Skip to Content

Blog Archives

Climate Change to Drive More Extreme Heat Waves in the United States

A new analysis of heat wave patterns appearing in Nature Climate Change focuses on four regions of the United States where human-caused climate change will ultimately overtake natural variability as the main driver of heat waves. Climate change will drive more frequent and extreme summer heat waves in the Western United States by late 2020’s, the Great Lakes region by mid 2030’s, and in the northern and southern Plains by 2050’s and 2070’s, respectively.

“These are the years that climate change outweighs natural variability as the cause of heat waves in these regions,” said Hosmay Lopez, a meteorologist at NOAA’s Atlantic Oceanographic Meteorological Laboratory and the University of Miami’s Rosenstiel School Cooperative Institute for Marine and Atmospheric Studies and lead author of the study. “Without human influence, half of the extreme heat waves projected to occur in the future wouldn’t happen.”

0 Continue Reading →

Researchers Explore Coral Resiliency in New Experimental Reef Laboratory

Coral researchers at AOML unveiled a new state of the art experimental laboratory this spring at the University of Miami’s Rosenstiel campus. The new “Experimental Reef Laboratory” will allow NOAA scientists and colleagues to study the molecular mechanisms of coral resiliency. Modeling studies indicate that thermal stress and ocean acidification will worsen in the coming decades. Scientists designed the Experimental Reef Laboratory to study the combined effect of these two threats, and determine if some corals are able to persist in a changing environment.

0 Continue Reading →

Ocean Temperatures May Hold Key to Predicting Tornado Outbreaks

Tornadoes are one of nature’s most destructive forces. Recent violent and widespread tornado outbreaks in the United States, such as occurred in the spring of 2011, have caused significant loss of life and property. Currently, our capacity to predict tornadoes and other severe weather risks does not extend beyond seven days. Extending severe weather outlooks beyond seven days will assist emergency managers, businesses, and the public prepare the resources needed to prevent economic losses and protect communities. So how can scientists better predict when and where tornadoes are likely to strike, before the tornado season begins?

0 Continue Reading →

New Study Describes Link Between South Atlantic Ocean and Global Rainfall Variability

In a recent paper published in the Journal of Climate, scientists with NOAA and the University of Miami have identified how variability in ocean circulation in the South Atlantic Ocean may influence global rainfall and climate patterns. The study by researchers at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) suggests that the South Atlantic is a potential predictor of global rainfall variability with a lead-time of approximately 20 years. This link between the South Atlantic Ocean and weather and climate could provide significant long-term insight for water management on a global scale.

0 Continue Reading →

New Antenna System Design Improves Reliability and Significantly Reduces Cost

Scientists and engineers from NOAA have successfully designed, built, and tested a new antenna system that dramatically increases data transmission reliability while drastically reducing operating costs. The new Iridium-based transmission system, developed by NOAA’s Atlantic Oceanographic & Meteorological Laboratory (AOML) & the Cooperative Institute for Marine & Atmospheric Studies (CIMAS), has no restrictions on data format or size, allowing data from various ocean and land-based observation platforms to be transmitted more securely and at a fraction of the cost of the older Inmarsat-C platform.

0 Continue Reading →

AOML Leads Research Efforts Across Caribbean to Improve Bleaching Predictions

For the third time in recorded history, a massive coral bleaching event is unfolding throughout the world’s oceans, stretching from the Indian Ocean to the Caribbean. Above average sea surface temperatures exacerbated by a strong El Niño could result in the planet losing up to 4,500 square miles of coral this year alone, according to NOAA. The global event is predicted to continue to impact reefs into the spring of 2016.

0 Continue Reading →

Volcano Spewing Carbon Dioxide Drives Coral to Give Way to Algae

Scientists from NOAA and the Cooperative Institute for Marine and Atmospheric Studies at the University of Miami have documented a dramatic shift from vibrant coral communities to carpets of algae in remote Pacific Ocean waters where an undersea volcano spews carbon dioxide.

0 Continue Reading →

Indian Ocean Plays Key Role in Global Warming Hiatus

The earth is warming, but temperatures in the atmosphere and at the sea surface that steadily rose in the last half-century have leveled off and slowed in the past decade, causing the appearance of an imbalance in Earth’s heat budget. Scientists are looking into the deep ocean to determine where this additional heat energy could be stored, and recently traced a pathway that leads to the Indian Ocean.

In a study published May 18 in Nature Geoscience, oceanographers from the University of Miami’s Rosenstiel School, Cooperative Institute for Marine and Atmospheric Studies (UM/CIMAS), NOAA and their colleagues identified a key mechanism that explains the apparent contradictions associated with the recent global warming hiatus. Building upon previous studies that suggest enhanced heat uptake in the tropical Pacific Ocean as the major source of the imbalance, the new study tracked this excess heat from the Pacific to the Indian Ocean via Indonesian pathways.

Since the 1950s, global average surface air temperatures have increased steadily, with the warming attributed to greenhouse gases originating from human activities. Since the start of the 21st century however, global surface warming has almost stalled. This contradicts with the amount of net radiation entering Earth at the top of the atmosphere, which continues to suggest an increasingly warming planet. The slowdown of surface warming was the focus of a series of studies that sought to identify and track the causes of this process.

Researchers initially pegged the tropical Pacific as the major source of heat uptake, theorizing that the basin was storing a large portion of the global heat imbalance over the last decade, thereby causing the atmosphere to warm less. Natural climate variability processes such as El Niño/Southern Oscillation (ENSO), a cycle of warm and cold sea surface temperature in the tropical Pacific Ocean, drive wind patterns and ocean currents across the region. Since the turn of the century, the cold phase of ENSO, known as La Niña, has persisted, increasing the uptake of warm surface waters in the subtropics. This process and others have enhanced the uptake of heat from the atmosphere to the top 2,000 ~ 3,000 feet of the ocean.

While uptake in the Pacific as a result of La Niña-like conditions may have answered the initial question regarding the heat missing from the atmosphere, findings from the recent study indicate that Pacific heat has been slowly decreasing and that the excess heat has been transported elsewhere.

“When I first saw from the data that Pacific heat was going down, I was very curious and puzzled,” says the study’s lead author Dr. Sang-Ki Lee, a climate researcher with UM/CIMAS and NOAA’s Atlantic Oceanographic and Meteorological Laboratory.

Results from the study suggest that the excess heat is being stored in the Indian Ocean, which has seen an unprecedented rise in heat over the past decade. Researchers studied observations going back to 1950 and noticed that the Indian Ocean heat uptake stayed relatively low until 2003 or so. From that point forward, observations indicated that heat began to build in the Indian Ocean and there was no evidence to support that the source was from the atmosphere. By running simulations from a global ocean-sea ice model to track the pathway of heat, researchers found that the heat originally stored in the Pacific was transported by a strong ocean current, known as the Indonesian Throughflow, and ended up in the Indian Ocean. The heat flux into the Indian Ocean via the Indonesian pathway means that the Indian Ocean is increasingly important in modulating global climate variability and is now home to 70 percent of all heat taken up by global oceans during the past decade.

The study helps resolve an important debate regarding the warming hiatus. Scientists theorize the Pacific played a role in the warming hiatus, yet all observations indicated that total heat in the Pacific basin had not increased as expected. This study reveals that the Pacific was an intermediary in the heat storage process, but not the final destination, explaining the lack of change in Pacific heat.

Lee has several thoughts about future effects of this warm deep ocean water. In its current location, Lee said it’s possible that the warm water in the Indian Ocean could affect the Indian Monsoon, one of the most important climate patterns in the world that affects more than 1 billion people. What it means for future El Niño cycles is not immediately clear. However, Lee noted that the warm water in the western Pacific, which provides the energy needed to produce intense El Niño events, has been partially discharged into the Indian Ocean, suggesting weaker El Niño events in the near future.  Lee also indicates that the heat content is likely to continue moving with global ocean currents and may find its way into the Atlantic basin in the coming decades.

“If this warm blob of water in upper Indian Ocean is transported all the way to North Atlantic, that could affect the melting of Arctic sea ice,” Lee said. “That can also increase hurricane activity and influence the effects of drought in the U.S, but future studies are required to validate these hypotheses.”

 

Originally Published in May 2015 by Edward Pritchard

0 Continue Reading →

Study Provides Local-scale Projections of Coral Bleaching Over the Next 100 Years

In a new study published April 1 in Global Change Biology, NOAA oceanographers and colleagues have developed a new method to produce high-resolution projections of the range and onset of severe annual coral bleaching for reefs in the Gulf of Mexico and Caribbean. The scientists built on a previous study that used global climate models from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change that produced projections at a very coarse resolution of about 70 miles or 100 kilometers. By using a regional oceanic model and an approach called statistical downscaling, the scientists calculated when increasingly warmer waters would cause severe bleaching on an annual basis. The resulting local-scale projections of bleaching conditions, at a resolution of about 6 miles or 10 kilometers, will help managers include climate change as a consideration in planning and conservation decisions.

Coral bleaching is a major threat to coral ecosystems and primarily occurs when ocean temperatures are warmer than has been normal in the past. Temperature stress disrupts the relationship between corals and the algae that live within their tissues; a relationship that usually benefits both parties. The algae are expelled as they cannot photosynthesize under the extreme conditions. The white limestone coral skeleton becomes visible through tissue that is now transparent since the expelled algae give corals their vibrant colors. Extensive coral bleaching events, called ‘mass bleaching’, have increased in frequency and severity over the past two decades and have contributed to overall reef loss globally.

The loss of coral reefs results in significant ecological, social and economic loss. Coral reefs provide rich habitat for valuable fisheries that people depend on for food. They also serve as protective buffers to coastlines by absorbing wave energy from storms, and they boost local economies by attracting tourists who fish, dive and explore these underwater treasures.

A main conclusion of the study is that almost all coral reef locations in the Gulf of Mexico and Caribbean are projected to experience bleaching conditions every yearby mid-century. This result applies to the past coarse-resolution projections as well as the new high-resolution projections. However, the high-resolution projections show there is great within-country variation in the projected timing of extreme conditions. There are locations within many countries where some reefs are projected to experience annual bleaching conditions 15 or more years later than other locations. This applies to reefs in Florida, the Bahamas, Cuba, Puerto Rico, the Dominican Republic, Turks and Caicos, and Mexico. Reefs projected to experience bleaching conditions later are conservation priorities. These locations are a type of refuge, and are among the locations most likely to persist as the climate changes.

“At these locations, referred to in the study as ‘relative refugia’, lower rates of temperature increase and fewer extreme events mean reefs have more time to acclimate and adapt to climate change,” says study lead Dr. Ruben van Hooidonk, a coral and climate researcher with the Cooperative Institute for Marine and Atmospheric Studies at the University of Miami’s Rosenstiel School and NOAA’s Atlantic Oceanographic and Meteorological Laboratory.

Coastal and environmental managers, as well as conservation staff, throughout southern Florida, the Gulf of Mexico and Caribbean can now use the projections to identify local conservation priorities. Managers may decide to preferentially protect these locations within marine protected area networks or may target a range of other actions to these relative refugia to reduce stress caused by human activities.

Bob Glazer of Florida’s Fish and Wildlife Conservation Commission said he welcomed the new research. “Coral bleaching poses a grave threat to coral reefs and these high-resolution projections provide vitally needed spatial information about the degree of threat and inform opportunities to make better management decisions.”

The study authors also compare the two approaches they used to produce the high-resolution projections. Using the regional ocean model represents dynamical downscaling, which is state-of-art but is expensive in time, money and effort. The regional ocean model was developed by the Geophysical Fluid Dynamics Laboratory at NOAA and has been set up for use in the Gulf of Mexico and Caribbean by oceanographers at AOML.

In contrast, the statistical downscaling method the authors developed uses observed relationships between historical temperatures and current conditions to modify the outputs from the global climate models. This method has the advantage of being far less resource-intensive than dynamical downscaling. The study authors found that the results from the two very different approaches were very similar. This gives the team confidence that statistical downscaling should be applied for all of the world’s coral reefs, which the team plans to undertake over the coming year.

NOAA’s Reef Manager’s Guide, which provides information on the causes and consequences of coral bleaching, outlines some of the management strategies and tools that can help reef managers address the coral bleaching threat. Find out more here.This study was funded by NOAA’s Coral Reef Conservation Program and supported by NOAA AOML. The Open Access paper can be downloaded by clicking the thumbnail to the left.

Originally published April 1st, 2015 by Edward Pritchard

0 Continue Reading →

AOML Scientists Featured in Special Women’s History Month Issue of Oceanography Magazine

Women’s History Month is celebrated annually in March and pays tribute to the generations of women whose contributions made a historical impact on society. It is also a month to honor women who are currently working hard to make positive innovations and impressions on the world.

The Oceanography Society published a special issue of their magazine for 2015 Women’s History Month entitled “Women in Oceanography: a decade Later,” which features four of AOML’s female oceanographers.

The Oceanography Society’s feature includes statistics, women’s program descriptions, and one-page autobiographical sketches written by women oceanographers. It is the sequel to their first “Women in Oceanography” issue, released in 2005, dedicated to exploring why men outnumbered women at higher levels of the field.

This issue evaluates progresses made in retaining women in the oceanography field over the past decade. The article included over 200 autobiographical sketches, which highlighted AOML’s Libby (Elizabeth) Johns, Renellys C. Perez, Claudia Schmid, and Silvia L. Garzoli.

Click below to find out more about each scientist.

Libby (Elizabeth) Johns Oceanographer for the Physical Oceanography Division at AOML

Over the past decade, Libby has continued with her research in south Florida coastal oceanography and broadened her interests to include fisheries oceanography. As a woman in her chosen field, Libby faced a few challenges. First and foremost, the challenge of being a wonderful mother while continuing to excel at her professional career had her constantly adapting to life’s changes. Another challenge Libby faced was transitioning from strictly physical oceanography to interdisciplinary, applied oceanography.  Libby’s advice; “Do not settle for the status quo, but instead constantly evaluate the various parts of a happy and successful life so every aspect can compliment each other.”

Claudia Schmid Oceanographer for the Physical Oceanography Division at AOML

A combined love of the ocean, math and physics brought Claudia to the field of oceanography. Growing up, she spent summers mostly in or on the waters of the Mediterranean. Through her research projects, she achieved global data coverage with regular sampling. For Claudia this was a dream come true. It inspired her to become more involved with data management, co-principal investigator for the Argo project, and join the Prediction and Research Moored Array in the Tropical Atlantic project.

Silvia L. Garzoli Chief Scientists Emeritus at AOML & CIMAS

Over the past 10 years, Silvia transitioned through many life changes. From director of the Physical Oceanography Division (PhOD) at NOAA’s AOML, to Chief Scientist of AOML, to retirement and a part-time scientific position, Silvia witnessed positive changes in the challenges women in science face. When she was PhOD’s director she faced administrative and management challenges, including being a “woman boss,” During her time as director, PhOD greatly benefitted and received excellent reviews after an intensive external review process. Now Silvia works part time as a scientist in order to direct her energy toward writing papers and experiencing extended research cruises. Her advice; “Change is good. It is difficult, and scary, but good!”

Renellys C. Perez Associate Scientist for CIMAS and AOML

Renellys’s love of the ocean brought her to her current research, which is focused on developing a better understanding of ocean currents and their roles in ocean-atmospheric heat exchange. Her investigations require collaboration with other researchers around the world, which allows her to travel and conduct research at sea. This can sometimes be challenging because it involves time spent away from her husband and daughter. Being a woman in science required that Renellys be able to balance family and a career.  Renellys also had to overcome learning how to navigate the US science funding system. She plans on using the multitasking skills she developed in her family life and putting them to use at work, funding multiple projects simultaneously.

Originally published in March 2015 by Shannon Jones 

0 Continue Reading →