Author: AOML Communications

Hurricane Model that Follows Multiple Storms Improves Intensity Forecasts

Warning the public of the damaging winds in tropical cyclones is critical for safeguarding communities in harm’s way. A new study by hurricane scientists at AOML is the first to quantify the value added to tropical cyclone intensity forecasts by storm-­following nests. The research, published in the Bulletin of the American Meteorological Society, demonstrates that storm-­following nests applied to multiple hurricanes in the same forecast cycle can improve intensity predictions by as much as 30%.

Read More

Exploring Environmental DNA

Have you ever wondered what animals might be present in a particular habitat or traveled through a certain area of the ocean? Scientists are able to use environmental DNA or “eDNA” sampling to help answer those questions. NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) has recently released a new educational video series, “Exploring Environmental DNA” on their website and Youtube channel.

Read More

NOAA AOML Scientists Project Future Changes in ENSO Variability

In a new study published in Nature Communications, scientists at NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) investigate the projected changes in the seasonal evolution of El Niño – Southern Oscillation (ENSO) in the 21st century under the influence of increasing greenhouse gases. The study found that global climate impacts on temperature and precipitation are projected to become more significant and persistent, due to the larger amplitude and extended persistence of El Niño in the second half of the 21st Century (2051-2100).

Read More

Building Endurance to Beat the Heat: New Study Preps Corals for Warming Waters

In a recent study published in the journal Coral Reefs, scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) found that staghorn coral (Acropora cervicornis) fragments exposed to an oscillating temperature treatment were better able to respond to heat stress caused by warming oceans.

Read More

Synergy of In Situ and Satellite Ocean Observations in Determining Meridional Heat Transport in the Atlantic Ocean

Dong, S., Goni, G., Domingues, R., Bringas, F., Goes, M., Christophersen, J., & Baringer, M. (2021). Synergy of In Situ and Satellite Ocean Observations in Determining Meridional Heat Transport in the Atlantic Ocean. Journal of Geophysical Research: Oceans, 126(4), e2020JC017073.

Abstract: The Atlantic meridional overturning circulation (AMOC) is an oceanic conveyor belt that transports large amounts of heat northwards throughout the Atlantic Ocean. Variations in the heat carried by the AMOC have pronounced impacts on regional and global extreme weather (hurricanes, heat waves, monsoons, etc.), climate, and sea level. Because of its importance, several efforts from the international community are underway to monitor the AMOC at a few latitudes based on in situ oceanographic instruments. The majority of these estimates, however, only span over relatively short and recent time periods…

Read Full Paper.

Read More

New Research Showing Link between Florida Current and Pacific Ocean could Improve Sea Level, Climate Prediction

A recent study by scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) is the first to demonstrate that El Niño-Southern Oscillation (ENSO) temperature variations in the equatorial Pacific Ocean can help predict Florida Current transport anomalies three months later. The connection between Florida Current transport and ENSO is through ENSO’s impact on sea level on the eastern side of the Florida Straits, which plays a dominant role in the Florida Current transport variability on interannual time scales.

Read More

Remote Impact of the Equatorial Pacific on Florida Current Transport

Dong, S., Volkov, D. L., Goni, G., Pujiana, K., Tagklis, F., & Baringer, M. (2022). Remote Impact of the Equatorial Pacific on Florida Current Transport. Geophysical Research Letters, e2021GL096944.

Using in-situ and satellite observations, this study is the first to demonstrate that ENSO temperature anomalies in the equatorial Pacific force Florida Current transport (FCT) anomalies 3 months later.  The connection between FCT and ENSO is through ENSO’s impact on sea level on the eastern side of the Florida Straits, which is associated with anomalous oceanic convergence/divergence in the Caribbean region and the Bahamas forced by ENSO-induced wind stress curl changes. This established relationship gives some predictability of the Florida Current transport and coastal sea level changes with a 3-month lead time, which can benefit coastal communities, particularly during strong El Niño and La Niña events.

Read Full Paper

Read More

Researchers and Forecasters Team Up to Improve Forecasts in the New Hurricane and Ocean Testbed

After a year and a half of concerted effort between NOAA’s National Hurricane Center (NHC), Atlantic Oceanographic and Meteorological Laboratory (AOML), and other NOAA offices, including the Weather Program Office, the Hurricane and Ocean Testbed (HOT) has been successfully launched in the newly designed William M. Lapenta Laboratory, named in memory of the late director of the National Centers for Environmental Protection. This testbed establishes a physical and virtual collaboration space for researchers and forecasters.

Read More

River Runoff Creates a Buffer Zone for Ocean Acidification in the Gulf of Mexico

A new study by scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and Northern Gulf Institute (NGI) has revealed the alkalinity of river runoff to be a crucial factor for slowing the pace of ocean acidification along the Gulf of Mexico’s northern coast. This valuable, first-time finding may be indicative of ocean carbon chemistry patterns for other U.S. coastal areas significantly connected to rivers.

Read More