Tag: PHOD_Publication

Observed Ocean Bottom Temperature Variability at Four Sites in the Northwestern Argentine Basin: Evidence of Decadal Deep/Abyssal Warming Amidst Hourly to Interannual Variability During 2009–2019

Meinen, C. S., Perez, R. C., Dong, S., Piola, A. R., & Campos, E. (2020). Observed ocean bottom temperature variability at four sites in the northwestern Argentine Basin: Evidence of decadal deep/abyssal warming amidst hourly to interannual variability during 2009‐2019. Geophysical Research Letters, e2020GL089093.

Consecutive multiyear records of hourly ocean bottom temperature measurements are merged to produce new decade‐long time series at four depths ranging from 1,360 to 4,757 m within the northwest Argentine Basin at 34.5°S. Energetic temperature variations are found at a wide range of time scales. All sites exhibit fairly linear warming trends of approximately 0.02–0.04°C per decade over the period 2009–2019, although the trends are only statistically different from zero at the two deepest sites at depths of ~4,500–4,800 m. Near‐bottom temperatures from independent conductivity‐temperature‐depth profiles collected at these same locations every 6–24 months over the same decade…

Read full paper

Read More

Mechanisms of Eddy-Driven Variability of the Florida Current

Domingues, R. M., Johns, W. E., & Meinen, C. S. (2019). Mechanisms of Eddy-Driven Variability of the Florida Current. Journal of Physical Oceanography, 49(5), 1319-1338.

Abstract: In this study, mechanisms causing year-to-year changes in the Florida Current seasonality are investigated using controlled realistic numerical experiments designed to isolate the western boundary responses to westward propagating open ocean signals. The experiments reveal two distinct processes by which westward propagating signals can modulate the phase of the Florida Current variability, which we refer to as the “direct” and “indirect” response mechanisms. The direct response mechanism involves a two-stage response to open ocean anticyclonic eddies characterized by the direct influence of Rossby-wave barotropic anomalies, and baroclinic wall-jets that propagate through Northwest Providence Channel…

Read More