Author: AOML Communications

A Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the Contiguous United States Based on the Leading Patterns of Large-Scale Atmospheric Anomalies

Lee, S. K., Lopez, H., Kim, D., Wittenberg, A. T., & Kumar, A. (2021). A Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the Contiguous United States Based on the Leading Patterns of Large-Scale Atmospheric Anomalies. Monthly Weather Review, 149(4), 901-919.

Abstract: This study presents an experimental model for Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the contiguous United States for March, April, and May and evaluates its forecast skill. This forecast model uses the leading empirical orthogonal function modes of regional variability in tornadic environmental parameters (i.e., low-level vertical wind shear and convective available potential energy), derived from the NCEP Coupled Forecast System, version 2, as the primary predictors. A multiple linear regression is applied to the predicted modes of tornadic environmental parameters to estimate U.S. tornado activity, which is presented as the probability for above-, near-, and below-normal categories….

Read Full Paper.

Read Full Article

AOML is going virtual and you’re invited!

AOML will be celebrating Earth Day this year with a week-long series of webinars on April 19th-23rd, 2021 from 6:00 p.m-7:00 p.m. AOML’s Virtual Open House will feature NOAA scientists talking about everything from hurricane research to oceanography to coral ecosystems to the new technologies being used to improve our understanding of the world around us. Participants will also get the chance to learn more about what it’s like to be a scientist working with NOAA in the Ask AOML Q&A.

Read Full Article

Unlocking the ocean’s role driving hurricanes

Scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory are now focusing on what happens where the sea meets the atmosphere to help solve the hurricane intensity problem. The place right above where the air meets the sea is called the planetary boundary layer. The ocean drives global weather. By building on past research, scientists have determined that factors in the boundary layer and underlying ocean such as salinity, temperature, currents, wave and wind patterns, precipitation, are crucial to understanding the energy that fuels a hurricane.

Read Full Article

Solving an eDNA Mystery with the Northern Gulf Institute

From the desk of CSI: Miami (Fish Edition): Solving an eDNA mystery. NGI Associate Research Professor Luke Thompson and NGI Postdoctoral Associate Sean Anderson have been studying the environmental DNA (eDNA) left behind by fish at the University of Miami dock (pictured), near the NOAA Atlantic Oceanographic and Meteorological Laboratory in Miami, Florida. When they analyzed the data, while many of the fish species detected were expected for the area, they were surprised by several unexpected species, such as rainbow trout. To help solve this mystery, Luke and Sean sent out a survey to fish biologists with expertise in this region.

Read Full Article

Bringing New Technologies to Fisheries Surveys with the Northern Gulf Institute

From March to May, NGI Postdoctoral Associate Sean Anderson is taking part in two legs of a NOAA Fisheries survey in the Gulf of Mexico on board NOAA Ship Pisces. The NOAA project, “Environmental DNA Enhancement of Fisheries Independent Monitoring Cruises for Ecosystem Based Fisheries Management”, seeks to improve ecosystem-based fisheries management (EBFM) with the use of environmental DNA (eDNA) sequencing. Camera traps (pictured) placed at the seafloor in the Gulf of Mexico capture video of passing fish, while bottles collect seawater that the fish have passed through, leaving behind DNA traces.

Read Full Article

Tracking Sargassum Inundation Potential for Coastal Communities

A recently published paper presents the Sargassum Inundation Report (SIR), a product that uses a satellite-based methodology to monitor from space areas with coastal inundation of pelagic Sargassum in the tropical Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. The SIR was created as a response to the need to improve the monitoring and management of Sargassum influxes (e.g., coordinate clean-up), which have major economic, social, environmental, and public health impacts.

Read Full Article

Come Sail Away: Take a Look into a Scientist’s Life Aboard a 6 Week Cruise in the Tropical Atlantic

On February 24, researchers with NOAA’s Atlantic Oceanographic and Meteorological Laboratory returned to land, docking in Key West after nearly six weeks aboard the NOAA ship Ronald H. Brown. The scientists were at sea for the PIRATA (Prediction and Research Moored Array in the Tropical Atlantic) Northeast Extension (PNE) cruise, a joint effort between AOML and NOAA’s Pacific Marine Environmental Laboratory to maintain an expansion of the PIRATA array of surface moorings into the northern and northeastern sectors of the tropical Atlantic.

Read Full Article

AOML and Fearless Fund Team Up to Tackle Questions of Sargassum’s Life Cycle for Better Inundation Prediction Capabilities

The PIRATA (Prediction and Research Moored Array in the Tropical Atlantic) 2021 cruise aboard NOAA’s Ronald H. Brown has returned home! During their 41 days at sea, the cruise facilitated a collaboration between researchers with NOAA’s Atlantic Oceanographic and Meteorological Lab (AOML) and Fearless Fund, an organization dedicated to ocean solutions, supported by the U.S. Department of Energy (DOE). This collaboration targets the removal of carbon dioxide from ocean waters by the growth and harvest of seaweed biomass, known as Sargassum.

Read Full Article

Scientists Discover New Current Structure in Gulf of Mexico off Cuban Coast

Scientists at AOML in collaboration with partners at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science (RSMAS) have identified Loop Current related anticyclonic eddies along the northwest coast of Cuba in the southern Gulf of Mexico, named “CubAns” (“Cuba anticyclones”). These eddies play an important role in the ocean circulation associated with the Loop Current. This team of scientists is the first to study CubANs.

Read Full Article

Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats

Wong, A. P., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., … & Park, H. (2020). Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats. Front. Mar. Sci. 7:700. doi: 10.3389/fmars.2020.00700

Abstract: In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered….

Read Full Paper.

Read Full Article