Tropical Cyclone Dynamics and Interactions with Storm Environment

Paul D. Reasor AOML Program Review 4-6 March 2013

AOML Program Review

Accurate prediction of tropical cyclone (TC) intensity in vertically sheared flow is a major operational challenge.

How does the interaction of a TC with vertically sheared flow contribute to intensity change?

Theory

AOML Program Review

()

How do sheared TCs remain vertically resilient?

• In the absence of convective heating, vertical resilience is dependent on the vortex profile outside the core in a readily understood way...

Theory

AOML Program Review

How do sheared TCs remain vertically resilient?

...but in nature it may not be so simple.

 Heating can alter, in a non-trivial way, the vortex resilience mechanism.

(j) 🔽

• The intensity response of a TC to vertical shear forcing may depend on how vortex tilt develops.

Observations

How do TCs intensify under external forcing by vertical wind shear?

7

ť

AOML Program Review

Observations

What are the typical structural characteristics of sheared hurricanes?

Quad-averaged radar reflectivity (shaded, dBZ), radial (grey, m s⁻¹) and vertical wind (black, m s⁻¹)

 The <u>strong-shear composite</u> shows stronger, deeper inflow downshear right; lowlevel outflow and eyewall subsidence upshear left

Observations

...and in the boundary layer?

<u>GPS Dropsonde θ_c (50 m)</u>

(Warmer, moister \rightarrow higher θ_{a})

SFMR Surface Wind Speed

convective downdrafts, Ashear face flux raised X/RMW -3 -2.2 -1.4 -0.6 0.2 1 1.8 2.6

AOML Program Review

 Multi-case analyses show how boundary layer wind and thermodynamic structure are also impacted by vertical wind shear.

Models

AOML Program Review

()

What are the typical structural characteristics of sheared hurricanes?

Storm-relative wind speed (shaded, m s⁻¹), divergence (s⁻¹) and asymmetric flow

 Composites of observed data are used to evaluate typical simulated shearrelative hurricane structure

Models

How do TCs intensify under external forcing by vertical wind shear?

Hi-res HWRF is starting to correctly simulate convective asymmetry. This is critical for intensity prediction. Analyses are used to gain insight into observed evolution.

Observing Strategies

How is hurricane intensity limited by vertical wind shear?

G-IV Flight Pattern

 New observing strategies are developed to document structural changes in hurricanes resulting from interaction with sheared environmental flow.

Testing Theory

AOML Program Review

() 💙

How is hurricane intensity limited by vertical wind shear?

• Radar and dropsonde data from Ingrid (2013) are used to examine the relationship between shear, vortex tilt, boundary layer modification, and intensity change.

Summary

HRD is uniquely positioned to **advance** and **utilize** understanding of dynamical processes relevant to TCs.

- Advancement of understanding has come through
 - Development of theory
 - Examination of observed and simulated cases
 - Compositing based on observed and simulated data
- Utilization of understanding is evident in
 - Development of new observing strategies
 - Improvements in parameterizations impacting dynamical processes
 - Improvements in analysis systems

HRD's research on TC interaction with the storm environment has produced a set of tools and methodologies that will permit the impact of shear on **intensity change** to be addressed in a comprehensive manner in the years to come.

QUESTIONS?

AOML Program Review

References

Chen, H. and S. G. Gopalakrishnan, 2014: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system (in preparation).

Reasor, P. D., R. Rogers, S. Lorsolo, 2013: Environmental Flow Impacts on Tropical Cyclone Structure Diagnosed from Airborne Doppler Radar Composites. *Mon. Wea. Rev.*, **141**, 2949–2969.

Reasor, P. D., M. D. Eastin, 2012: Rapidly Intensifying Hurricane Guillermo (1997). Part II: Resilience in Shear. *Mon. Wea. Rev.*, **140**, 425–444.

Reasor, P. D., M. D. Eastin, J. F. Gamache, 2009: Rapidly Intensifying Hurricane Guillermo (1997). Part I: Low-Wavenumber Structure and Evolution. *Mon. Wea. Rev.*, **137**, 603–631.

Uhlhorn, E., B. Klotz, T. Vukicevic, P. Reasor, R. Rogers, 2014: Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear. *Mon. Wea. Rev.*, in press.

Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, F. D. Marks, 2013: Asymmetric Hurricane Boundary Layer Structure from Dropsonde Composites in Relation to the Environmental Vertical Wind Shear. *Mon. Wea. Rev.*, **141**, 3968–3984.

