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ABSTRACT

New multi-lead-time versions of three statistical probabilistic tropical cyclone rapid intensification (RI)

prediction models are developed for the Atlantic and eastern North Pacific basins. These are the linear-

discriminant analysis–based Statistical Hurricane Intensity Prediction Scheme Rapid Intensification Index

(SHIPS-RII), logistic regression, and Bayesian statistical RI models. Consensus RI models derived by

averaging the three individual RI model probability forecasts are also generated. A verification of the

cross-validated forecasts of the above RI models conducted for the 12-, 24-, 36-, and 48-h lead times in-

dicates that these models generally exhibit skill relative to climatological forecasts, with the eastern Pacific

models providing somewhat more skill than the Atlantic ones and the consensus versions providing more

skill than the individual models. A verification of the deterministic RI model forecasts indicates that the

operational intensity guidance exhibits some limited RI predictive skill, with the National Hurricane

Center (NHC) official forecasts possessing the most skill within the first 24 h and the numerical models

providing somewhat more skill at longer lead times. The Hurricane Weather Research and Forecasting

Model (HWRF) generally provides the most skillful RI forecasts of any of the conventional intensity

models while the new consensus RI model shows potential for providing increased skill over the existing

operational intensity guidance. Finally, newly developed versions of the deterministic rapid intensification

aid guidance that employ the new probabilistic consensus RI model forecasts along with the existing op-

erational intensity model consensus produce lower mean errors and biases than the intensity consensus

model alone.

1. Introduction

Although some improvements in tropical cyclone

(TC) intensity forecasting have been achieved over the

past few decades (DeMaria et al. 2014), predicting

changes in TC intensity remains problematic. This is

particularly true for identifying episodes of rapid in-

tensification (RI), which remains the highest operational

forecasting priority of the National Hurricane Center

(NHC) (Rappaport et al. 2012). The difficulty of pre-

dicting RI is due in large part to the multiscale nature of

the problem with environmental, oceanic, and inner-

core processes all likely playing important roles in de-

termining if and when a TC will undergo RI.

The importance of environmental influences in the

RI process has been shown in a number of observa-

tional and numerical modeling studies. For example,
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Molinari and Vollaro (1990) showed that environ-

mental forcing from an upper-level trough produced

enhanced midlevel inflow, upper-level outflow, and

increased upward motion in the near-storm environ-

ment surrounding Hurricane Elena (1989) and specu-

lated that might have contributed to the RI of that

system. However, a subsequent composite study by

Hanley et al. (2001) showed that systems were more

likely to undergo RI when there was no forcing from an

upper-level trough or cold low. Thus, additional factors

such as the strength and location of the upper-level

trough or cold low relative to the TC likely play critical

roles in determining if such interactions ultimately

trigger an episode of RI, as the results of the Hanley

et al. (2001) study also indicated.

More recently, Kaplan andDeMaria (2003, hereafter

KD03) and Kaplan et al. (2010, hereafter KDK10)

showed that statistically significant differences existed

between the kinematic and thermodynamic environ-

ments of TCs that underwent RI and those that did not.

Specifically, the aforementioned studies found that RI

was more likely to occur for TCs that were situated

over regions of higher than average sea surface tem-

perature, oceanic heat content, and low- to midtropo-

spheric moisture. Additionally, the results of KD03 and

KDK10 indicated that systems were more likely to

undergo RI if they were located in regions of weaker

than average vertical wind shear, larger than average

upper-level divergence, were farther from their maxi-

mum potential intensity, and were intensifying at the

time of RI.

The modulating impact of the underlying oceanic

conditions on the potential for a TC to undergo RI has

also been demonstrated in several previous studies. For

example, research conducted by Hong et al. (2000) and

Shay et al. (2000) showed that a Gulf of Mexico warm-

core eddy likely contributed positively to the observed

RI of Hurricane Opal (1995), perhaps by minimizing

the oceanic cooling beneath that system. The above

findings are consistent with those of Cione andUhlhorn

(2003), who showed that systems that experienced the

least amount of inner-core sea surface temperature

reduction generally experienced the largest rates of

intensification. It is worth noting, however, that Bosart

et al. (2000) showed that Opal was embedded in an

environment of low vertical wind shear and enhanced

divergence generated by an upper-level trough during

the period prior to that system’s interaction with the

ocean eddy so the presence of the eddy itself was likely

only one of several factors that led to Hurricane

Opal’s RI.

In recent years, the role of inner-core processes on

RI has been investigated in more detail. In one such

study conducted by Kossin and Schubert (2001), it was

shown that the development of eyewall mesovortices

might induce RI provided that the vorticity of the

parent vortex is initially sufficiently large. More re-

cently, the potentially important role that convective-

scale bursts may play in the RI process has been

examined by a number of researchers (e.g., Guimond

et al. 2010; Wang and Wang 2014; Rogers et al. 2013,

2015). The results of these studies suggest that a posi-

tive feedback between the axisymmetric vortex and

convective bursts can develop, particularly if the bursts

are located near and just inside the radius of maximum

wind where the background symmetric component of

the parent vortex’s vorticity is largest, as was shown in

Rogers et al. (2015). If such a superposition of the

convective burst and parent vortex is observed, then

the axisymmetrizaton (Montgomery and Kallenbach

1997) of the TC’s inner-core vorticity (Reasor et al.

2009) may produce intensification and ultimately RI of

the TC. Perhaps if the aforementioned axisymme-

trizaton of the inner-core vorticity also coincides with

the development of an axisymmetric ring of convec-

tion, then RI may prove more likely to occur since

Willoughby (1990) found that the development of an

isolated well-defined convective ring can lead to rapid

strengthening if that ring contracts, particularly for TCs

of hurricane strength. The importance of the existence

of a low-level symmetric convective ring during the RI

process is supported by both the recent observational

results of Kieper and Jiang (2012) and the previous

modeling results of Nolan and Grasso (2003), which

demonstrated that symmetric heating around the vor-

tex center is generally more conducive for TC in-

tensification than is asymmetric heating. Finally, the

results of Chen and Zhang (2013) suggest that con-

vective bursts may be more likely to produce RI if the

resultant warming that those bursts produce is con-

centrated in the upper levels where they might prove to

bemore efficient in reducing the surface pressure of the

underlying TC as their modeling simulations of Hur-

ricane Wilma (2005) suggested. It is worth noting,

however, that Jiang (2012) found that while the exis-

tence of convective bursts increased the likelihood

that a TC would undergo RI, the increases observed in

their study were not that large, suggesting that the lo-

cation and overall coverage, as well as other factors,

likely play crucial roles in determining the degree to

which the convective bursts contribute to RI.

The multiscale nature of RI described in the above

studies has made the operational prediction of RI quite

difficult (Elsberry et al. 2007). Thus, utilizing the ob-

servational findings of their study, KD03 derived the

initial version of the Statistical Hurricane Intensity

OCTOBER 2015 KAPLAN ET AL . 1375



Prediction Scheme Rapid Intensification Index (SHIPS-

RII) that employed five large-scale predictors from the

SHIPS model (DeMaria et al. 2005) to estimate the

probability of RI (defined as a $15m s21 increase in

maximum sustained wind in 24h). In the original version

of the SHIPS-RII, the probability of RI estimates was

determined by assessing whether the magnitudes of

various environmental and climatological predictors fell

above or below previously determined thresholds values

that represented the RI sample–mean magnitudes of

each of the RI predictors. The SHIPS-RII was first

employed operationally by the NHC commencing with

the 2004 Atlantic hurricane season while a SHIPS-RII

developed for the eastern North Pacific basin was first

implemented for the 2006 hurricane season. Over the

next few years, new versions of the SHIPS-RII that in-

cluded additional RI predictors and more sophisticated

statistical methods were developed and the current

linear-discriminant analysis version of the SHIPS-RII

described in KDK10 was implemented operationally at

the NHC prior to the 2008 hurricane season.

Although the SHIPS-RII is currently an operational

forecasting tool at the NHC, its utility is somewhat re-

stricted since it was developed for a single (24 h) lead

time. Furthermore, its skill is somewhat limited, partic-

ularly in the Atlantic basin (KDK10). This paper pres-

ents an effort to improve the overall usefulness of

SHIPS-RII by enhancing the model in both the Atlan-

tic and eastern North Pacific basins. First, an updated

version of the SHIPS-RII that employs more near-storm

information is derived. Second, new consensus-based

RI model forecasts that employ the current SHIPS-

discriminant RII as well as the Bayesian and logistic

regression RI models described in Rozoff and Kossin

(2011, hereafter RK11) are developed. To provide ad-

ditional guidance for the critical 48-h period during

which the NHC issues watches and warnings, these new

models are developed for the current 24-h operational

forecast lead time, as well as for the added lead times of

12, 36, and 48h. Finally, new versions of the rapid in-

tensification aid (Sampson et al. 2011) that provide de-

terministic intensity forecasts utilizing the combination

of conventional operational intensity forecast models

and the new multi-lead-time probabilistic RI model

guidance are derived. It is worth noting that a parallel

effort to develop a microwave imagery–based version of

the RI model is also under way (Rozoff et al. 2015).

Section 2 of this manuscript provides a description of the

newmulti-lead-time RI models while a probabilistic and

deterministic verification of their skill is provided in

section 3. Finally, a summary of the current study’s

findings as well as some concluding remarks are offered

in section 4.

2. Development of new multi-lead-time RI models

a. Enhanced SHIPS-RII model

1) PREDICTOR SELECTION

As noted above, KDK10 indicate that while the cur-

rent operational version of SHIPS-RII generally ex-

hibits some skill, the amount of skill is rather limited.

This is particularly true in the Atlantic basin. Thus,

predictors derived from three new sources are tested for

their potential to improve the skill of the existing op-

erational SHIPS-RII. First, a multiyear dataset of total

precipitable water (TPW) developed by Remote Sens-

ing Systems (RSS) and the National Environmental

Satellite, Data, and Information Service (NESDIS)

(Kidder and Jones 2007) is tested for its potential to

improve the SHIPS-RII. The RSS–NESDIS TPW

dataset is derived from a unified, physically based al-

gorithm that utilizes the 19-, 22-, and 37-GHz channels

on the constellation of Defense Meteorological Satellite

Program (DMSP) Special Sensor Microwave Imager

(SSM/I) and Special Sensor Microwave Imager/Sounder

(SSM/IS) satellites, the NASA Aqua Advanced Micro-

wave Scanning Radiometer for EOS (AMSR-E), and

the NASA Tropical Rainfall Measuring Mission

(TRMM) Microwave Imager (TMI). Next, principal-

component-analysis-derived channel-4 (10.7mm) in-

frared (IR) imagery (PCIR) predictors computed from

Geostationary Operational Environmental Satellite

(GOES-East and GOES-West) data are examined fol-

lowing the methods described in Knaff (2008). Finally,

boundary layer predictors derived from the National

Centers for Environmental Prediction (NCEP) global

operational gridded 28 3 28 (2.58 3 2.58 prior to 1996)

latitude–longitude low-level temperature and moisture

fields are examined for their ability to improve the SHIPS-

RII. A brief description of the enhanced Atlantic and

eastern North Pacific versions of SHIPS-RII developed

utilizing the above new data sources is provided below.

As a first step in screening predictors derived from the

aforementioned three new data sources, each is sub-

jected to statistical significance testing for a homogenous

sample of cases obtained from the 1995–2012 SHIPS

Atlantic and eastern North Pacific developmental da-

tabases (DeMaria et al. 2005). Following KDK10, pre-

dictors whose sample-mean RI and non-RI1 values are

found to be statistically different at the$99.9% level for

at least one lead time based upon a standard two-sided

Behrens–Fisher t0 test (Dowdy and Wearden 1991) are

1 The non-RI stratification includes slowly intensifying, weakening,

and steady-state systems.
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examined for their ability to increase the skill of the

operational RII. These predictors are then substituted

for several of the existing operational SHIPS-RII pre-

dictors shown in Table 1 to determine if they improve

the skill of SHIPS-RII.

Specifically, a set of new TPW predictors that are

correlated with RI are tested as replacements for the

850–700-hPa relative humidity (RHLO) since both the

TPW and RHLO predictors are measures of atmospheric

moisture. Similarly, the PCIR predictors are tested as re-

placements for the percent area within a 50–200-km radius

with GOES-IR brightness temperatures,2308C (PX30),

as each provides a measure of the TC inner-core con-

vective organization. Finally, low-level NCEP temper-

ature and moisture variables are tested as replacement

predictors for the potential intensity (POT) and oceanic

heat content (OHC), as each is related to boundary

layer processes.

Sensitivity tests are then performed to determine if any

of the new replacement predictors increase the skill of the

operational SHIPS-RII when substituted for existing RI

predictors. The change in skill of each of the new re-

placement predictors is assessed by comparing the aver-

age skill of the new enhanced version of SHIPS-RII to

that obtained utilizing the current version for the three

original operational RI thresholds [25, 30, and 35 knots

(kt; where 1kt5 0.51ms21) in 24h] described inKDK10,

as well as an additional threshold of 40kt in 24h.2

Based on the aforementioned sensitivity tests, three

new predictors are selected for use in the new enhanced

versions of SHIPS-RII. The first of these predictors is the

percentage of the areawithin a 500-km radius of the storm

center and within 6458 of the upshear SHIPS wind di-

rection with TPW, 45mm at time t5 0h. This predictor

replaces RHLO in the enhanced SHIPS-RII. RI is fa-

vored when this predictor is small and hence the amount

of dry air that is being advected into the storm circulation

is relatively low. The cutoff of 45mm as a delineator for

dry air is based on the results of Dunion (2011). Figure 1

shows the distribution of TPW on a select day during the

2003 hurricane season as well as an example of the real-

time blended NESDIS TPW product (Kidder and Jones

2007). Note that the blue and green areas (TPW ,
45mm) depict regions where the atmosphere is relatively

dry between the surface and 500hPa (from where 90%–

95% of the contribution from TPW comes). The orange

and red areas (TPW . 45mm) indicate where the lower

to midlevels of the atmosphere are relatively moist.

The second new RI predictor is the second of the nine

PCIR predictors (PC2) derived as described in Knaff

(2008). This predictor replaces the PX30 predictor em-

ployed in the current operational SHIPS-RII. Figure 2

depicts the favored overall pattern for PC2 as well as an

example of what this pattern looked like just prior to

HurricaneWilma’s record-setting period of RI. Figure 2

shows that convection tends to be enhanced in the left-

front quadrant while being suppressed in the right-rear

quadrant near the time RI commences. This pattern

often precedes the axisymmetrizaton of the overall con-

vective pattern (Knaff 2008). This suggests that systems

that undergo RI are more likely to move into regions

where the thermodynamic environment is relatively fa-

vorable since TCs in both basins generally move to the

west-northwest (not shown), toward the region of en-

hanced convection shown in Fig. 2.

The third new predictor is the inner-core dry-air

predictor (ICDA), which is given by

(q10
layer

2q10)VMX0, (1)

where q10 is the inner-core specific humidity at 10m

derived from the 1000-hPa NCEP temperature and

relative humidity (RH) from a 200–800-km radius; q10layer
is the 10-m specific humidity obtained using the ambient

200–800-km radius, 1000-hPa temperature, and the

layer-mean RH from 1000 to 500 hPa; and VMX0 is the

NHC maximum sustained wind at t 5 0h. The value of

q10 is obtained by bringing down q at 1000hPa to the

surface (dry adiabatically if unsaturated at 1000hPa and

moist adiabatically if the air is saturated) and then al-

lowing the air to cool assuming that theRH reaches 95%

TABLE 1. The predictors used in the current operational SHIPS-

RII. Predictors are averaged every 6 h over the specified lead time

(time avg) unless denoted as being either evaluated at the initial

time (t 5 0 h) or during the previous 12 h. For a more complete

description of the methods used to compute the predictors listed in

Table 1, consult KDK10.

Predictor Definition

PER Previous 12-h intensity change

SHRD 850–200-hPa vertical shear within a 500-km radius after

vortex removal (time avg)

D200 200-hPa divergence within a 1000-km radius (time avg)

RHLO 850–700-hPa relative humidity within a 200–800-km

radius (time avg)

PX30 Percentage of area with 2308C GOES-IR brightness

temp (t 5 0 h) within a 50–200-km radius

SDBT Std dev of GOES-IR brightness temp (t 5 0 h) within

a 50–200-km radius

POT Potential intensity (current intensity 2 max potential

intensity) (time avg)

OHC Oceanic heat content (time avg)

2 The RI threshold of 40 kt in 24 h for SHIPS-RII was developed

and implemented at the request of the NHC prior to the 2010

hurricane season.
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as the parcel spirals into the storm core (Cione and

Uhlhorn 2003). The value of q10layer is obtained following

the same methodology as described above except that

the layer-mean RH between 1000 and 500 hPa is used in

place of the 1000-hPa RH. It should be noted that RI is

favored for small values of ICDA, which indicates less

potential for dry air to mix down to the surface. Al-

though initially tested as a replacement for POT and/or

OHC, sensitivity tests show that the skill of the en-

hanced SHIPS-RII is maximized when all three pre-

dictors (i.e., OHC, ICDA, and POT) are employed.

Finally, adding VMX0 as a 10th predictor improved the

overall skill of themodel even further. Table 2 shows the

10 predictors that are included in the new enhanced

Atlantic and eastern North Pacific SHIPS-RII.

As noted above, the original version of the opera-

tional SHIPS-RII was developed exclusively for a 24-h

lead time. In an effort to provide added RI guidance to

NHC forecasters for the critical watch and warning pe-

riod that was recently extended to 48 h, additional ver-

sions are developed for the 12-, 36-, and 48-h lead times.

Following the methodology used to develop the current

operational 24-h lead-time version of SHIPS-RII and

using the 1995–2012 SHIPS developmental database,

new SHIPS-RII models are developed for RI thresholds

that correspond to approximately the 95th percentile of

the overwater intensity change of all subtropical and

tropical cyclones that formed during the 1995–2012 time

period at the 12-, 36-, and 48-h lead times. Table 3 in-

dicates that the 95th percentile intensity change levels of

FIG. 1. (top left) TPWanalysis at 1200UTC 16 Sep 2003 (courtesy of the Naval Research Laboratory). (top right)

A close-up view of the area over which the TPWpredictor is computed forHurricane Isabel (2003), several hundred

kilometers east of Florida. (bottom) An example of the blended real-time NESDIS TPW analysis product.
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TCs at the above lead times are quite similar in both the

Atlantic and eastern North Pacific basins. Thus, for

consistency, the same RI thresholds are employed when

deriving the RI models for both basins. Specifically, new

versions of SHIPS-RII are developed for the 20-kt RI

threshold at 12-h lead time, the 45-kt threshold at 36-h

lead time, and the 55-kt threshold at 48-h lead time in

each ocean basin. Thus, versions of the SHIPS-RII are

derived for a total of seven RI thresholds, since versions

of that model had been previously developed for the

four operational RI thresholds of 25, 30, 35, and 40kt at

the 24-h lead time.

Tables 4 and 5 show themean and standard deviation of

each RI predictor composing the new SHIPS-RII for the

Atlantic and eastern North Pacific RI and non-RI samples

at four RI thresholds [i.e., 20kt (12h)21, 30kt (24h)21,

45kt (36h)21, and 55kt (48h)21]. The sample statistics for

only these specific RI thresholds are presented since each

corresponds to approximately the same 95th percentile of

intensity change at the four lead times. Note that these

sample averages are obtained using only those cases for

which the POT equals or exceeds that of the relevant RI

threshold so as to better isolate the differences in the en-

vironmental conditions for systems that had an opportu-

nity to undergo RI. It can be seen that each of the

predictors is generally statistically significant at $95th

percentile at most lead times with the majority exhibiting

statistical significances at the $99th percent level.

2) MODEL DERIVATION

As described in KDK10, prior to deriving the dis-

criminant SHIPS-RII, the magnitude of each of the RI

predictors is first scaled between 0 and 1, with the latter

representing conditions that are most conducive to RI.

To illustrate, for the 30-kt Atlantic RI developmental

FIG. 2. Preferred pattern of (left) PC2 and (right) an example of the corresponding GOES-IR representation for

Hurricane Wilma at 1800 UTC 17 Oct. The yellow circle denotes the 440-km radius region over which the PCIR

predictors were evaluated. The magnitude of the PC2 is 21.32. Note that the direction of motion is to the

upper center. The relative distances from the storm center (km) are shown along the x and y axes (left) while the

GOES-IR brightness temperatures (8C) are depicted along the x axis (right).

TABLE 2. As in Table1, but for the predictors used in the new

enhanced SHIPS-RII model. Predictors that either replaced or

have been added to those in those in the existing operational

SHIPS-RII are shown in boldface.

Predictor Definition

PER Previous 12-h intensity change

SHRD 850–200-hPa vertical shear within a 500-km radius after

vortex removal (time avg)

D200 200-hPa divergence within a 1000-km radius (time avg)

TPW Percentage of area with TPW, 45mmwithin a 500-km

radius and6458 of the upshear SHIPS wind direction

(t 5 0 h)

PC2 Second principal component of GOES-IR imagery

within a 440-km radius (t 5 0 h)

SDBT Std dev of GOES-IR brightness temp (t 5 0 h) within

a 50–200-km radius

POT Potential intensity (current intensity 2 max potential

intensity) (time avg)

OHC Oceanic heat content (time avg)

ICDA Inner-core dry-air predictor (time avg)

VMX0 Max sustained wind (t 5 0 h)
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sample, the SHRD of the RI cases ranges from 1.5 to

14.8m s21. Since Tables 4 and 5 indicate that, on aver-

age, smaller values of SHRD are more conducive to RI

than larger values, cases with SHRD # 1.5m s21 are

assigned a scaled value of 1 while those with SHRD $

14.8m s21 are assigned a scaled value of 0 with a linear

variation in the scaled magnitude of SHRD assumed for

cases where 1.5# SHRD# 14.8m s21. It is worth noting

that the above scaling methodology is employed for each

of the 10 RI predictors except for VMX0. For VMX0, the

scaling methodology differs somewhat from that de-

scribed above and in KDK10. Specifically, cases for which

VMX0 is equivalent to the mean value of all of the RI

cases in the developmental sample are assigned a scaled

value of 1 with values of 0 assigned when its magnitude is

equivalent to the minimum and maximum VMX0 values

of theRI sample. The abovemethodology is utilizedwhen

scaling VMX0 rather than that described previously in

KDK10 as it yields higher overall skill of the enhanced

SHIPS-RII based upon sensitivity tests performed on the

developmental sample. Physically, the methodology

found to provide optimal scaling of VMX0 suggests that

weak systems are not sufficiently organized to undergoRI

while strong systems are less likely to experience RI since

they are closer to their maximum potential intensity, as

was previously shown in KDK10.

The scaled predictors obtained through the above

methods are used to determine the discriminant analysis

weights for each of the 10 RI predictors. However, as

noted in KDK10, only cases with predictor magnitudes

within the range of values for which RI is observed to

occur are employed to compute the discriminant weights,

since sensitivity tests indicate this methodology improves

the overall skill of the RI model. To illustrate, cases with

SHRD . 14.8ms21 are not employed when obtaining

the discriminant weights as no RI cases had values

greater than this magnitude. Similar screening proce-

dures are employed for the other nine RI predictors. All

10 discriminant weights, which are simply the magnitude

of Fisher’s linear-discriminant function vector (Wilks

2011), are multiplied by their scaled values ranging be-

tween 0 and 1 to obtain themagnitudes of the discriminant

function. This discriminant function value is then used

TABLE 4. Atlantic RI and non-RI sample mean and std dev for

the 20-, 30-, 45-, and 55-kt RI thresholds with RI (non-RI) sample

sizes of 251 (3654), 284 (2710), 164 (1944), and 146 (1419),

respectively.

RI Non-RI

Predictor Unit Mean

Std

dev Mean

Std

dev

RI 2 non-RI

(mean)

20 kt (12 h)21

PER m s21 5.2 5.0 1.2 4.6 4.0a

SHRD m s21 5.6 3.0 8.1 4.5 22.5a

PC2 0.0 0.8 0.3 1.1 20.3a

OHC KJ cm22 54.5 34.6 37.0 30.6 17.5b

SDBT 8C 12.4 6.2 16.6 6.8 24.2a

D200 1027 s21 44.4 32.5 30.7 34.3 13.7a

VMX0 m s21 34.0 11.6 29.4 11.3 5.6a

ICDA 293.3 165.1 307.1 167.3 213.8

POT m s21 36.5 12.4 35.4 14.4 1.1

TPW % 11.9 22.3 26.1 31.4 214.2a

30 kt (24 h)21

PER m s21 4.5 4.3 1.4 4.4 3.1a

SHRD m s21 5.2 2.2 8.1 4.3 22.9a

PC2 20.1 0.9 0.3 1.1 20.4a

OHC KJ cm22 53.0 32.1 38.2 29.7 14.8a

SDBT 8C 13.5 5.9 17.1 6.8 23.6a

D200 1027 s21 44.1 31.5 29.2 32.8 14.9a

VMX0 m s21 29.8 9.9 27.9 9.9 1.9b

ICDA 255.9 147.5 294.9 152.3 239.0a

POT m s21 41.0 11.9 37.3 12.8 3.7a

TPW % 8.8 18.8 25.2 30.5 216.4a

45 kt (36 h)21

PER m s21 4.2 4.7 1.7 4.1 2.5a

SHRD m s21 4.9 1.7 7.8 3.8 22.9a

PC2 20.1 0.9 0.4 1.1 20.5a

OHC KJ cm22 55.4 31.4 41.9 28.7 13.5a

SDBT 8C 14.3 6.3 17.6 6.9 23.3a

D200 1027 s21 47.2 30.7 29.3 30.9 17.9a

VMX0 m s21 27.8 7.5 25.8 8.2 2.0b

ICDA 235.5 121.8 268.3 132.9 232.8a

POT m s21 43.8 8.7 40.9 10.4 2.9b

TPW % 7.5 15.4 21.9 28.1 214.4a

55 kt (48 h)21

PER m s21 4.1 2.6 1.8 4.1 2.3a

SHRD m s21 4.9 1.7 7.6 3.4 22.7a

PC2 20.2 1.0 0.4 1.1 20.6a

OHC KJ cm22 55.7 31.1 43.3 27.6 12.4a

SDBT 8C 16.2 5.5 17.9 6.9 21.7a

D200 1027 s21 47.1 30.5 29.9 29.2 17.2a

VMX0 m s21 24.3 6.0 24.8 7.4 20.5

ICDA 205.4 103.3 255.3 119.5 249.9b

POT m s21 47.3 7.7 42.6 8.9 4.7a

TPW % 8.9 17.9 19.1 25.9 210.2a

a Statistical differences between sample means at the 99.9th percent

level.
b Statistical differences between sample means at the 99th percent

level.

TABLE 3. Percentile thresholds associated with the correspond-

ing intensity changes for the Atlantic basin, with the eastern North

Pacific in parentheses. Values of N and NRI in the 1995–2012 de-

velopment samples fromwhich each of the RI thresholds is derived

is also provided.

RI threshold N NRI Probability of RI (%)

20 kt (12 h)21 4387 (3218) 255 (206) 94.2 (93.6)

25 kt (24 h)21 3768 (2729) 448 (357) 88.1 (86.9)

30 kt (24 h)21 3768 (2729) 286 (237) 92.4 (91.3)

35 kt (24 h)21 3768 (2729) 168 (165) 95.6 (94.0)

40 kt (24 h)21 3768 (2729) 113 (116) 97.0 (95.8)

45 kt (36 h)21 3224 (2293) 166 (147) 94.9 (93.6)

55 kt (48 h)21 2767 (1903) 148 (114) 94.7 (94.0)
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to estimate the probability of RI, as described in detail

in KDK10.

Figure 3 shows the relative predictor weights of the

new enhanced SHIPS-RII for the four RI thresholds

employed in Table 4. These relative weights are ob-

tained by dividing the absolute weight of each of the

individual RI predictors by the sum of all 10 individual

predictor weights at each lead time and for all four lead

times combined. Thus, the sum of the relative weights is

equivalent to 1 at each lead time. It can be seen that

variations in the relative weights of the individual pre-

dictors are observed as a function of lead time and basin.

However, when ranked by their mean weight for the

four lead times, their importance is generally similar in

both basins. The exceptions to this rule are PC2, which

has a much larger weight in the Atlantic than in the

eastern North Pacific, and POT, which has amuch larger

weight in the eastern North Pacific. Interestingly, at the

longer lead times (i.e., 48 h) when PER becomes much

less important, SHRD has the largest relative weight of

any of the environmental predictors in the Atlantic,

while POT exhibits the largest relative weight in the

eastern North Pacific. This is perhaps an indication that

kinematic factors play a more important role in de-

termining if an episode of RI will occur in the Atlantic

during longer forecast intervals, while thermodynamic

factors may bemore of a controlling factor in the eastern

North Pacific.

It can be seen that the relative weight of each RI

predictor is either positive or very small in the Atlantic

and eastern North Pacific. However, the relative weight

of the ICDA variable is, on average, somewhat negative

in the eastern North Pacific, suggesting that the exis-

tence of too much moisture in the lower to midtropo-

sphere may actually lessen the likelihood of RI.

Nevertheless, the sample-mean ICDA of eastern North

Pacific RI cases (Table 5) is still, on average, less than is

found for non-RI cases. This suggests too much dry air

still likely hinders RI.

By physical reasoning, the response of a TC to envi-

ronmental forcing is expected to be the same regardless

of TC location. Therefore, one might expect that the

relative weights of the RI predictors in Fig. 3 should be

equivalent. However, there are a variety of factors that

could contribute to the differences in relative weights

found between the two basins. First, differences in the

mean TC structure in the two basins could be a factor in

the weighting differences. To illustrate, numerical TC

simulations performed by Riemer et al. (2013) indicate

that the radial profile of a TC’s symmetric wind field is

an important modulator of TC resiliency and ultimately

TC change. For instance, TCs in the eastern North Pa-

cific are about a third smaller than those in the Atlantic

TABLE 5. As in Table 4, but for the eastern North Pacific basin at

the 20-, 30-, 45-, and 55-kt RI thresholds with RI (non-RI) sample

sizes of 206 (2903), 237 (2216), 147 (1647), and 114 (1254),

respectively.

RI Non-RI

Predictor Unit Mean

Std

dev Mean

Std

dev

RI 2 non-RI

(mean)

20 kt (12 h)21

PER m s21 8.1 4.6 0.2 5.6 7.9a

SHRD m s21 4.1 1.7 6.4 3.8 22.3a

PC2 20.1 0.5 0.0 0.9 20.1c

OHC KJ cm22 31.9 15.8 16.3 16.3 15.6a

SDBT 8C 9.4 4.0 14.9 6.6 25.5a

D200 1027 s21 59.5 30.2 32.8 31.9 26.7a

VMX0 m s21 34.5 11.2 27.7 12.0 6.8a

ICDA 176.6 129.7 197.3 144.6 220.7

POT m s21 44.4 11.8 41.7 14.9 2.7b

TPW % 2.8 9.0 10.8 20.4 28.0a

30 kt (24 h)21

PER m s21 6.7 4.1 0.8 5.6 5.9a

SHRD m s21 4.0 1.6 6.4 3.7 22.4a

PC2 20.1 0.5 0.0 0.9 20.1c

OHC KJ cm22 32.6 15.3 16.4 15.3 16.2a

SDBT 8C 11.1 5.0 15.5 6.7 24.4a

D200 1027 s21 59.4 28.7 33.1 30.2 26.3a

VMX0 m s21 27.7 7.6 25.8 9.0 1.9a

ICDA 157.8 107.6 193.5 136.9 235.7a

POT m s21 48.5 9.9 42.4 13.7 6.1a

TPW % 2.0 7.6 9.2 18.8 27.2a

45 kt (36 h)21

PER m s21 6.4 3.5 1.9 5.1 4.5a

SHRD m s21 4.0 1.4 6.4 3.6 22.4a

PC2 20.2 0.6 20.2 0.9 0.0

OHC KJ cm22 34.4 14.9 18.1 14.5 16.3a

SDBT 8C 11.1 5.0 15.5 6.7 24.4a

D200 1027 s21 61.7 26.6 36.7 28.7 25.0a

VMX0 m s21 27.7 7.6 25.8 9.0 1.9c

ICDA 146.8 101.4 168.3 101.6 221.5c

POT m s21 51.9 8.3 45.5 11.2 6.4a

TPW % 1.8 7.1 7.4 17.5 25.6a

55 kt (48 h)21

PER m s21 5.7 3.1 2.4 4.6 3.3a

SHRD m s21 4.1 1.3 6.3 3.4 22.2a

PC2 20.4 0.6 20.2 0.9 20.2c

OHC KJ cm22 34.2 14.8 19.0 13.8 15.2a

SDBT 8C 12.3 5.0 15.6 6.8 23.3a

D200 1027 s21 62.6 26.5 37.9 27.1 24.7a

VMX0 m s21 25.0 6.0 24.9 8.1 0.1

ICDA 133.5 91.5 159.2 90.9 225.7b

POT m s21 54.6 6.6 47.0 9.8 7.6a

TPW % 1.6 4.6 6.6 16.8 25.0a

a Statistical differences between sample means at the 99.9th

percent level.
b Statistical differences between sample means at the 99th

percent level.
c Statistical differences between sample means at the 95th

percent level.
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(Knaff et al. 2014). Thus, differences in TC structure

that are not implicitly accounted for in SHIPS-RII

could produce variations in the response of a TC to

environmental forcing factors represented by SHIPS-

RII predictors. Second, basinwide thermodynamic

variations may also contribute to differences in the

manner in which a TC responds to a given environ-

mental forcing. Specifically, Tables 4 and 5 indicate

that TCs in the eastern North Pacific are more often

embedded in a favorable thermodynamic environment

than Atlantic systems (i.e., higher POT, lower ICDA,

and higher TPW). Thus, the intensity changes of TCs in

each basin may be modulated by variations in the

combined basinwide differences in TC structure and

the thermodynamic conditions of the environment.

Third, differences in the variability of certain condi-

tions may contribute to the relative weighting differ-

ences in Fig. 3. For example, SHRD in the eastern

Pacific is generally rather favorable since the SHRD of

non-RI cases is only slightly higher than the SHRD in

Atlantic RI cases. Consequently, other environmental

factors such as variations in the thermodynamic envi-

ronments and TC structures between the two basins

may play an important role in differentiating between

RI and non-RI cases for TCs experiencing similar ki-

nematic forcing.

It is worth noting that DeMaria and Kaplan (1999)

found substantial ocean basin differences in the rela-

tive importance of SHIPS model predictors such as

vertical shear and potential intensity. Thus, while the

precise reasons for the observed differences in co-

efficient magnitudes remain unclear, similar differ-

ences in predictor importance have been found in

previous statistical TC intensity studies.

3) MODEL VERIFICATION

Figure 4 shows the skill of the existing operational and

new enhanced versions of SHIPS-RII for the 1995–2012

developmental Atlantic and eastern North Pacific sam-

ples for all seven RI thresholds. Following KDK10,

model performance is assessed using the Brier skill score

(BSS) (Wilks 2011) for all overwater cases that remain

tropical or subtropical during the forecast period as

determined from the updated NHC best-track database

(Landsea and Franklin 2013). In Fig. 4, both versions of

SHIPS-RII exhibit skill relative to climatology, but the

enhanced version generally has more skill than the

current operational version. Specifically, the mean

(maximum) absolute improvements for the seven RI

thresholds of the enhanced SHIPS-RII over the current

version are 1.3% (3.2%) and 0.8% (3.1%) for the At-

lantic and eastern North Pacific, respectively, which

correspond to relative mean (maximum) improvements

of 3.2% (25.6%) and 3.1% (11.9%) for those same

two basins.

Hamill (1999) suggested that a simple paired t test is

an appropriate method for performing significance

tests of probabilistic forecasts. Thus, in an attempt to

gauge the relative significance of the above skill

improvements, a paired two-sample t test (Wilks 2011)

is conducted between the Brier skill scores of the en-

hanced and current operational versions of SHIPS-

RII for each of the RI thresholds in each basin. The

results of the paired t test indicate that the improve-

ments of the enhanced SHIPS-RII over the current

operational version are statistically significant at the

$90% level for the 20-, 35-, and 45-kt RI thresholds in

the Atlantic and the 40-kt RI threshold in the eastern

FIG. 3. Relative weights of the enhanced SHIPS-RII predictors (as defined in Table 2) for the (left) Atlantic and

(right) eastern North Pacific basins for the 20- (yellow bars), 30- (blue bars), 45- (green bars), and 55-kt (red bars)

RI thresholds at 12-, 24-, 36-, and 48-h lead times, respectively. The mean relative weight of each of the 10 RI

predictors for all four RI thresholds (ALL) is also provided (black bars).
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North Pacific and that none of the degradations in skill

of the enhanced version relative to the current version

are statistically significant at that same level of sig-

nificance in either basin. It should be noted that Wilks

(2011) suggests that results of the paired t test tend to

underestimate the significance of the differences of

the relevant test statistic between the two samples;

consequently, the results presented here likely rep-

resent somewhat of an underestimate of the signifi-

cance of the improvements discussed above. Thus,

while the overall improvements in skill of the new

enhanced version of SHIPS-RII discussed above are

somewhat modest, the new enhanced SHIPS-RII does

generally provide some improvements in skill relative

to the current operational version. Consequently, it

will be used to obtain the results presented in the re-

mainder of this study.

b. Derivation of new consensus RI models

In RK11, two new probabilistic RI models were de-

veloped based upon a logistic regression (LR) model

and a naïve Bayesian classifier technique. Such models

were derived for both the Atlantic and eastern North

Pacific. These new RI models were then run in parallel

with the discriminant analysis–based SHIPS-RII of

KDK10 to produce a model forecast consensus. The

consensus is simply an average of the LR, Bayesian, and

SHIPS-RII model probabilities. RK11 found that the

consensus RI model provides more skill than any of

individual RI models.

Similar to the original SHIPS-RII, the models in

RK11 were developed for just the 24-h lead time. To

generate a new consensus RI model to accompany the

updated SHIPS-RII, additional versions of the LR and

Bayesian models are developed here for the added lead

times of 12, 36, and 48 h. Also, the 24-h lead-time ver-

sions of the RK11models are updated to take advantage

of an expanded developmental dataset.

In RK11, the choice of each model’s predictors was

the same for all RI thresholds in a given ocean basin,

although the model predictors differed between ocean

basins. In the current study, the RI predictors are now

allowed to also vary between RI thresholds and lead

times in order to optimize cross-validated BSS further

than is possible by fixing model predictors across the

various definitions of RI.

In seeking optimal predictors for each model, the

entire developmental dataset is included in the pre-

dictor search. Some of the predictors in Tables 1 and 2

that compose the SHIPS-RII are also chosen for the LR

and Bayesian RI models. Ultimately, however, a

number of new optimally chosen predictors from the

developmental dataset are needed as well and are

summarized in Table 6. The complete sets of model

predictors for the Atlantic and eastern North Pacific

basins are summarized in Tables 7 and 8. In these

tables, a sense of the relative difference between mean

RI and non-RI predictor magnitudes is also provided.

For the predictors in common with SHIPS-RII, the

relative differences are consistent with the results

shown in Tables 4 and 5. The new predictors also be-

have in accordance with well-known climatological

studies of TC intensification. In the succeeding section,

an evaluation of the real-time performance of the

new multi-lead-time consensus and constituent model

forecasts is provided.

FIG. 4. (top) BSS relative to climatology of the current (solid

bars) and enhanced (hatched bars) versions of the SHIPS-RII for

the Atlantic (blue) and eastern North Pacific (red) basins at each

lead time and RI threshold and for all seven of the RI thresholds

combined (ALL) (upper x axis) for the 1995–2012 developmental

sample. The total number of casesN and RI casesNRI at each lead

time are provided for the Atlantic (blue) and eastern Pacific basins

(red) (lower x axis). (bottom) The improvements in skill of the

enhanced SHIPS-RII over the current version are also provided.
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3. RI model rerun forecast verification

Although the new multi-lead-time RI models de-

scribed above were run in parallel mode at the Co-

operative Institute for Research in the Atmosphere

(CIRA) in Fort Collins, Colorado, commencing in

August 2013, the 2013 hurricane season was unusually

quiet in terms of RI events in both the Atlantic and

eastern North Pacific. Thus, the new RI models are

rerun for the period 2004–13 using the operational

NCEP global model forecast fields and initial storm

data archived for that 10-yr period in an effort to better

evaluate the forecasting capabilities of the newly de-

veloped RI models. Prior to performing the 2004–13

RI model reruns, leave-one-year-out cross-validated

(Wilks 2011) versions of each of the three RI models

(Bayesian, SHIPS-RII, and logistic regression) are

derived for all seven RI thresholds for each of the years

that compose the 10-yr (i.e., 2004–13) sample. For ex-

ample, the developmental data from the periods 1995–

2003 and 2005–12 are used to rederive the 2004 RI

models. The RI models derived by the leave-one-year-

out cross-validation technique are then rerun for each

of the 10 yr in the 2004–13 sample period using the

archived operational NCEP forecast fields, GOES im-

agery, and NHC initial storm intensity and location

data for that period. A probabilistic and deterministic

verification of those cross-validated RI rerun model

forecasts is provided below.

a. Probabilistic verification

Figure 5 shows the skill of the three RI models and

their consensus as a function of forecast lead time and

RI threshold for the Atlantic and eastern North Pacific

for a homogeneous sample of subtropical and tropical

rerun forecasts from 2004 to 2013. It can be seen that

each of the three individual RI models generally ex-

hibit skill (i.e., positive BSS relative to climatology) at

all lead times and RI thresholds (save for the LRmodel

at the 40-kt threshold) and that the model skill is ap-

preciably larger in the eastern North Pacific basin than

in the Atlantic. Overall, the performance of the indi-

vidual models tended to be similar at the shorter (i.e.,

12 and 24 h) lead times with the LR version performing

somewhat better at the longer (i.e., 36 and 48 h) lead

times for this 10-yr sample. Consistent with the de-

pendent 24-h lead-time results in RK11, the RI model

consensus generally outperformed the three individual

RI models at each lead time in both basins. In-

terestingly, it can be seen that the skill of the RI models

tended to be somewhat larger at the 48-h lead time than

the 12-h lead time in both basins (particularly in the

Atlantic), suggesting that RI may be more predictable

TABLE 6. As in Table1, but for new predictors used in the LR and Bayesian RI models.

Predictor Definition

SHRD2 850–200-hPa vertical shear within a 200–800-km radius (time avg)

SHRG Generalized 850–200-hPa vertical shear magnitude that takes all vertical levels into consideration (time avg)

DIVC 200-hPa divergence within a 1000-km radius, using a center based on the 850-hPa vortex center location (time avg)

U200 200-hPa zonal wind (time avg)

EPSS Equivalent potential temp excess of a parcel lifted from the surface and the saturated equivalent potential temp of

the environment within a 200–800-km radius (time avg)

ENSS Vertical avg negative difference between the equivalent potential temp of a parcel lifted from the surface and the

saturated equivalent potential temp of the environment within a 200–800-km radius (time avg)

TPWC Azimuthally averaged TPW within a 200-km radius (t 5 0 h)

TPWW Percentage of area with TPW , 45mm, within a 200-km radius, western quadrant of TC (t 5 0 h)

TPWE Percentage of area with TPW , 45mm, within a 200-km radius, eastern quadrant of TC (t 5 0 h)

TPWL Percentage of area with TPW , 45mm, within a 200-km radius, left quadrant relative to TC motion (t 5 0 h)

TPWB Percentage of area with TPW , 45mm, within a 200-km radius, back quadrant relative to TC motion (t 5 0 h)

TPWOR Percentage of area with TPW , 45mm, within a 400–600-km radius, right quadrant relative to TC motion (t 5 0 h)

TPWA Percentage of area with TPW , 45mm, within a 500-km radius, quadrant centered upshear (t 5 0 h)

PC1 First principal component of GOES-IR imagery within a 440-km radius (t 5 0 h)

DPC2 Trend in the second principal component of GOES-IR imagery within a 440-km radius during the previous 6 h

AVBT Avg GOES-IR brightness temp (t 5 0 h) within a 200-km radius

AVBT2 Avg GOES-IR brightness temp (t 5 0 h) within a 100–300-km radius

SDBT2 Std dev of GOES-IR brightness temp (t 5 0 h) within a 100–300-km radius

PX10 Percentage of area covered by 2108C GOES-IR brightness temp (t 5 0 h) within a 50–200-km radius

PX20 Percentage of area covered by 2208C GOES-IR brightness temp (t 5 0 h) within a 50–200-km radius

PX50 Percentage of area covered by 2508C GOES-IR brightness temp (t 5 0 h) within a 50–200-km radius

TBMX Max brightness temp within a 30-km radius (t 5 0 h)

RSST Reynolds sea surface temp (time avg)
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at longer forecast intervals. This finding may be due in

part to a couple of different factors. First, RI events

that occur over short lead times (i.e., 12 h) are more

likely to be controlled by internal processes (e.g.,

convection) as opposed to environmental factors and

thus might be less predictable (Judt et al. 2015) by the

RI models using predictors derived primarily from

large-scale environmental information. Second, since

RI events usually occur over time intervals of less than

48 h but greater than 12 h (Kieper and Jiang 2012), the

timing of when RI commences might be less critical to

the predictability of RI at the longer lead times.

It is worth noting that while the RI predictors employed

in each of the three individual RI models are selected

separately so as tomaximize the BSS of eachmodel as was

noted previously, there likely exists some correlation be-

tween the forecasts produced by each as there is an

overlap in some of the predictors utilized in the various RI

models. Nevertheless, inspection of a cross section of the

forecasts produced by each of the RI models (not shown)

indicates that for the same case there can sometimes be

fairly large differences in the RI probabilities that are

forecasted by each of the individual RI models. Thus,

despite the similarities in someof the predictors employed,

an appreciable degree of independence likely exists be-

tween the individual model RI probability forecasts.

Figure 6 provides reliability diagrams (Wilks 2011)

depicting the forecasted versus observed RI probabilities

TABLE 7. Predictors utilized in the Atlantic multi-lead-time LR and Bayesian RI models. See Tables 1, 2, and 6 for an explanation of the

predictor. A minus (plus) sign denotes whether a lower (higher) value is found to be more conducive for RI.

Predictor

Tendency for

RI storms RI threshold

Logistic regression

PER 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

SHRD 2 40 kt (24 h)21

SHRG 2 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

DIVC 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 45 kt (36 h)21

RHLO 1 40 kt (24 h)21, 55 kt (48 h)21

U200 2 40 kt (24 h)21

TPWW 2 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 45 kt (36 h)21

TPWE 2 55 kt (48 h)21

TPWB 2 45 kt (36 h)21

PC2 2 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21

DPC2 2 40 kt (24 h)21

SDBT2 2 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 55 kt (48 h)21

PX10 1 45 kt (36 h)21

PX20 1 55 kt (48 h)21

PX50 1 20 kt (12 h)21

TBMX 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21

POT 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

RSST 1 20 kt (24 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21

Bayesian

PER 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

SHRD 2 20 kt (12 h)21

SHRD2 2 40 kt (24 h)21

SHRG 2 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

D200 1 25 kt (24 h)21, 30 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

DIVC 1 20 kt (12 h)21

RHLO 1 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

U200 2 25 kt (24 h)21, 30 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

TPWC 1 25 kt (24 h)21, 30 kt (24 h)21

TPWOR 2 35 kt (24 h)21

TPWA 2 55 kt (48 h)21

PC1 2 45 kt (36 h)21

PC2 2 25 kt (24 h)21, 30 kt (24 h)21, 55 kt (48 h)21

SDBT 2 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21

PX30 1 20 kt (12 h)21

PX50 1 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

TBMX 1 45 kt (36 h)21, 55 kt (48 h)21

POT 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

OHC 1 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21
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for both the Atlantic and eastern North Pacific basins.

Note that points below the diagonal line denote forecasts

that are overconfident (i.e., the forecasted probabilities

exceed the observed) while those above that line repre-

sent underconfident (i.e., probabilities forecast are less

than those observed) forecasts. These diagrams are

constructed utilizing the consensus RI model forecasts

since Fig. 5 indicates that these generally provide the

most skill. The number of bins employed to construct the

reliability diagrams for each RI threshold are chosen so

that each generally contained no less than five cases, as

this was subjectively determined to be a reasonable

minimum number of cases to obtain representative re-

liability statistics.

Figure 6 shows the Atlantic RI model forecasts are

fairly well calibrated (i.e., the forecasted probabilities

are similar to the observed probabilities). However, the

30-kt RI threshold forecasts are somewhat noisy for

probabilities above ;30% while the 40-kt RI threshold

forecasts exhibit a marked tendency to produce under-

confident forecasts at all but the lowest probabilities. It

is worth noting that while the consensus RI forecast

probabilities generally do not exceed 40% very often in

the Atlantic basin, RI is likely to occur (i.e., observed

probabilities exceed 50%) when such probabilities are

forecast. Figure 6 also indicates that the eastern North

Pacific RI model consensus forecasts are generally fairly

well calibrated up to probabilities of around 40%–50%,

after which they exhibit underconfidence, particularly

for the 40- and 55-kt RI threshold forecasts. The lone

exception is the 25-kt RI threshold forecasts that exhibit

underconfidence at all forecasted probabilities. Never-

theless, compared to the Atlantic RI model consensus,

the eastern North Pacific consensus is more capable of

correctly identifying forecast periods when the proba-

bility of RI is comparatively high. It can be seen that the

maximum RI probabilities typically forecasted by the

consensus model are approximately 65% and 85% for

the Atlantic and eastern North Pacific basins, respec-

tively, although probabilities exceeding those values are

sometimes forecast in those basins (see Fig. 7). Thus, it is

possible that the addition of some type of bias correction

might improve the consensus model’s capability to

predict higher RI probabilities.

The aforementioned findings suggest that environ-

mental conditions associated with higher probabilities of

RI are more prevalent in the eastern Pacific than in the

Atlantic. Consequently, the ability to analyze and pre-

dict changes in inner-core structure may be more crucial

to the prediction of RI in the Atlantic basin, where en-

vironmental conditions most conducive to RI tend to be

less prevalent.

TABLE 8. Predictors used in the new eastern North Pacific basin LR and Bayesianmulti-lead-time RImodels. Aminus (plus) sign denotes

whether a lower (higher) value is found to be more conducive for RI.

Predictor

Tendency for

RI storms RI threshold

Logistic regression

PER 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

SHRD 2 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

SHRD2 2 20 kt (12 h)21

DIVC 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

ENSS 2 25 kt (24 h)21

AVBT 2 35 kt (24 h)21, 40 kt (24 h)21

SDBT2 2 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21

PX20 1 55 kt (48 h)21

PX50 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 45 kt (36 h)21

TBMX 1 25 kt (24 h)21

POT 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

Bayesian

PER 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

SHRD 2 20 kt (12 h)21

DIVC 1 20 kt (12 h)21

EPSS 1 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

TPWL 2 55 kt (48 h)21

AVBT2 2 55 kt (48 h)21

SDBT2 2 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21

PX30 1 45 kt (36 h)21

PX50 1 20 kt (12 h)21

POT 1 20 kt (12 h)21, 25 kt (24 h)21, 30 kt (24 h)21, 35 kt (24 h)21, 40 kt (24 h)21, 45 kt (36 h)21, 55 kt (48 h)21

RSST 1 20 kt (12 h)21
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Figure 7 shows examples of the forecast performance of

the consensus RI model for a few select systems that un-

derwentRI. These systems are chosen since they represent

cases for which the consensus model correctly forecasts

relatively high RI probabilities as well as those for which

the model failed to do so. It can be seen that the RI model

correctly forecast relatively high RI probabilities for both

Atlantic Hurricane Wilma and eastern North Pacific

Hurricane Rick (2009) while failing to do so for Atlantic

Hurricane Michael (2013) and eastern North Pacific Hur-

ricane Flossie (2007). These examples underscore both the

importance and limitations (Hendricks et al. 2010) of using

environmental information to predict RI.

b. Deterministic evaluation

Although the RI models are formulated to produce

probabilistic forecasts, the methodology described in

KDK10 can be also be utilized to construct a de-

terministic forecast. To accomplish this, cutoff proba-

bilistic RI thresholds that when exceeded would trigger

an RI forecast need to be determined. In the KDK10

study, the cutoff probabilities were assumed to be

equivalent to the climatological probability of false

detection (also known as the false alarm rate; Wilks

2011) for each RI threshold in each basin as determined

utilizing the SHIPS-RII developmental model proba-

bilities. However, in the present study the cutoff prob-

abilities are determined using the consensus RI model

rerun forecasts since those were previously shown to

provide the most skill (see Fig. 5). Additionally, the

consensus model rerun forecasts from 2004 to 2007

(rather than those from the entire 2004–13 period) are

employed when determining the probabilistic RI cutoffs

to allow the consensus model to be used as an in-

dependent benchmark against which its performance, as

well as that of the operational intensity guidance, can be

evaluated for the period 2008–13.

Table 9 shows the RI forecast cutoff probabilities for

each of the RI thresholds for both basins. For the con-

ventional deterministic models, RI is forecast if the

operational model-predicted intensity change deter-

mined from the Automated Tropical Cyclone Fore-

casting System (ATCF; Sampson and Schrader 2000)

equals or exceeds the specified RI threshold for that

basin. The accuracy of the RI forecasts is assessed uti-

lizing the probability of detection (POD), the false

alarm ratio (FAR), and the Peirce skill score (PSS),

which are the same three metrics previously utilized

in KDK10.

Briefly, the POD is the percentage of time that RI

events are correctly identified so that a POD of 100%

(0%) indicates that all (no) RI events are forecast cor-

rectly. The FAR is the percentage of time that RI is

forecasted but is not observed so that an FAR of 0%

(100%) indicates that all (no) forecasted RI events oc-

curred. The PSS provides a means of quantifying the

overall level of skill of contingency-type forecasts, par-

ticularly those made for infrequent events like RI, and

ranges from 21 to 1 with perfect forecasts receiving a

PSS of 1 and negative values not considered skillful. A

more detailed description of the above three metrics can

be found in KDK10 and Wilks (2011).

Using the above metrics for a homogenous set of

Atlantic and eastern North Pacific forecasts from 2008

to 2013, the Atlantic and eastern North Pacific RI

forecasts are evaluated (Figs. 8 and 9). The 2008–13 time

FIG. 5. BSSs of the (top) Atlantic and (bottom) eastern North

Pacific 2004–13 RI rerun forecasts relative to the climatological

probabilities of RI for each RI threshold. Skill is shown for the

SHIPS (blue bars), logistic regression (red bars), Bayesian (green

bars), and consensus (yellow bars) RI models. Values ofN andNRI

are shown at each lead time (lower x axis). Note that sample sizes

can vary at a given lead time as a result of the lack of availability of

one or more of the RI models for a given lead time and RI

threshold.
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period is chosen since each of the intensity models de-

scribed below is routinely available throughout that entire

time period. The evaluations are performed for the 5-day

SHIFOR model (SHF5; Knaff et al. 2003), the decay ver-

sion of the SHIPSmodel (DSHP;DeMaria et al. 2005), the

logistic growth equation model (LGEM; DeMaria 2009),

the Geophysical Fluid Dynamical Laboratory (GFDL)

hurricane prediction model early (GFDI) and late

(GFDL) versions (Kurihara et al. 1998) and the Hurricane

Weather Research and Forecasting Model early (HWFI)

and late (HWRF) versions (Tallapragada et al. 2014), the

NHC official forecast (OFCL), and the newly developed

consensus RI Index model (CON-RII). Note that SHF5,

DSHP, LGEM, HWFI, GFDI, and CON-RII are consid-

ered early model guidance since each typically would be

available to the NHC forecasters at the time they are

preparing their forecasts, while HWRF and GFDL are

considered late models since they are not typically avail-

able until after the OFCL forecasts are issued. A more

complete description of the distinctions between the late

and early model guidance described above may be found

online (http://www.nhc.noaa.gov/verification). Finally, it is

important to note that although the CON-RII rerun fore-

casts were not available in real time to NHC forecasters,

they are provided here to demonstrate their potential

utility to operations as they employ the same early model

input data as SHIPSwhile also serving as a baseline tool for

evaluating the importance of large-scale environmental

forcing on RI.

Figure 8 shows that the OFCL forecasts have higher

PODs than any of the operational early models at the

shorter (i.e., 12 and 24h) lead times in the Atlantic basin

while the HWFI forecasts exhibit the largest POD rates

at the longer (i.e., 36 and 48 h) lead times. Encourag-

ingly, the newly developed CON-RII model generally

produces higher POD rates than any of the operational

guidance. In terms of the FAR, the OFCL forecasts

generally have the lowest values of any of the opera-

tional Atlantic early model guidance, particularly at the

shorter lead times. It is worth noting that CON-RII

produces FAR values that are generally comparable to

those of the operational intensity guidance except for

the 35- and 40-kt RI thresholds at 24-h lead time where

the FAR is appreciably higher and for the 45- and 55-kt

RI thresholds at 36- and 48-h lead times, respectively,

where the CON-RII FAR values are slightly higher than

those of the existing operational intensity guidance. This

result likely demonstrates the limitations of employing

mainly environmental information to predict the likeli-

hood of the largest rates of intensification, particularly at

shorter lead times. As noted earlier, inner-core pro-

cesses that are not well represented by theRImodels are

likely more critical to the forecasting of the most rapid

rates of intensification, especially at the shorter forecast

time intervals.

When the operational Atlantic basin early model RI

forecasts are evaluated according to PSS, which ac-

counts for both the POD and FAR, the OFCL forecasts

generally provide themost skill of any of the earlymodel

operational intensity guidance at 12- and 24-h lead times

while the GFDI and HWFI forecasts exhibit the most

skill at 36- and 48-h lead times. CON-RII generally

FIG. 6. Reliability diagrams for the (left) Atlantic and (right) eastern North Pacific consensus 2004–13 RI rerun

forecasted (x axis) vs observed (left y axis) probability of RI for the 20- (yellow), 25- (dark blue), 30- (green), 35-

(magenta), 40- (light blue), 45- (orange), and 55-kt (red) RI thresholds. The solid lines depict the probability of RI

while the dashed lines of the same color show the frequency (right y axis) at which the RI forecasts are observed.

The diagonal solid black line depicts forecasts with perfect reliability.
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exhibits somewhat higher PSS values than the opera-

tional early model guidance, particularly at the shorter

lead times, suggesting that it has the potential to be a

useful operational forecasting aid. It is also worth noting

that the HWFI forecasts generally provide the most skill

among the early operational intensity model guidance.

It can be seen that although the late models (HWRF

and GFDL) generally produce higher POD rates than

the early versions of those same models (HWFI and

GFDI), they also tend to produce higher FAR values.

Hence, the overall PSS of the late versions is, on aver-

age, only somewhat better than the early versions.

Inspection of the early eastern North Pacific opera-

tional guidance forecast verifications shown in Fig. 9

indicates that the OFCL forecasts generally provide

the highest POD, particularly at the shorter lead times

and lower RI thresholds, with the HWFI and OFCL

forecasts exhibiting comparable POD values for the

longer lead times and higher RI thresholds. Similar to

the Atlantic, the CON-RII forecasts produce higher

POD values than the operational intensity guidance,

although the observed increase in POD of the CON-RII

forecasts over that of the operational guidance is much

more substantial for the eastern North Pacific than the

Atlantic.

Generally, the OFCL forecasts produce the lowest

FARof any of the early operational guidance as was also

observed in the Atlantic. The CON-RII FAR is com-

parable to or slightly higher than that of the operational

intensity guidance except for the 35- and 40-kt RI

thresholds for which it is observed to be appreciably

higher, as was also seen in the Atlantic basin.

The PSSs of the OFCL forecasts generally exceed

those of the other operational guidance, save for the

FIG. 7. The consensus 6-h RI rerun forecast probabilities for the 20- (solid yellow), 30- (solid green), 45- (solid

orange), and 55-kt (solid red) RI thresholds (right y axis) for Atlantic hurricanes (top left) Wilma (2005) and (top

right) Michael (2012) and eastern North Pacific hurricanes (bottom left) Rick (2009) and (bottom right) Flossie

(2007). The horizontal dashed lines represent the climatological probability of RI for each threshold. The best-track

NHC max sustained wind estimates (left y axis) are depicted by the solid black line. The forecasts are shown for all

time periods when the systems remained over water and had a tropical or subtropical designation. The time at which

Wilma made landfall along the Yucatan Peninsula is depicted by a vertical solid brown line.
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40- and 45-kt RI thresholds, where the HWFI exhibits

the highest PSS values. However, consistent with the

Atlantic basin the HWFI forecasts generally provide the

most skill among the early model intensity guidance.

Also, similar to the Atlantic findings, the PSSs of the

CON-RII forecasts exceed those of the conventional

operational intensity guidance. In the case of the eastern

North Pacific, however, the CON-RII’s PSS improve-

ment over the operational guidance is significantly

larger than in the Atlantic.

Finally, a comparison of the eastern North Pacific RI

forecasts produced by the early and late numerical

models shows results similar to those obtained for the

Atlantic. Specifically, the late versions of the numerical

models (GFDL and HWRF) possess higher POD and

FARvalues and, to a degree, higher PSS values, than the

early (GFDI and HWFI) versions of those models.

The results of Figs. 8 and 9 indicate that the FAR

values of both GFDL and HWRF are shown to be

substantially larger for the late versions of those

models when compared to the early versions particu-

larly at the shorter lead times, perhaps suggesting that

the numerical models may have a tendency to over-

intensify systems over the shorter forecast time in-

tervals (i.e., 12–24 h). Inspection of these figures also

indicates that the RI forecast guidance generally ex-

hibits higher skill in the eastern Pacific than in the

Atlantic. This is particularly true for CON-RII. The

higher level of skill found in the eastern North Pacific

relative to the Atlantic may indicate that RI is some-

what more predictable when the large-scale conditions

are more favorable since Tables 4 and 5 indicate that

the environmental conditions that form the basis of the

RI models examined here are, on average, more con-

ducive to RI in the eastern Pacific than in the Atlantic.

In addition, the large-scale conditions themselves may

be more predictable in the eastern North Pacific basin

than in the Atlantic. Nevertheless, the overall finding

of relatively low POD and a rather high FAR for all of

the intensity guidance demonstrates the difficulty of

predicting the timing and magnitude of the RI events.

Although the above results indicate that the pre-

dictive skill of RI remains rather limited, NHC’s ability

to predict such events appears to have increased some-

what in recent years, as is illustrated in Fig. 10, which

depicts the changes in the PSSs of the OFCL forecasts

between the periods 2004–07 and 2008–13. These two

periods are chosen since the current study encompasses

the aforementioned 10-yr time period and the HWRF

and discriminant versions of SHIPS-RII both became

operational and routinely available to NHC forecasters

at the start of the 2008 hurricane season. Figure 10 in-

dicates that based upon the PSS metric, there appears to

have been some improvements in the ability of the NHC

to forecast RI events in recent years, particularly in the

eastern North Pacific. Specifically, the PSS of the OFCL

forecasts improved by an average of about 6% (11%) in

the Atlantic (eastern Pacific) with improvements of up

to 10% (18%) observed in those same two basins over

the above time period.

c. RAPID guidance evaluation

Sampson et al. (2011) developed a deterministic rapid

intensification aid (IVRI; also known as RAPID) that

employs probabilistic SHIPS-RII forecasts in conjunc-

tion with the existing intensity five-member consensus

(IVCN). Sampson et al. (2011) suggested that the

RAPID guidance be run when the SHIPS-RII fore-

casted probability of RI exceeds 40% for any of the 24-h

lead-time operational RI thresholds. To generate the

new deterministic IVRI forecast for such cases, the

magnitude of the largest RI threshold for which the RI

model forecast probability exceeds 40% is averaged

together with the intensity changes forecasted by each of

the five IVCN models. To illustrate, if the forecast 24-h

SHIPS-RII probabilities for the 25-, 30-, 35-, and 40-kt

RI thresholds are 50%, 45%, 35%, and 30%, re-

spectively, then an intensity change of 30 kt is averaged

together with the intensity change forecasts of the IVCN

models to generate the new 24-h IVRI forecast since

30kt represents the highest RI threshold for which the

SHIPS-RII forecast probability exceeded 40%.

Results of the RAPID forecasts generated utilizing

the 2008–13 operational IVCN and the multi-lead-time

TABLE 9. Cutoff probability thresholds (%) for each of the seven

RI thresholds determined from the Atlantic and eastern North

Pacific consensus RI model 2004–07 rerun forecasts. The climato-

logical probability of RI of the development sample is provided for

reference.

RI threshold

Cutoff

probability (%)

Climatological

probability (%)

Atlantic

20 kt (12 h)21 17 5.8

25 kt (24 h)21 26 12.0

30 kt (24 h)21 21 7.3

35 kt (24 h)21 17 4.3

40 kt (24 h)21 10 3.0

45 kt (36 h)21 22 5.1

55 kt (48 h)21 24 5.3

Eastern North Pacific

20 kt (12 h)21 18 6.4

25 kt (24 h)21 18 12.8

30 kt (24 h)21 25 8.6

35 kt (24 h)21 21 6.0

40 kt (24 h)21 17 4.3

45 kt (36 h)21 21 6.4

55 kt (48 h)21 18 6.0
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CON-RII rerun forecasts are shown in Fig. 11. These

results are obtained for all Atlantic and eastern North

Pacific cases for which at least one CON-RII probability

forecast exceeds 40% at one of the four (12, 24, 36, and

48h) lead times. Although the number of cases is lim-

ited, indicating that the CON-RII forecast probabilities

do not exceed 40% very often, it can be seen that when

the probabilities exceed that cutoff probability thresh-

old inclusion of the RAPID in the IVCN lowers the

mean absolute forecast errors of the IVCN for the four

lead times by about 8% and 6% in the Atlantic and

easternNorth Pacific, respectively, with reductions up to

13% and 8% observed for those same two basins. While

these are modest reductions in the mean error, the IVRI

producesmore substantial decreases in themagnitude of

forecast bias with mean reductions of 53% (18%) ob-

served for the Atlantic and eastern North Pacific, re-

spectively, and reductions of up to 94% and 26%

observed for those same two basins.

It is notable that theOFCL forecasts outperform all of

the objective intensity guidance for the first 24 h, in-

dicating that the NHC forecasters made good use of the

available operational intensity and RI guidance that

existed for this time period. The improvements of the

OFCL forecasts over the RI guidance shown here are

consistent with recent basinwide operational intensity

verification results conducted by the NHC for all (RI

and non-RI) forecasts (see http://www.nhc.noaa.gov/

verification) that indicate that the OFCL intensity

forecasts typically provide more skill than do the indi-

vidual intensity forecast models themselves. This result

suggests that the human forecasting element typically

yields added skill for operational intensity forecasts.

Nevertheless, it is encouraging that the aforemen-

tioned results indicate that the IVRI produces the

smallest errors and biases of any of the guidance at the

longer lead times (i.e., beyond 24h) in theAtlantic basin

and comparable or slightly higher errors in the eastern

FIG. 8. (top left) POD, (top right) FAR, and (bottom) PSS of the Atlantic basin 2008–13 operational early model

forecasts for SHF5 (gray bar), DSHP (yellow bar), LGEM (purple bar), GFDI (solid green bar), HWFI (solid blue

bar), OFCL (black bar), and CON-RII (red bar) as a function of RI threshold (lower x axis) and forecast lead time

(upper x axis). The results of the latemodelGFDL (hatched green bar) andHWRF (hatched blue bar) forecasts are

also provided. The number of RI cases at each forecast lead time is provided (lower x axis).
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Pacific even though the probability threshold employed

to trigger the IVRI guidance is not tuned to the new

multi-lead-time RI model guidance. Thus, further im-

provements in the overall performance of the IVRI are

believed to be achievable after some additional re-

finements are made to this product. This result also in-

dicates that the newmulti-lead-time RI guidance should

have a positive impact on the NHC official forecast

when it becomes available operationally, since the

multi-lead-time RI guidance improves the consensus

when included in a very simple way in the IVRI

technique.

4. Summary and conclusions

An enhanced version of the SHIPS-RII that includes

several new and/or replacement predictors has been

developed for the 24-h lead time for both the Atlantic

and eastern North Pacific basins. These new predictors

included the area within a 500-km radius of the storm

center and within 6458 of the upshear wind direction

with total precipitable water ,45mm, the second

principal component of GOES-IR brightness tem-

perature within a 440-km radius, and an inner-core

dry-air predictor that provides a measure of the im-

pact of the near-storm moisture from 1000 to

500 hPa. Finally, the maximum sustained wind at

time t 5 0 h was employed as an additional predictor

in the new enhanced SHIPS-RII.

To provide added RI guidance to NHC forecasters for

the critical watch and warning period that was recently

extended to 48h, additional versions of the newly de-

veloped enhanced SHIPS-RII were derived for 12-, 36-,

and 48-h lead times. Following the methodology used to

develop the current operational SHIPS-RII, new ver-

sions of the enhanced SHIPS-RII were formulated for

RI thresholds representing approximately the 95th

percentile of overwater intensity change of all sub-

tropical and tropical cyclones. For the 1995–2012 de-

velopmental sample, the mean (maximum) absolute

improvements of the new enhanced SHIPS-RII over the

current operational version for all seven RI thresholds

were 1.3% (3.2%) for the Atlantic and 0.8% (3.1%)

eastern North Pacific basins, which corresponded to

FIG. 9. As in Fig. 8, but for the eastern North Pacific basin.
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mean (maximum) relative improvements of 8.3%

(25.6%) and 2.9% (11.9%), respectively.

The order of the relative importance of the new en-

hanced SHIPS-RII predictors was found to be compa-

rable in both the Atlantic and eastern North Pacific

basins save for the second principal component of IR

imagery and potential intensity variables that were ob-

served to have much higher weights in the Atlantic and

eastern North Pacific basins, respectively. It is also

worth noting that at the longer lead times when persis-

tence became less important, the vertical wind shear had

the largest relative weight in theAtlantic while potential

intensity had the largest weight in the eastern North

Pacific. This may imply that kinematic factors play a

more important role in determining the likelihood that

an episode of RI will occur in the Atlantic and ther-

modynamic factors are more of a controlling factor in

the eastern North Pacific.

New multi-lead-time versions of logistic regression

(LR), Bayesian, and their consensus (the arithmetic

average of the LR, Bayesian, and SHIPS-RII forecasts)

RI model forecasts have also been developed for 12-,

24-, 36-, and 48-h lead times for both the Atlantic and

eastern North Pacific basins. These new RI models

generally exhibit skill at all lead times in both basins

when evaluated for a cross-validated set of rerun fore-

casts using operational forecast data from the 2004–13

hurricane seasons. The consensus model generally pro-

vides the most skill. Interestingly, the skill of the RI

models is typically higher at the longer lead times than

the shorter ones, suggesting that predicting RI on

shorter time scales may prove to be more difficult.

A verification of the deterministic RI forecasts shows

that, while the operational intensity models and OFCL

forecasts exhibit some skill in anticipating episodes of

RI, the skill is quite limited, particularly in the Atlantic

FIG. 10. PSS of theOFCL operational RI forecasts from 2004 to 2007 and 2008 to 2013 for the (left) Atlantic, (right)

eastern North Pacific, and (bottom) improvement or degradation in forecast skill between these two periods.
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basin. The OFCL forecasts generally exhibit the most

skill within the initial 24-h forecast interval with the nu-

merical models providing somewhat more skill at the

longer lead times. HWRF generally provides the most

skillful RI forecasts of any of the conventional intensity

model guidance. The newly developed consensus RI

model rerun forecasts generally display an increase in

skill over the existing operational intensity model fore-

casts. The above finding also indicates that environmental

factors, upon which the RI models are based, play an

important role in modulating the predictability of RI

events. Although the skill of the operational RI forecasts

remains limited, it was shown that the OFCL forecasting

skill increased by an average of 6% (11%) in the Atlantic

(eastern North Pacific) basin in recent years, suggesting

that improvements in the operational intensity models

and statistical RI guidance during that time period appear

to have been at least somewhat helpful.

In addition to the development of improved proba-

bilistic RI models, this paper described the development

of a new deterministic intensity consensus forecast aid

that combines the multi-lead-time probabilistic con-

sensus RI forecasts with existing intensity model con-

sensus products. Although the number of cases is

limited, inclusion of the RI aid guidance in the existing

intensity model consensus lowers the mean absolute

forecast errors for the four lead times (12, 24, 36, and

48h) by about 8% and 6% in the Atlantic and eastern

North Pacific basins, respectively, with reductions of as

much as 13% and 8% observed for those same two ba-

sins. The new RI aid guidance also produces very sub-

stantial reductions in the overall sample-mean bias with

FIG. 11. (top left) Mean absolute forecast errors and (top right) forecast biases for the Atlantic basin for the

IVCN, NHC OFCL, and IVRI rerun forecasts for the 2008–13 homogenous sample. (bottom) As in (top), but for

the eastern North Pacific basin. The number of forecasts at each forecast time interval is also provided (upper

x axis).
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reductions of 53% and 18% for the Atlantic and eastern

North Pacific basins, respectively, with reductions in the

forecast bias of as much as 94% and 26% obtained for

those same two basins.

Future work will include investigating the potential for

improving the RI models by incorporating structural in-

formation such as the radius of maximumwind, and other

wind radii deduced in real time by theNHC, as well as the

distribution of lightning surrounding the inner core as

studies by Carrasco et al. (2014) and DeMaria et al.

(2012) have shown that such information is correlated

with the potential for a system to undergo RI. Addi-

tionally, the potential for stratifying RI model forecast

skill by factors such as system location, track, and in-

tensity will also be explored in an attempt to investigate

the physical factors that might impact RI predictability

and to provide forecasters with added information re-

garding the likely accuracy of the RI model forecasts.

Acknowledgments. This research was funded, in part,

by grants from the NOAA/Office of Atmospheric Re-

search (OAR) U.S. Weather Research Joint Hurricane

Testbed (JHT) Project and the NOAA/NESDIS

GOES-R Proving Ground Program. Financial support

from the Office of Naval Research (ONR) is also ap-

preciated. Evan Kalina of the University of Colorado

assisted with the computations of the new inner-core

dry-air predictor, while Paul Leighton of NOAA/HRD

provided programming assistance during the SHIPS-RII

development and verification. We thank Drs. Frank

Marks (NOAA/HRD) and Chris Landsea (NOAA/

NHC) and three anonymous reviewers for their con-

structive comments on an earlier version of this manu-

script. The helpful suggestions of the JHT Project points

of contact Eric Blake, Stacy Stewart, and Chris Landsea

of the NHC are also appreciated. The views, opinions,

and findings contained in this report are those of the

authors and should not be construed as an official Na-

tional Oceanic andAtmospheric Administration or U.S.

government position, policy, or decision.

REFERENCES

Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari, and P. G.

Black, 2000: Environmental influences on the rapid in-

tensification of Hurricane Opal (1995) over the Gulf of

Mexico. Mon. Wea. Rev., 128, 322–352, doi:10.1175/

1520-0493(2000)128,0322:EIOTRI.2.0.CO;2.

Carrasco, C. A., C. W. Landsea, and Y. L. Lin, 2014: The influence

of tropical cyclone size on its intensification.Wea. Forecasting,

29, 582–590, doi:10.1175/WAF-D-13-00092.1.

Chen, H., and D. L. Zhang, 2013: On the rapid intensification of

Hurricane Wilma (2005). Part II: Convective bursts and the

upper-level warm core. J. Atmos. Sci., 70, 146–162,

doi:10.1175/JAS-D-12-062.1.

Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature

variability in hurricanes: Implications with respect to intensity

change. Mon. Wea. Rev., 131, 1783–1796, doi:10.1175//2562.1.

DeMaria, M., 2009: A simplified dynamical system for tropical

cyclone intensity prediction. Mon. Wea. Rev., 137, 68–82,

doi:10.1175/2008MWR2513.1.

——, and J. Kaplan, 1999: An updated Statistical Hurricane In-

tensity Prediction Scheme (SHIPS) for the Atlantic and

eastern North Pacific basins. Wea. Forecasting, 14, 326–337,

doi:10.1175/1520-0434(1999)014,0326:AUSHIP.2.0.CO;2.

——, M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005:

Further improvements to the Statistical Hurricane Intensity

Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543,

doi:10.1175/WAF862.1.

——, R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical

cyclone lightning and rapid intensity change.Mon. Wea. Rev.,

140, 1828–1842, doi:10.1175/MWR-D-11-00236.1.

——, C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is

tropical cyclone intensity guidance improving? Bull. Amer.

Meteor. Soc., 95, 387–398, doi:10.1175/BAMS-D-12-00240.1.

Dowdy, S., and S. Wearden, 1991: Statistics for Research. 2nd ed.

Wiley-Interscience, 555 pp.

Dunion, J. D., 2011: Rewriting the climatology of the tropical

North Atlantic and Caribbean Sea. J. Climate, 24, 893–908,

doi:10.1175/2010JCLI3496.1.

Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Ac-

curacy of Atlantic and eastern North Pacific tropical cyclone

intensity forecast guidance. Wea. Forecasting, 22, 747–762,

doi:10.1175/WAF1015.1.

Guimond, S. R., G.M. Heymsfield, and F. J. Turk, 2010: Multiscale

observations of Hurricane Dennis (2005): The effects of hot

towers on rapid intensification. J. Atmos. Sci., 67, 633–654,

doi:10.1175/2009JAS3119.1.

Hamill, T. M., 1999: Hypothesis tests for evaluating numerical pre-

cipitation forecasts. Wea. Forecasting, 14, 155–167, doi:10.1175/

1520-0434(1999)014,0155:HTFENP.2.0.CO;2.

Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of

the interactions between tropical cyclones and upper-

tropospheric troughs. Mon. Wea. Rev., 129, 2570–2584,

doi:10.1175/1520-0493(2001)129,2570:ACSOTI.2.0.CO;2.

Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quanti-

fying environmental control on tropical cyclone intensity

change. Mon. Wea. Rev., 138, 3243–3271, doi:10.1175/

2010MWR3185.1.

Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000:

The interaction between Hurricane Opal (1995) and a warm

core ring in theGulf ofMexico.Mon.Wea. Rev., 128, 1347–1365,

doi:10.1175/1520-0493(2000)128,1347:TIBHOA.2.0.CO;2.

Jiang, H., 2012: The relationship between tropical cyclone intensity

change and the strength of inner-core convection. Mon. Wea.

Rev., 140, 1164–1176, doi:10.1175/MWR-D-11-00134.1.

Judt, F., S. S. Chen, and J. Berner, 2015: Predictability of tropical

cyclone intensity: Scale-dependent forecast error growth in

high-resolution stochastic kinetic-energy backscatter ensem-

bles.Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2626, in press.

Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics

of rapidly intensifying tropical cyclones in the North At-

lantic basin. Wea. Forecasting, 18, 1093–1108, doi:10.1175/

1520-0434(2003)018,1093:LCORIT.2.0.CO;2.

——, ——, and J. A. Knaff, 2010: A revised tropical cyclone

rapid intensification index for the Atlantic and eastern North

Pacific basins. Wea. Forecasting, 25, 220–241, doi:10.1175/

2009WAF2222280.1.

OCTOBER 2015 KAPLAN ET AL . 1395

http://dx.doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2
http://dx.doi.org/10.1175/WAF-D-13-00092.1
http://dx.doi.org/10.1175/JAS-D-12-062.1
http://dx.doi.org/10.1175//2562.1
http://dx.doi.org/10.1175/2008MWR2513.1
http://dx.doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2
http://dx.doi.org/10.1175/WAF862.1
http://dx.doi.org/10.1175/MWR-D-11-00236.1
http://dx.doi.org/10.1175/BAMS-D-12-00240.1
http://dx.doi.org/10.1175/2010JCLI3496.1
http://dx.doi.org/10.1175/WAF1015.1
http://dx.doi.org/10.1175/2009JAS3119.1
http://dx.doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2
http://dx.doi.org/10.1175/2010MWR3185.1
http://dx.doi.org/10.1175/2010MWR3185.1
http://dx.doi.org/10.1175/1520-0493(2000)128<1347:TIBHOA>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-11-00134.1
http://dx.doi.org/10.1002/qj.2626
http://dx.doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
http://dx.doi.org/10.1175/2009WAF2222280.1
http://dx.doi.org/10.1175/2009WAF2222280.1


Kidder, S. Q., and A. S. Jones, 2007: A blended satellite total

precipitable water product for operational forecasting. J. Atmos.

Oceanic Technol., 24, 74–81, doi:10.1175/JTECH1960.1.

Kieper, M., and H. Jiang, 2012: Predicting tropical cyclone rapid

intensification using the 37GHz ring pattern identified from

passive microwave measurements. Geophys. Res. Lett., 39,

L13804, doi:10.1029/2012GL052115.

Knaff, J. A., 2008: Rapid tropical cyclone transitions to major

hurricane intensity: Structural evolution of infrared imag-

ery. Preprints, 28th Conf. on Hurricanes and Tropical

Meteorology, Orlando, FL, Amer. Meteor. Soc., 15A.1.

[Available online at http://ams.confex.com/ams/pdfpapers/

137929.pdf.]

——,M.DeMaria, C. R. Sampson, and J.M.Gross, 2003: Statistical

5-day tropical cyclone intensity forecasts derived from clima-

tology and persistence. Wea. Forecasting, 18, 80–92,

doi:10.1175/1520-0434(2003)018,0080:SDTCIF.2.0.CO;2.

——, S. P. Longmore, and D. A. Molenar, 2014: An objective

satellite-based tropical cyclone size climatology. J. Climate, 27,
455–476, doi:10.1175/JCLI-D-13-00096.1.

Kossin, J. P., andW. H. Schubert, 2001: Mesovortices, polygonal

flow patterns, and rapid pressure falls in hurricane-like

vortices. J. Atmos. Sci., 58, 1079–1090, doi:10.1175/

1520-0469(2001)058,1079:TDRITK.2.0.CO;2.

Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL

Hurricane Prediction System and its performance in the

1995 hurricane season. Mon. Wea. Rev., 126, 1306–1322,

doi:10.1175/1520-0493(1998)126,1306:TGHPSA.2.0.CO;2.

Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane

database uncertainty and presentation of a new database

format. Mon. Wea. Rev., 141, 3576–3592, doi:10.1175/

MWR-D-12-00254.1.

Molinari, J., andD. Vollaro, 1990: External influences on hurricane

intensity. Part II: Vertical structure and response of the hur-

ricane vortex. J. Atmos. Sci., 47, 1902–1918, doi:10.1175/

1520-0469(1990)047,1902:EIOHIP.2.0.CO;2.

Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for

vortex Rossby waves and its application to spiral bands and

intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc.,

123, 435–465, doi:10.1002/qj.49712353810.

Nolan, D. S., and L. D. Grasso, 2003: Three-dimensional per-

turbations to balanced, hurricane-like vortices. Part II:

Symmetric response and nonlinear simulations. J. Atmos.

Sci., 60, 2717–2745, doi:10.1175/1520-0469(2003)060,2717:

NTPTBH.2.0.CO;2.

Rappaport, E. N., J.-G. Jiing, C. W. Landsea, S. T. Murillo, and

J. L. Franklin, 2012: The Joint Hurricane Test Bed: Its first

decade of tropical cyclone research-to-operations activities

reviewed. Bull. Amer. Meteor. Soc., 93, 371–380, doi:10.1175/

BAMS-D-11-00037.1.

Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly

intensifying Hurricane Guillermo (1997). Part I: Low-

wavenumber structure and evolution. Mon. Wea. Rev., 137,

603–631, doi:10.1175/2008MWR2487.1.

Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further

examination of the thermodynamic modification of the inflow

layer of tropical cyclones by vertical wind shear.Atmos. Chem.

Phys., 13, 327–346, doi:10.5194/acp-13-327-2013.

Rogers, R. F., P. D. Reasor, and S. Lorsolo, 2013: Airborne

Doppler observations of the inner-core structural differences

between intensifying and steady-state tropical cyclones. Mon.

Wea. Rev., 141, 2970–2991, doi:10.1175/MWR-D-12-00357.1.

——, ——, and J. Zhang, 2015: Multiscale structure and evolution

of Hurricane Earl (2010) during rapid intensification. Mon.

Wea. Rev., 143, 536–562, doi:10.1175/MWR-D-14-00175.1.

Rozoff, C. M., and J. P. Kossin, 2011: New probabilistic forecast

models for the prediction of tropical cyclone rapid in-

tensification. Wea. Forecasting, 26, 677–689, doi:10.1175/

WAF-D-10-05059.1.

——, C. S. Velden, J. Kaplan, J. P. Kossin, andA. J.Wimmers, 2015:

Improvements in the probabilistic predictionof tropical cyclone

rapid intensificationwith passivemicrowave observations.Wea.

Forecasting, doi:10.1175/WAF-D-14-00109.1, in press.

Sampson, C. R., andA. J. Schrader, 2000: TheAutomated Tropical

Cyclone Forecasting System (version 3.2).Bull. Amer.Meteor.

Soc., 81, 1231–1240, doi:10.1175/1520-0477(2000)081,1231:

TATCFS.2.3.CO;2.

——, J. Kaplan, J. A. Knaff, M. DeMaria, and C. A. Sisko, 2011: A

deterministic rapid intensification aid. Wea. Forecasting, 26,

579–585, doi:10.1175/WAF-D-10-05010.1.

Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a

warm oceanic feature on Hurricane Opal. Mon. Wea.

Rev., 128, 1366–1383, doi:10.1175/1520-0493(2000)128,1366:

EOAWOF.2.0.CO;2.

Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. K. Liu, Z. Zhang,

and I.-H. Kwon, 2014: Evaluation of storm structure from the

operational HWRF during 2012 implementation. Mon. Wea.

Rev., 142, 4308–4325, doi:10.1175/MWR-D-13-00010.1.

Wang, H., and Y.Wang, 2014: A numerical study of TyphoonMegi

(2010). Part I: Rapid intensification.Mon. Wea. Rev., 142, 29–

48, doi:10.1175/MWR-D-13-00070.1.

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.

3rd ed. Elsevier, 676 pp.

Willoughby, H. E., 1990: Temporal changes of the primary circu-

lation in tropical cyclones. J. Atmos. Sci., 47, 242–264,

doi:10.1175/1520-0469(1990)047,0242:TCOTPC.2.0.CO;2.

1396 WEATHER AND FORECAST ING VOLUME 30

http://dx.doi.org/10.1175/JTECH1960.1
http://dx.doi.org/10.1029/2012GL052115
http://ams.confex.com/ams/pdfpapers/137929.pdf
http://ams.confex.com/ams/pdfpapers/137929.pdf
http://dx.doi.org/10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2
http://dx.doi.org/10.1175/JCLI-D-13-00096.1
http://dx.doi.org/10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1998)126<1306:TGHPSA>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-12-00254.1
http://dx.doi.org/10.1175/MWR-D-12-00254.1
http://dx.doi.org/10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2
http://dx.doi.org/10.1002/qj.49712353810
http://dx.doi.org/10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-11-00037.1
http://dx.doi.org/10.1175/BAMS-D-11-00037.1
http://dx.doi.org/10.1175/2008MWR2487.1
http://dx.doi.org/10.5194/acp-13-327-2013
http://dx.doi.org/10.1175/MWR-D-12-00357.1
http://dx.doi.org/10.1175/MWR-D-14-00175.1
http://dx.doi.org/10.1175/WAF-D-10-05059.1
http://dx.doi.org/10.1175/WAF-D-10-05059.1
http://dx.doi.org/10.1175/WAF-D-14-00109.1
http://dx.doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2
http://dx.doi.org/10.1175/WAF-D-10-05010.1
http://dx.doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-13-00010.1
http://dx.doi.org/10.1175/MWR-D-13-00070.1
http://dx.doi.org/10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2

