Author: AOML Communications

Subsurface Automated Samplers (SAS) for Ocean Acidification Research

ENOCHS, I.C., N. FORMEL, L. SHEA, L. CHOMIAK, A. Piggot, A. KIRKLAND, and D. MANZELLO. Subsurface automated samplers (SAS) for ocean acidification research. Bulletin of Marine Science, 96(4):735-752 (https://doi.org/10.5343/bms.2020.0018) (2020).

Abstract: Ocean acidification (OA) is the process whereby anthropogenic carbon dioxide is absorbed into seawater, resulting in altered carbonate chemistry and a decline in pH. OA will negatively impact numerous marine organisms, altering the structure and function of entire ecosystems. The progression of OA, while faster than has occurred in recent geological history, has been subtle and detection may be complicated by high variability in shallow-water environments. Nevertheless, comprehensive monitoring and characterization is important given the scale and severity of the problem. Presently, technologies used to measure OA in the field are costly and limited by their detection of only one carbonate chemistry parameter, such as pH. Discrete water samples, by contrast, offer a means of measuring multiple components of the carbonate system, including parameters of particular explanatory value (e.g., total alkalinity, dissolved inorganic carbon), for which field-based sensors do not presently exist…

Read Full Article

Read Full Article

A New Study Connects Greater Amounts of Cloud Ice in Tropical Cyclones to Intensification

A new study published in Geophysical Research Letters looks at the relationship between how fast a tropical cyclone intensifies and the amount of ice in the clouds that make up the storm. Hurricane scientists found that tropical cyclones with greater amounts of cloud ice are likely to intensify faster than those with less cloud ice.

Read Full Article

AOML and SEFSC Researchers Embark on a New Collaborative Effort to Understand the Impacts of Climate on Economically Important Fish Species

NOAA’s Modeling, Analysis, Predictions, and Projections (MAPP) program is funding a new collaborative project between the Atlantic Oceanographic and Meteorological Laboratory (AOML) and the Southeast Fisheries Science Center (SEFSC) to understand how a changing climate might be influencing commercially important fish stocks. This project will identify key climate and oceanic processes that affect the biology and chemistry of the ocean of relevance to the coastal open ocean species in the U.S. Gulf of Mexico and South Atlantic Bight, managed by NOAA Fisheries and the regional Fishery Management Councils.

Read Full Article

Madden–Julian Oscillation–Induced Suppression of Northeast Pacific Convection Increases U.S. Tornadogenesis

Kim, D., Lee, S. K., & Lopez, H. (2020). Madden–Julian Oscillation–Induced Suppression of Northeast Pacific Convection Increases US Tornadogenesis. Journal of Climate, 33(11), 4927-4939.

This study investigates the impact of the Madden–Julian oscillation (MJO) on U.S. tornadogenesis using atmospheric reanalysis and model experiments. Our analysis shows that the impact of MJO on U.S. tornadogenesis is most significant in May–July and during MJO phases 3–4 and 5–6 (P3456). These MJO phases are characterized by anomalous ascending motion over the Maritime Continent (MC) and anomalous subsidence over the northeast Pacific (EP), generating anomalous diabatic heating and cooling, respectively. These in turn generate large-scale atmospheric conditions conducive to tornadogenesis in the United States, enhancing the North American low-level jet (NALLJ) and thus increasing the influx of warm and moist air from the Gulf of Mexico to the United States and increasing the low-level wind shear and convective available potential energy along its path…

Read Full Paper

Read Full Article

Observed Ocean Bottom Temperature Variability at Four Sites in the Northwestern Argentine Basin: Evidence of Decadal Deep/Abyssal Warming Amidst Hourly to Interannual Variability During 2009–2019

Meinen, C. S., Perez, R. C., Dong, S., Piola, A. R., & Campos, E. (2020). Observed ocean bottom temperature variability at four sites in the northwestern Argentine Basin: Evidence of decadal deep/abyssal warming amidst hourly to interannual variability during 2009‐2019. Geophysical Research Letters, e2020GL089093.

Consecutive multiyear records of hourly ocean bottom temperature measurements are merged to produce new decade‐long time series at four depths ranging from 1,360 to 4,757 m within the northwest Argentine Basin at 34.5°S. Energetic temperature variations are found at a wide range of time scales. All sites exhibit fairly linear warming trends of approximately 0.02–0.04°C per decade over the period 2009–2019, although the trends are only statistically different from zero at the two deepest sites at depths of ~4,500–4,800 m. Near‐bottom temperatures from independent conductivity‐temperature‐depth profiles collected at these same locations every 6–24 months over the same decade…

Read full paper

Read Full Article

AOML and GFDL Scientists Initiate a Grassroots Effort to Strengthen Collaboration

In the Fall of 2019, Atlantic Oceanographic and Meteorological Laboratory (AOML) oceanographer Renellys Perez contacted Geophysical Fluid Dynamics Laboratory (GFDL) and Princeton University oceanographer Sonya Legg to brainstorm how the two labs could increase collaboration. Due to a previous working relationship established with Legg at MPOWIR, a mentoring group created to improve the retention of women in physical oceanography and US CLIVAR, Perez was able to propose a collaborative workshop.

Read Full Article

New Study Looks at How Different Techniques to Model the Hurricane Boundary Layer Can Improve Forecasts

In a new study published in Atmosphere, hurricane scientists looked at how turbulent mixing in the boundary layer affects the intensity and structure of hurricanes in NOAA’s Hurricane Weather Research and Forecasting (HWRF) model. They found that turbulent mixing affects where thunderstorms in hurricanes occur, and how fast air flows towards the center of a storm.

Read Full Article

The Argo Program: Two Decades of Ocean Observations

In a recent article published in Frontiers in Marine Science, the history of the Argo program is examined and discussed. The Argo program began in 1998 when a team of international scientists, known as the “Argo Science Team,” proposed the idea for a global array of autonomous floats to obtain temperature and salinity measurements of the upper 2,000 meters of the global ocean. The new array of floats, called Argo, would go on to be endorsed as a pilot program of the Global Ocean Observing System and be used to fill in the large data gaps in ocean observations.

Read Full Article