Amenazas para los arrecifes de coral
Identificar y afrontar las amenazas a las comunidades de arrecifes
DESPLÁCESE PARA SABER MÁS
Qué entendemos por "amenazas
Los arrecifes de coral se enfrentan a diversos factores de estrés antropogénicos y medioambientales, desde el calentamiento de las temperaturas oceánicas y los episodios de blanqueamiento hasta las enfermedades provocadas por el cambio climático y el aumento de la actividad humana, lo que conduce a la degradación, la pérdida de biodiversidad y la disminución de los beneficios ecosistémicos que proporcionan los arrecifes.
Antes de poder ofrecer soluciones viables y realistas, debemos identificar y abordar los factores de estrés que afectan de forma más inmediata a las comunidades de arrecifes de coral, desde el calentamiento de la temperatura de la superficie del mar y los fenómenos de blanqueamiento hasta las enfermedades. Esta página sirve de herramienta para mantenerle al día e informado sobre las amenazas actuales a estos ecosistemas naturales.
Click the icons below to explore the different stressors:
El coral cuerno de alce (Acropora palmata) es un coral esencial para la construcción de arrecifes en todo el Caribe, y actualmente se encuentra en peligro crítico (estatus UICN) debido al calentamiento de los océanos.
Decoloración del coral
In 2024, NOAA confirmed the world is experiencing the fourth global coral bleaching event on record – and the second in the last 10 years.
In late July 2023, our team returned to the key climate monitoring site in the Florida Keys known as Cheeca Rocks, an inshore shallow reef off the coast of Islamorada. While this reef has proven resilient to stressful conditions and high sea surface temperatures over the years, scientists at AOML found Cheeca completely bleached as a marine heatwave persisted for months.
Coral Bleaching Frequently Asked Questions (FAQ)
When corals are stressed by changes in conditions, such as extreme temperatures or reduced light penetration, they may expel the symbiotic algae living in their tissues, causing them to turn completely white in a process known as bleaching. Without the algae, they lose their major source of food and can become weak, potentially leading to death. However, if the conditions return to within optimal range for the corals (i.e. sea surface temperatures returning to average range and fluctuation), then the coral can become a host again to the symbiotic algae and recover from the bleaching event.
To learn more about coral bleaching: https://oceanservice.noaa.gov/facts/coral_bleach.html
Sea surface temperature (SST) is a measurement of the water temperature at and near the surface, though a specific depth varies by definition. Sea surface temperature is an essential measurement as the temperature right where the ocean is in direct contact with the atmosphere plays a significant role in weather and storm development, global climate trends and drastically influences crucial marine ecosystems. Where sea surface temperatures are high, relatively large amounts of heat energy and moisture enter the atmosphere, potentially leading to development of storms. In the Atlantic, high sea surface temperatures can lead to rapid intensification of tropical storms and hurricanes while bringing significant heat stress to marine ecosystems.
When a coral bleaches, it is not dead. Corals can survive a bleaching event if waters cool down and other sources of nutrition are available, but they are under more stress and ultimately susceptible to mortality. The rise in marine heatwaves can cause an unprecedented increase in coral mortality within coral reefs and damage ecosystem services. However, with the help of marine heat wave forecasting, we can anticipate the temperature rises and monitor coral reefs to learn more about their threats and how we can help support marine ecosystems.
Para saber más sobre la previsión de ola de calor marina: https://psl.noaa.gov/marine-heatwaves/
Identifying a specific temperature at which corals begin to bleach is complex as it varies by species, region, the microbial life that exists within the coral’s tissue and how long the coral sits in the warm water, among other factors. At AOML, we are actively investigating the thresholds at which specific – and essential – reef-building coral species begin bleaching due to heat stress with ongoing projects in our Experimental Reef Lab (ERL). However, the “bleaching threshold” for coral reefs identified by NOAA’s Coral Reef Watch is usually when water temperatures are at least 1°C (1.8°F) above the maximum summertime mean (MMM) at a given reef location.
In 2024, we first observed above average temperatures leading to a “Bleaching Watch” taking effect at Cheeca Rocks, the climate monitoring site and inshore, shallow reef off of Islamorada in the Florida Keys, when sea surface temperatures rose to about 29 degrees Fahrenheit in May. In 2023, when a significant marine heatwave event led to mass coral bleaching in the Caribbean, a “Bleaching Watch” went into effect in early June.
To learn more about the “Bleaching Threshold Temperature:” Bleaching Threshold
To monitor Coral Bleaching warnings in the Florida Keys and South Florida: NOAA Coral Reef Watch
Para los corales, la temperatura es importante, pero también lo es el tiempo que los corales están sometidos a estrés por el calor. Cuanto más tiempo persista este estrés, más probabilidades tendrán los corales de blanquearse. La decoloración no siempre conduce a la muerte. Pero, de nuevo, si no hay alivio del calor, los corales no tienen tiempo de recuperarse del estrés y acaban muriendo. Los corales son el alimento y el hábitat de otros organismos marinos, y si los corales mueren, esto tiene un efecto en cascada sobre el resto de la vida que sustenta el arrecife.
While coral reefs have gradually recovered from the event with cooling sea surface temperatures, significant mortality has been observed among some species (primarily soft corals) at identified sites such as Cheeca Rocks.
AOML’s Coral Program is at the forefront of monitoring these crucial reefs and investigating through rigorous experimentation how coral resilience can be enhanced in the face of extreme heat, disease, hypoxia, ocean acidification and a variety of other stressors. Our Experimental Reef Lab allows us to expose essential reef-building coral species to these stressors and identify thresholds at which specific species cannot tolerate these conditions – while aiming to push the boundaries on what they can tolerate.
With NOAA’s ‘Omics program, we are also investigating how specific genotypes influence coral resilience to heat stress, identifying the molecular underpinnings that can aid in enhancing tolerance to stressful conditions.
Video: Experimental Reef Lab with Ian Enochs
To learn more about the experiments we’re running: FRESCA – NOAA/AOML
To learn more about our research investigating coral resilience to heat stress on the molecular level: OMICS – NOAA/AOML
One of the exciting things we can do to make corals “tough” in preparation for warmer sea surface temperatures, especially in the summer months, is expose coral fragments in a controlled laboratory setting to higher temperatures. In the Experimental Reef Lab, we do this by turning the temperature up really high, then immediately cooling it down to give our coral a break from the heat. By doing this multiple times a day, every day, we can “toughen up” specific coral species in a way similar to going to the gym and working out really hard, then going home to recover. You do that every day and it tends to make us stronger, more capable of dealing with stress.
Video: Experimental Reef Lab with Ian Enochs
For more information on the Experimental Reef Lab: Experimental Reef Lab – NOAA/AOML
The experiments we are running: FRESCA – NOAA/AOML
Yes. We have produced corals that last longer under temperature stress in a laboratory setting, and in the future we may be able to expand on this to make reef-building corals last longer under temperature stress. We also know that we can grow corals rapidly in the lab and get them to reproduce. In our lab, we are developing scalable robotic techniques for growing and maintaining coral. All of these approaches represent potential solutions, or steps in a plan to implement climate resilient restoration. However, the great challenge now is expanding these techniques on the scale needed to address something that is actively impacting coral reefs across South Florida, the Gulf of Mexico, the greater Caribbean region – and ultimately the world.
It is possible for corals to become more resilient to heat stress after natural events and it’s something we’ve seen before. A study led by scientists at AOML demonstrated that corals in the eastern tropical Pacific highly exposed to the 1982-83 El Niño event and associated heat wave were highly susceptible to heat stress and experienced high mortality rates but more resistant to heat stress with lower mortality in the following 1997-98 and 2015-16 heat waves. We have also seen Cheeca Rocks in the Florida Keys, repeatedly bounce back or persist despite tremendous amounts of thermal stress and disease. It certainly is the exception to the rule.
This demonstrates that coral reefs can become more resilient to stressful conditions expected under climate change. Now the challenge is enhancing that resilience on a massive (global) scale and quickly. This is where our team’s efforts to scale up ongoing research in a relatively short period of time becomes essential.
It is possible for corals to become more resilient to heat stress after natural events and it’s something we’ve seen before. A study led by scientists at AOML demonstrated that corals in the eastern tropical Pacific highly exposed to the 1982-83 El Niño event and associated heat wave were highly susceptible to heat stress and experienced high mortality rates but more resistant to heat stress with lower mortality in the following 1997-98 and 2015-16 heat waves. We have also seen Cheeca Rocks in the Florida Keys, repeatedly bounce back or persist despite tremendous amounts of thermal stress and disease. It certainly is the exception to the rule.
This demonstrates that coral reefs can become more resilient to stressful conditions expected under climate change. Now the challenge is enhancing that resilience on a massive (global) scale and quickly. This is where our team’s efforts to scale up ongoing research in a relatively short period of time becomes essential.
One of the exciting things we can do to make corals “tough” in preparation for warmer sea surface temperatures, especially in the summer months, is expose coral fragments in a controlled laboratory setting to higher temperatures. In the Experimental Reef Lab, we do this by turning the temperature up really high, then immediately cooling it down to give our coral a break from the heat. By doing this multiple times a day, every day, we can “toughen up” specific coral species in a way similar to going to the gym and working out really hard, then going home to recover. You do that every day and it tends to make us stronger, more capable of dealing with stress.
Video: Experimental Reef Lab with Ian Enochs
For more information on the Experimental Reef Lab: Experimental Reef Lab – NOAA/AOML
The experiments we are running: FRESCA – NOAA/AOML
Olas de calor marinas
A marine heat wave is when the ocean temperature (i.e. sea surface temperature, SST) is extremely warm relative to what is typically considered “normal,” or warmer than 90% of the previous observations for a given time of year for at least 5 days – but some can last for weeks, months or years. The longer a marine heatwave lasts, the greater the impacts to marine ecosystems. The prolonged marine heatwave of 2023 in the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea led to a severe bleaching event affecting coral reefs across the region. A marine heatwave in the Pacific known as “the Blob” lasted from 2013 to 2016, leading to an ecological cascade and devastating fisheries collapse.
Scientists at NOAA’s Physical Science Laboratory (PSL) and Coral Reef Watch actively monitor for marine heatwave conditions globally using blended satellite data and real-time ocean observations collected by 1,300 weather observation stations deployed by the NOAA National Weather Service’s National Data Buoy Center.
Las olas de calor marinas son fenómenos anómalos de calentamiento por encima del percentil 90. En sentido práctico, significa que ocurren un 10% de las veces en relación con los registros a largo plazo, normalmente medias de 30 años. En sentido práctico, significa que se producen el 10% de las veces en relación con los registros a largo plazo, normalmente medias de 30 años. A escala mundial, se producen entre 0 y 5 veces al año, con una duración de entre 5 y 40 días.
However, these events have increased in frequency across the globe in recent years, which is expected to continue through the 21st century as global average temperatures rise, significantly impacting essential marine ecosystems, fisheries and coastal communities.
Sea surface temperature (SST) is a measurement of the water temperature at and near the surface, usually defined as the top few millimeters of the ocean. Sea surface temperature is an essential measurement as the temperature right where the ocean is in direct contact with the atmosphere plays a significant role in weather and storm development, global climate trends and drastically influences crucial marine ecosystems.
Where sea surface temperatures are high, relatively large amounts of heat energy and moisture enter the atmosphere, potentially leading to development of storms. In the Atlantic, high sea surface temperatures can lead to rapid intensification of tropical storms and hurricanes while bringing significant heat stress to marine ecosystems.
Due to long term warming trends in the Earth’s oceans, marine heatwave conditions have become more frequent globally since 1991 – a trend that will likely continue under a changing climate. Marine heatwave events are expected to increase not only with their frequency and amplitude/intensity but their duration as well. A few studies even hinted at a near-permanent marine heat wave state in some areas by the end of 21st. NOAA’s Physical Sciences Laboratory (PSL) provides monthly reports assessing the probability and likelihood of potential Marine Heatwave events globally and with each region with an interactive map.
To see the latest global Marine Heatwave forecasts: Marine Heatwaves : NOAA Physical Sciences Laboratory
To see the daily Marine Heatwave Watch satellite monitoring performed by NOAA’s Coral Reef Watch: https://coralreefwatch.noaa.gov/product/marine_heatwave/
To see daily sea surface temperature satellite observations performed by NOAA’s Coral Reef Watch: NOAA Coral Reef Watch Daily 5km Satellite Coral Bleaching Heat Stress SST Product (Version 3.1)
As a branch of the NOAA National Weather Service (NSW), the National Data Buoy Center collects real-time quality-controlled marine observations including sea surface temperature using its 1,300 weather observation stations. However, to examine and forecast events such as marine heatwaves and coral bleaching on a global scale, data collected from these stations are blended with satellite observations of daily sea surface temperature (SST).
Both NOAA’s Physical Science Laboratory (PSL) and Coral Reef Watch monitor Marine Heatwave conditions globally. Here at the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), our scientists constantly collaborate and assess measurements provided by these resources to identify when marine heatwave conditions are likely in the Gulf of Mexico and the greater Caribbean, potentially leading to a coral bleaching event.
We monitor ocean surface temperatures from space and can see extremes develop in real time. Several factors may cause MHWs in the ocean, and these mechanisms influence the timescales of the predictions of these events. However, the first sign of a marine heatwave is when ocean surface temperatures exceed 90% of typical regional temperatures for a sustained period of time, usually at least five days. Scientists compare current temperatures to a baseline average from 1991 to 2020, taking into account seasonal fluctuations and global warming trends.
Every marine heatwave is significant, by definition. Ocean temperatures in the Summer of 2023 (the most recent marine heatwave) were extremely warm relative to what we typically consider to be “normal”. Among historical marine heatwave conditions, the event of Summer 2023 was on the upper end of “average.”
Prior to 2023, the last time there was a marine heatwave of the same magnitude that encompassed this much of the Gulf of Mexico was in 2020.
To learn more about the impacts of the 2023 Marine Heatwave on coral reefs: Cheeca Rocks Reef Completely Bleached – NOAA/AOML.
To learn more about the 2023 Marine Heatwave: The ongoing marine heat waves in U.S. waters, explained | National Oceanic and Atmospheric Administration
To learn more: What a Marine Heatwave Means for South Florida – NOAA/AOML
Water temperatures throughout the Gulf of Mexico and in the Caribbean Sea were anywhere from 1-2.5˚C (~2-4.5˚F) warmer than normal in July and early August of 2023. Temperature anomalies like this aren’t unprecedented, but they are concerning while in the thick of the Atlantic hurricane season (June – November) with the tropical North Atlantic already warm.
Developing storms that pass into the region during a marine heatwave or with above average sea surface temperatures can be fueled by the warm waters as a result. Additionally, over time it will impact the different species of animals that call the ocean home.
To learn more: What a Marine Heatwave Means for South Florida – NOAA/AOML
The 2023 marine heatwave persisted across the Gulf of Mexico and the Caribbean from November or December of 2022 to roughly November 2023.
In August 2023 when scientists at AOML found Cheeca Rocks completely bleached, our experimental marine heatwave forecasts indicated a 70-80% chance that extreme ocean temperatures would persist in the southern Gulf of Mexico and Caribbean through October 2023.
There were more isolated marine heatwave conditions off the Northeast US coast, along the Gulf Stream. We also observed a large marine heatwave in the Northeast Pacific (in the Gulf of Alaska) that was sitting offshore for months before the events along the East coast heightened in early August.
Exposure to extreme temperature for long periods of time causes a breakdown in the beneficial relationship between coral and the algae that lives inside of them and provides them food. The coral is left pale or white, i.e., bleached. The lack of food from the algae can lead to the death of the coral, subsequent erosion of the habitat, and ultimately a dramatic loss of the ecosystem services that we rely on including fishing and food, storm protection, tourism, and biodiversity.
In 2023, we saw instances of coral bleaching in the Miami area. Severe bleaching and significant mortality is likely when the marine heatwave persists.
Para los corales, la temperatura es importante, pero también lo es el tiempo que los corales están sometidos a estrés por el calor. Cuanto más tiempo persista este estrés, más probabilidades tendrán los corales de blanquearse. La decoloración no siempre conduce a la muerte. Pero, de nuevo, si no hay alivio del calor, los corales no tienen tiempo de recuperarse del estrés y acaban muriendo. Los corales son el alimento y el hábitat de otros organismos marinos, y si los corales mueren, esto tiene un efecto en cascada sobre el resto de la vida que sustenta el arrecife.
Ocean Heat content is the total amount of heat stored globally in the ocean. Excess heat in the atmosphere – largely attributed to greenhouse gas emissions – is taken up by the oceans globally.
Yes, due to a changing climate ocean heat content has increased significantly since the 1990’s. While upper layers of the ocean more exposed to the atmosphere are accumulating heat faster than the deeper layers, it is estimated that ocean heat content globally is rising.
When corals are stressed by changes in conditions, such as extreme temperatures or reduced light penetration, they may expel the symbiotic algae living in their tissues, causing them to turn completely white in a process known as bleaching. Without the algae, they lose their major source of food and can become weak, potentially leading to death. However, if the conditions return to within optimal range for the corals (i.e. sea surface temperatures returning to average range), then the coral can become host again to the symbiotic algae and recover from the bleaching event.
Para saber más sobre el blanqueamiento del coral: https://oceanservice.noaa.gov/facts/coral_bleach.html
Cuando un coral se blanquea, no está muerto. Los corales pueden sobrevivir a una decoloración si las aguas se enfrían y otras fuentes de nutrición están disponiblespero están sometidos a más estrés y y, en última instancia a la mortalidad. El aumento de las olas de calor marinas puede causar un aumento de la mortalidad de los corales en los arrecifes de coral y dañar los servicios ecosistémicos. Sin embargo, con la ayuda de la previsión de olas de calor marinas, podemos anticipar los aumentos de temperatura y monitorizar los arrecifes de coral para conocer mejor sus amenazas y cómo podemos ayudar a mantener los ecosistemas marinos.
Para saber más sobre la previsión de ola de calor marina: https://psl.noaa.gov/marine-heatwaves/
Acidificación de los océanos
Map of the US East Coast showing Ocean Acidification. Red indicates more acidic, green indicates relatively neutral.
A medida que los océanos se calientan, son capaces de absorber y almacenar mayores concentraciones de dióxido de carbono (CO2), lo que tiene graves efectos negativos en los ecosistemas de arrecifes y otros entornos marinos de todo el mundo: Acidificación oceánica (AO). Desde el punto de vista químico, un aumento del CO2 absorbido por el océano provoca un aumento de los iones de hidrógeno (H+) en el océano a través de una serie de reacciones químicas, lo que hace que los océanos se vuelvan más ácidos. Este aumento de los iones de hidrógeno amenaza los arrecifes de coral, ya que se unen al carbonato, una molécula esencial que los corales necesitan para construir su duro esqueleto interno (compuesto de carbonato cálcico, CaCO3). Con menos iones de carbonato disponibles, los corales y otros organismos, incluidas las ostras y los mariscos, no pueden mantener y construir las estructuras duras que necesitan para vivir.
Los efectos de la acidificación de los océanos sobre los arrecifes de coral se ven así amplificados por el aumento de las emisiones de carbono a la atmósfera. Identificar cómo persisten los corales en respuesta a este factor de estrés medioambiental es crucial para comprender el futuro de los ecosistemas de arrecifes de coral. Los científicos del AOML siguen investigación, incluido un nuevo marco de seguimiento que contribuirá a los esfuerzos de recuperación y restauración.
Dredging and Sedimentation
Desenterramiento de escombros y resuspensión de sedimentos del fondo de los medios marinos durante el dragado es uno de los principales factores de estrés para los corales. El dragado suele realizarse para ensanchar o profundizar los canales de navegación en masas de agua utilizadas para el transporte marítimo y la navegación de recreo. A medida que los buques aumentan de tamaño para transportar mayores cargas, los canales deben hacerse más profundos y anchos.
However, research performed by scientists at AOML is demonstrating that dredging and sedimentation impacts corals at all life stages – including the early stages.
¿Cómo afecta esto a los corales?
Si no se hace con cuidado, el dragado puede remover los sedimentos y aumentar la turbidez. la turbidez que atenúa la cantidad de luz que necesitan los simbiontes fotosintéticos que viven en el tejido blando de los corales. Además, las altas tasas de sedimentación pueden provocar la mortalidad de los corales al enterrar las colonias y disminuir la capacidad de las larvas de coral para asentarse y sobrevivir en la zona afectada. Cuando el sedimento marino se resuspende, también puede transportar bacterias patógenas que pueden desencadenar brotes de enfermedades coralinas.
What are we doing?
Los científicos del AOML trabajan en colaboración con el Cuerpo de Ingenieros del Ejército (ACE) para desarrollar el Sintetizador de Información Medioambiental para Sistemas Expertos (EISES)un sistema puntero de control de la calidad del agua y la turbidez que servirá de base para la gestión de las actividades de dragado en Port Everglades de Ft Lauderdale, en Florida. El objetivo es mitigar los efectos del dragado en los ecosistemas bentónicos cuando comience la ampliación de Port Everglades en 2027. La realización de pruebas y la recopilación de datos antes del inicio de las operaciones de dragado son esenciales para establecer las condiciones de referencia de la turbidez, la calidad del agua y otros parámetros ambientales en los alrededores, a fin de distinguir entre las perturbaciones causadas por procesos naturales (por ejemplo, vientos fuertes y corrientes intensas) y las provocadas por el dragado.
Additional Bleaching Media Resources
Observaciones sobre la decoloración
(enero de 2023 - julio de 2023)
A continuación encontrará ejemplos de blanqueamiento en corales trasplantados experimentalmente en lugares de seguimiento e investigación a largo plazo por científicos del Programa Coral del AOML, la Universidad de Miami y el Instituto Cooperativo de Estudios Marinos y Atmosféricos debido a la ola de calor marina de 2023.