Back to Tropical Cyclones
Winds Page  Back
to Main FAQ Page
Subject: D7) How much energy does a hurricane release?
Contributed by Chris Landsea (NHC)
Hurricanes can be thought of, to a first approximation, as a heat
engine; obtaining its heat input from the warm, humid air over
the tropical ocean, and releasing this heat through the
condensation of water vapor into water droplets in deep
thunderstorms of the eyewall and rainbands, then giving off a
cold exhaust in the upper levels of the troposphere (~12 km/8 mi
up).
One can look at the energetics of a hurricane in two ways:
 the total amount of energy released by the condensation of
water droplets or ...
 the amount of kinetic energy generated to maintain the strong
swirling winds of the hurricane (Emanuel 1999).
It turns out that the vast majority of the heat released in the
condensation process is used to cause rising motions in the
thunderstorms and only a small portion drives the storm's
horizontal winds.
 Method 1)  Total energy released through cloud/rain formation:
An average hurricane produces 1.5 cm/day (0.6 inches/day) of
rain inside a circle of radius 665 km (360 n.mi) (Gray 1981).
(More rain falls in the inner portion of hurricane around the
eyewall, less in the outer rainbands.) Converting this to a
volume of rain gives 2.1 x 10^{16} cm3/day. A cubic cm
of rain weighs 1 gm. Using the latent heat of condensation,
this amount of rain produced gives
5.2 x 10^{19} Joules/day or
6.0 x 10^{14} Watts.
This is equivalent to 200 times the worldwide electrical
generating capacity  an incredible amount of energy produced!
 Method 2)  Total kinetic energy (wind energy) generated:
For a mature hurricane, the amount of kinetic energy generated is
equal to that being dissipated due to friction. The dissipation
rate per unit area is air density times the drag coefficient
times the windspeed cubed (See Emanuel 1999
for details). One could either integrate a typical wind profile over a
range of radii from the hurricane's center to the outer radius
encompassing the storm, or assume an average windspeed for the
inner core of the hurricane. Doing the latter and using 40 m/s
(90 mph) winds on a scale of radius 60 km (40 n.mi.), one gets a
wind dissipation rate (wind generation rate) of
1.3 x 10^{17} Joules/day or
1.5 x 10^{12}Watts.
This is equivalent to about half the worldwide
electrical generating capacity  also an amazing amount of energy
being produced!
Either method is an enormous amount energy being generated by
hurricanes. However, one can see that the amount of energy released
in a hurricane (by creating clouds/rain) that actually goes to
maintaining the hurricane's spiraling winds is a huge ratio of
400 to 1.
Back to Tropical Cyclones
Winds Page  Back
to Main FAQ Page
