Etiqueta: investigación sobre huracanes

AOML welcomes Dr. Gus Alaka as new Hurricane Research Division Director

NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) is excited to announce the selection of Dr. Ghassan “Gus” Alaka as the new Director of the Hurricane Research Division (HRD). As a vital member of the AOML team since 2014, Alaka brings a wealth of experience and expertise to the role. Alaka’s journey with AOML began when […]

Lea el artículo completo

NOAA and the Republic of Korea scientists team up to collaborate on extreme weather forecasting

Weather has no regard for political or geographic boundaries, making the timely and accurate prediction of extreme weather events a collective goal that bridges meteorological and ocean observing agencies worldwide. To encourage collaborative science and expand the network of ocean-atmosphere observations, scientists with NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) participated in a series of […]

Lea el artículo completo

Record breaking drone flight gathers critical data inside Hurricane Ernesto

One of the largest challenges in hurricane research is studying the inner dynamics of a storm. The regions within the hurricane that provide the most valuable data are often the most inaccessible and dangerous to reach, creating an opportunity for researchers to utilize emerging technology to enter the storm. Small uncrewed aircraft systems (sUAS), commonly […]

Lea el artículo completo

NOAA and India team up to create life-saving tropical cyclone forecast model for nation of a billion

A 12-year collaboration between NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and the Indian Ministry of Earth Sciences (MoES) has culminated in a renewal of an Implementing Arrangement (IA) on Technical Cooperation in Development of Tropical Cyclone Numerical Weather Prediction System for the Indian Seas, which paves the way for advances in severe weather modeling. […]

Lea el artículo completo

Hurricane Beryl: Looking from sea, sky, and space

In early July, the Caribbean experienced 165 mph winds as Category 5 Hurricane Beryl swept through the region. Beryl was unprecedented, becoming the Atlantic’s earliest forming Category 5 tropical cyclone on record. The storm developed and rapidly intensified to maximum wind speed in less than four days – a behavior uncommon this early in the season. Despite the unprecedented intensification, hurricane scientists with NOAA’s Atlantic Oceanographic and Meteorological Laboratory were prepared.

Lea el artículo completo

Observational Instruments

Observational Instruments Hurricane observational instruments allow scientists to collect real-time data that improves the accuracy of hurricane forecasts and provides critical information for weather prediction models.     SCROLL TO LEARN MORE Researchers at the Atlantic Oceanographic and Meteorological Laboratory (AOML) employ an array of instruments to gather data from inside hurricanes. These instruments range [...]
Lea el artículo completo

Equipping the next generation of hurricane model scientists

In May 2024, representatives from the Hurricane Modeling Team at NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) hosted a Summer Colloquium focused on equipping the next generation of hurricane scientists with a knowledge base of the HAFS model.

Lea el artículo completo

Presentación de los avances innovadores en la modelización de huracanes

Con una activa temporada de huracanes en el horizonte, la necesidad de una previsión fiable de huracanes está en el primer plano de nuestras mentes. Se espera que el aumento de la temperatura de la superficie del mar, el debilitamiento de la cizalladura vertical del viento y el aumento del monzón de África Occidental contribuyan al desarrollo de ciclones tropicales en el Atlántico. Para predecir estas tormentas en desarrollo, los meteorólogos emplean modelos que se basan en observaciones actuales y cálculos matemáticos para predecir el comportamiento y la trayectoria de una tormenta. Estos modelos son complejos y utilizan datos procedentes de diversas fuentes, como datos históricos, numéricos, oceánicos y atmosféricos, para generar sus predicciones. 

Lea el artículo completo