Tag: El Niño

AOML and SEFSC Researchers Embark on a New Collaborative Effort to Understand the Impacts of Climate on Economically Important Fish Species

NOAA’s Modeling, Analysis, Predictions, and Projections (MAPP) program is funding a new collaborative project between the Atlantic Oceanographic and Meteorological Laboratory (AOML) and the Southeast Fisheries Science Center (SEFSC) to understand how a changing climate might be influencing commercially important fish stocks. This project will identify key climate and oceanic processes that affect the biology and chemistry of the ocean of relevance to the coastal open ocean species in the U.S. Gulf of Mexico and South Atlantic Bight, managed by NOAA Fisheries and the regional Fishery Management Councils.

Read More

Testing the Trade Wind Charging Mechanism and Its Influence on ENSO Variability

In a new article published in the Journal of Climate, scientists at AOML and the Cooperative Institute for Marine and Atmospheric Science, with collaborators at Boston University, Texas A&M, and North Carolina State University, document the role of ocean dynamics in linking Pacific atmospheric variability to El Niño-Southern Oscillation (ENSO) event generation. The results of the study could be used as a potential predictor of ENSO events up to a year in advance.

Read More

The Atlantic Niño: El Niño’s Little Brother

Despite their differences, it is still widely thought that Atlantic Niño is analogous to El Niño in many ways. Specifically, the atmosphere-ocean feedback responsible for the onset of Atlantic Niño is believed to be similar to that of El Niño, a process known as Bjerknes feedback. The near-surface trade winds blow steadily from east to west along the equator. When weaker-than-normal trade winds develop in the western Atlantic basin, downwelling equatorial Kelvin waves propagate to the eastern basin, deepening the thermocline and making it harder for the colder, deeper water to affect the surface.

Read More

Study Explores Role of El Niño in Transport of Waterborne Disease

A new study published in the journal Nature Microbiology highlights how emerging, devastating outbreaks of Vibrio infection in Latin America might be linked to El Niño, a climate pattern that periodically causes surface temperatures to warm throughout the equatorial Pacific Ocean. A researcher with the University of Miami’s Cooperative Institute of Marine & Atmospheric Studies at NOAA’s Atlantic Oceanographic & Meteorological Lab was part of an international research team that used microbiological, genomic, and bioinformatic tools to demonstrate how El Niño provides a mechanism for the transport of disease from Asia into the Americas. 

Read More

Ocean Temperatures May Hold Key to Predicting Tornado Outbreaks

Tornadoes are one of nature’s most destructive forces. Recent violent and widespread tornado outbreaks in the United States, such as occurred in the spring of 2011, have caused significant loss of life and property. Currently, our capacity to predict tornadoes and other severe weather risks does not extend beyond seven days. Extending severe weather outlooks beyond seven days will assist emergency managers, businesses, and the public prepare the resources needed to prevent economic losses and protect communities. So how can scientists better predict when and where tornadoes are likely to strike, before the tornado season begins?

Read More

Behind the 2015 Atlantic Hurricane Season: Wind Shear & Tropical Cyclones

With the 2015 Atlantic hurricane season underway, researchers are pointing to the strong presence of El Niño as the major driver suppressing the development of tropical cyclones in the Atlantic basin. But what specific conditions are associated with El Niño that lead to a less than ideal environment for tropical cyclone development? Through research and observation, hurricane researchers know strong environmental wind shear is a major factor affecting potential hurricane development and growth. This hurricane season, AOML researchers are delving further into the relationship between wind shear and tropical cyclones.

Read More

Indian Ocean Plays Key Role in Global Warming Hiatus

The earth is warming, but temperatures in the atmosphere and at the sea surface that steadily rose in the last half-century have leveled off and slowed in the past decade, causing the appearance of an imbalance in Earth’s heat budget. Scientists are looking into the deep ocean to determine where this additional heat energy could be stored, and recently traced a pathway that leads to the Indian Ocean.

Read More

NOAA Partners Join CalCofi to Examine the Potential of ‘Omics Research

NOAA’s Atlantic Oceanographic and Meteorological Laboratory is teaming up with NOAA’s Office of Ocean Exploration and Research, National Marine Fisheries Service, and Integrated Ocean Observing System, as well as the J.C. Venter Institute and the Scripps Institution of Oceanography to enhance ecosystem observation programs by integrating genome-enabled techniques and technologies (i.e., ‘omics) into the California Cooperative Oceanic Fisheries Investigations (CalCOFI). CalCOFI is a multi-partner, long-term ecosystem and fisheries study off the coast of California. The first quarterly CalCOFI expedition that included ‘omics recently completed at the end of November.

Read More