How the Ocean’s Tiniest Creatures Respond to Changes in the Marine Environment, Revealed by Machine Learning Analysis of ‘Omics Data

Although too tiny to be seen by the naked eye, microscopic organisms have a big impact on our planet – supporting fisheries, degrading pollutants, and helping regulate the earth’s climate. A new study published in Nature Communications employed cutting edge research techniques (collectively referred to as ‘omics) to reveal how the ocean’s tiniest creatures respond to changes in the marine environment. This work addressed a number of objectives in the NOAA ‘Omics Strategic Plan, which calls for the characterization of food webs that sustain fisheries and vulnerable species.

Read Full Article

Coyote Small Uncrewed Aircraft System Data Improved Hurricane Maria Forecasts

Observations obtained by the Coyote small Uncrewed Aircraft System led to a significant improvement in the analyses of Hurricane Maria’s (2017) position, intensity, and structure, according to new ­research published in the journal Monthly Weather Review. The study by scientists with the University of Miami’s Cooperative ­Institute for Marine and Atmospheric Studies and Atlantic Oceanographic and Meteorological Laboratory (AOML) highlights how ­the ­Coyote’s novel near-surface measurements helped to more ­accurately depict ­Hurricane Maria’s inner core, ­demonstrating their ability to improve forecasts.

Read Full Article

Hurricane Model that Follows Multiple Storms Improves Intensity Forecasts

Warning the public of the damaging winds in tropical cyclones is critical for safeguarding communities in harm’s way. A new study by hurricane scientists at AOML is the first to quantify the value added to tropical cyclone intensity forecasts by storm-­following nests. The research, published in the Bulletin of the American Meteorological Society, demonstrates that storm-­following nests applied to multiple hurricanes in the same forecast cycle can improve intensity predictions by as much as 30%.

Read Full Article

Exploring Environmental DNA

Have you ever wondered what animals might be present in a particular habitat or traveled through a certain area of the ocean? Scientists are able to use environmental DNA or “eDNA” sampling to help answer those questions. NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) has recently released a new educational video series, “Exploring Environmental DNA” on their website and Youtube channel.

Read Full Article

Study Links Red Tide and Dead Zones off West Coast of Florida

This article is adapted from an article originally published by the University of Miami  Red tides caused by the algae Karenia brevis have become a near annual occurrence along the west coast of Florida, causing widespread ecological and economic harm. A new study analyzed 16 years of oceanographic data from across the West Florida Shelf […]

Read Full Article

The Spirit of International Cooperation Drives Oceanographic Discovery Aboard Tara

At 20:00 at 64°S in the austral summer month of February, the sun was still high in the sky. It cast a delicate light over the sea surface dotted with icebergs, which ranged from small misshapen chunks to massive angular structures with marbled cliffsides. In January and February 2022, I took part in an Antarctic voyage aboard the French schooner Tara. My participation was part of a partnership between NOAA and AtlantECO, a European-led consortium to characterize, quantify, and model Atlantic Ocean ecosystems.

Read Full Article

Projections of faster onset and slower decay of El Niño in the 21st century

Lopez, H., Lee, S. K., Kim, D., Wittenberg, A., & Yeh, S. W. (2021). Projected Increase in Fast-Growing and Slow-Dissipating El Niño Events in the 21st Century.

Abstract: Future changes in the seasonal evolution of El Niño – Southern Oscillation (ENSO) during the onset and decay phases have received little attention by the research community. This work investigates the projected changes in the spatio-temporal evolution of El Niño events in the 21st Century (21C) using a large ensemble simulation of a couple general circulation model under anthropogenic forcing. Here we show that El Niño is projected to (1) initiate sooner in boreal spring, (2) to grow at a faster rate, (3) to persist longer over the eastern and far eastern Pacific, and (4) to have a broader impact on remote teleconnections. Significant changes in the tropical Pacific mean state, dominant feedback processes, and a projected increase in stochastic westerly wind burst forcing largely explain the fast growing and slow dissipating El Niño in the late 21C. Important implications of these findings are that the global climate impacts are projected to become more significant and persistent, owing to the extended persistence of El Niño.

Read Full Paper.

Read Full Article

NOAA AOML Scientists Project Future Changes in ENSO Variability

In a new study published in Nature Communications, scientists at NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) investigate the projected changes in the seasonal evolution of El Niño – Southern Oscillation (ENSO) in the 21st century under the influence of increasing greenhouse gases. The study found that global climate impacts on temperature and precipitation are projected to become more significant and persistent, due to the larger amplitude and extended persistence of El Niño in the second half of the 21st Century (2051-2100).

Read Full Article

Building Endurance to Beat the Heat: New Study Preps Corals for Warming Waters

In a recent study published in the journal Coral Reefs, scientists at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) found that staghorn coral (Acropora cervicornis) fragments exposed to an oscillating temperature treatment were better able to respond to heat stress caused by warming oceans.

Read Full Article

Synergy of In Situ and Satellite Ocean Observations in Determining Meridional Heat Transport in the Atlantic Ocean

Dong, S., Goni, G., Domingues, R., Bringas, F., Goes, M., Christophersen, J., & Baringer, M. (2021). Synergy of In Situ and Satellite Ocean Observations in Determining Meridional Heat Transport in the Atlantic Ocean. Journal of Geophysical Research: Oceans, 126(4), e2020JC017073.

Abstract: The Atlantic meridional overturning circulation (AMOC) is an oceanic conveyor belt that transports large amounts of heat northwards throughout the Atlantic Ocean. Variations in the heat carried by the AMOC have pronounced impacts on regional and global extreme weather (hurricanes, heat waves, monsoons, etc.), climate, and sea level. Because of its importance, several efforts from the international community are underway to monitor the AMOC at a few latitudes based on in situ oceanographic instruments. The majority of these estimates, however, only span over relatively short and recent time periods…

Read Full Paper.

Read Full Article