Author: AOML Communications

Scientists at AOML Present Coral Research at the First Virtual International Coral Reef Symposium

Coral scientists at NOAA’s Atlantic Oceanographic Meteorological Laboratory (AOML) and the University of Miami Rosenstiel School’s Cooperative Institute for Marine and Atmospheric Studies (CIMAS) will be presenting their research at the 14th International Coral Reef Symposium (ICRS) from July 19-23, 2021, which will be held virtually for the first time in the history of the ICRS.

Read More

Increasing coral calcification in Orbicella faveolata and Pseudodiploria strigosa at Flower Garden Banks, Gulf of Mexico

Manzello, D. P., Kolodziej, G., Kirkland, A., Besemer, N., & Enochs, I. C. (2021). Increasing coral calcification in Orbicella faveolata and Pseudodiploria strigosa at Flower Garden Banks, Gulf of Mexico. Coral Reefs, 1-15.

Abstract: Coral reefs are globally in decline and western Atlantic reefs have experienced the greatest losses in live coral cover of any region. The Flower Garden Banks (FGB) in the Gulf of Mexico are high-latitude, remote reefs that are an outlier to this trend, as they have maintained coral cover ≥ 50% since at least 1989. Quantifying the long-term trends in coral growth of key reef-building coral species, and the underlying environmental drivers, leads to a better understanding of local sensitivities to past changes that will ultimately allow us to better predict the future of reef growth at FGB. We obtained coral cores and constructed growth records for two of the most abundant hermatypic coral species at FGB, Pseudodiploria strigosa and Orbicella faveolata. Our records cover 57 yrs of growth for P. strigosa (1957–2013) and 45 yrs for O. faveolata (1970–2014)…

Read Full Paper.

Read More

UN Ocean Decade Endorses Several AOML Collaborative Initiatives

In 2017, the United Nations General Assembly proclaimed the time frame of 2021-2030 as the UN Decade of Ocean Science for Sustainable Development, also known as the “Ocean Decade,” to address the degradation of the ocean and encourage innovative science initiatives to better understand and ultimately reverse its declining health.

Read More

Ocean Observations Collected Ahead of Atlantic Tropical Storm Claudette

The 2021 hurricane season is off to a busy start with five named storms having already formed in the Atlantic Ocean. Recently, Tropical Storm Claudette travelled directly over three ocean observation platforms, providing key ocean data for the initialization of the ocean component for hurricane forecast models.

Read More

AOML Researchers Monitor Important Boundary Currents in the North Atlantic Ocean Through Direct Measurements at Sea

Researchers from the Physical Oceanography Division of AOML conduct regular hydrographic surveys to monitor the western boundary current system in the subtropical North Atlantic Ocean. These cruises are a part of the laboratory’s long-running Western Boundary Time Series (WBTS) project and are designed to monitor both the Florida Current, east of Florida in the Florida Straits, and the North Atlantic Deep Western Boundary Current east of the Bahamas in the North Atlantic Ocean. These western boundary currents are important parts of the Atlantic Meridional Overturning Circulation (AMOC).

Read More

Coral Growth in Flower Garden Banks Approaches Threshold As Sea Temperatures Rise

A recent study by researchers at NOAA’s Atlantic Oceanographic and Meteorological Laboratory shows that coral growth observed in symmetrical brain corals (Pseudodiploria strigosa) and mountainous star corals (Orbicella faveolata) in the Flower Garden Banks reefs, in the Gulf of Mexico, are linked to warming sea surface temperatures.

Read More

Ocean Conditions Played a Major Role in the Intensification of Hurricane Michael (2018)

In a recent study published in AGU’s Journal of Geophysical Research – Oceans, scientists at AOML identified key ocean features that supported the rapid intensification of Hurricane Michael (2018), despite unfavorable atmospheric conditions for development. The study demonstrates the importance of using realistic ocean conditions for coupled (ocean-atmosphere) hurricane models in order to achieve the most accurate hurricane intensity forecasts.

Read More

The Role of the Gulf of Mexico Ocean Conditions in the Intensification of Hurricane Michael (2018)

Le Hénaff, M., Domingues, R., Halliwell, G., Zhang, J. A., Kim, H. S., Aristizabal, M., … & Goni, G. The role of the Gulf of Mexico ocean conditions in the intensification of Hurricane Michael (2018). Journal of Geophysical Research: Oceans, e2020JC016969.

Abstract: Hurricane Michael formed on October 7, 2018, in the Northwestern Caribbean Sea, and quickly traveled northward through the Gulf of Mexico, making landfall on the Florida panhandle as a devastating Category 5 hurricane only 3 days later. Before landfall, Michael underwent rapid intensification, despite unfavorable atmospheric conditions. Using observations, we characterized the key ocean features encountered by Michael along its track, which are known for favoring hurricane intensification: high sea surface temperatures, upper ocean heat content and low salinity barrier layer conditions. Ocean observations were consistent with suppressed hurricane-induced upper ocean cooling, which could only be observed by underwater gliders, and showed that Hurricane Michael constantly experienced sea surface temperatures above 28°C…

Read Full Paper.

Read More