean acidification research. Bulletin of Marine Science, 96(4):735-752 (https://doi.org/10.5343/bms.2020.0018) (2020).

Abstract: Ocean acidification (OA) is the process whereby anthropogenic carbon dioxide is absorbed into seawater, resulting in altered carbonate chemistry and a decline in pH. OA will negatively impact numerous marine organisms, altering the structure and function of entire ecosystems. The progression of OA, while faster than has occurred in recent geological history, has been subtle and detection may be complicated by high variability in shallow-water environments. Nevertheless, comprehensive monitoring and characterization is important given the scale and severity of the problem. Presently, technologies used to measure OA in the field are costly and limited by their detection of only one carbonate chemistry parameter, such as pH. Discrete water samples, by contrast, offer a means of measuring multiple components of the carbonate system, including parameters of particular explanatory value (e.g., total alkalinity, dissolved inorganic carbon), for which field-based sensors do not presently exist…

Read Full Article

Read More