Research Highlights

04/04/2017

Project Explores Deep Ocean Heat Accumulation in the South Pacific

One of the most challenging questions in global climate change studies today is how quickly, or if, heat that accumulates within the Earth system penetrates into the deep ocean. Scientists with the University of Miami (UM), AOML, and NASA's Jet Propulsion Laboratory (JPL) recently tackled this question by using a combination of present-day satellite and in situ observing systems to study the distribution of heat in the oceans. Full story>>


12/04/2016

Remote influence of Interdecadal Pacific Oscillation on the South Atlantic meridional overturning circulation variability

This study explores potential factors that may influence decadal variability of the South Atlantic meridional overturning circulation (SAMOC) by using observational data as well as surface-forced ocean model runs and a fully coupled climate model run. Full story>>


03/25/2016

Global Characteristics of Coherent Vortices from Surface Drifter Trajectories

In a recent study by Lumpkin (2016) looping trajectories of surface drifting buoys were extracted from the global drifter dataset and analyzed in order to examine the distribution of submesoscale to mesoscale vortices. Over 15,000 looping trajectory segments were identified worldwide. Full story>>


02/25/2016

Meridional heat transport in the South Atlantic reveals links with global monsoons

A recent paper published in the Journal of Climate led by PHOD researchers Hosmay Lopez, Shenfu Dong, Sang-Ki Lee, and Gustavo Goni provides a physical mechanism on how low frequency variability of the South Atlantic Meridional Heat Transport (SAMHT) associated with the Atlantic Meridional Overturning Circulation ( AMOC) may influence decadal variability of atmospheric circulation and monsoons. This is the first attempt to link the South Atlantic Overturning Circulation variability to weather and climate. Full story>>


01/28/2016

Dominance of the Geostrophic and Ekman Transports on the MOC in the South Atlantic

The Meridional Overturning Circulation (MOC) plays a critical role in global and regional heat and freshwater budgets. Recent studies have suggested the possibility of a southern origin of the anomalous MOC and meridional heat transport (MHT) in the Atlantic, through changes in the transport of warm/salty waters from the Indian Ocean into the South Atlantic basin. Full story>>


10/22/2015

Underwater gliders observations reveal the importance of salinity effects

during passage of Hurricane Gonzalo (2014)

Hurricanes are known to drive the cooling of surface waters as they travel over the ocean, leaving a cooling swath where they pass. The sea surface cooling is mostly caused by mixing forced by the strong winds of the hurricane, which occurs as the mixture of warm surface waters with colder waters that can be as deep as 100 m below the surface. Full story>>


<< Previous 1 2 3 4 5 Next >>