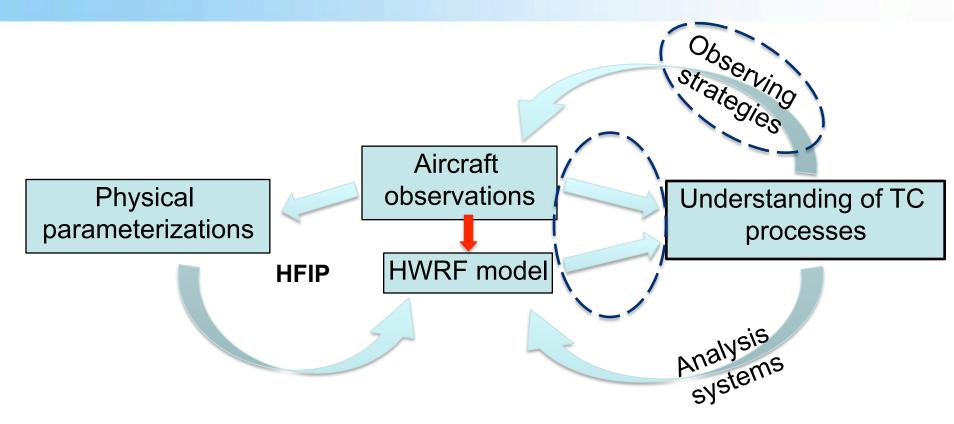

Hurricane Research at AOML & NOAA

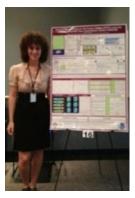
Mission


Advance understanding and prediction of TCs through observations, numerical models, and theory, with emphasis on processes within inner part of storm.

HRD research supports **NOAA's Strategic Plan**:

- Advance understanding and prediction of changes in the environment through world class science and observations
- Improve preparedness, response, and recovery from weather and water events by building a Weather-Ready Nation

Vision


HRD is uniquely positioned to advance **understanding** of TC processes **in close cooperation** with efforts to improve observing strategies and numerical prediction.

Who We Are: AOML

Staff includes 38 employees with 25 federal and 13 contract

- 21 research scientists
 - 1 post-doc
- 16 support personnel
- 2-3 summer students

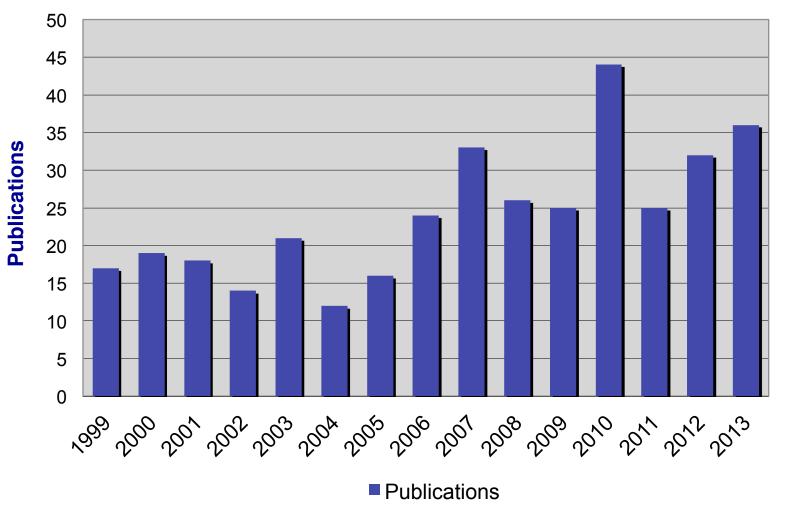
- HRD scientists collaborates locally with scientists in other AOML divisions, CIMAS, UM/RSMAS, and FIU
- HRD coordinates its research with OAR laboratories (ESRL, GFDL, ARL, NSSL), AOC, NESDIS, NWS (EMC, NHC, & WFOs), and Testbeds (JHT, DTC, JCSDA, & OSSE).
- Funded Priorities: NOAA Hurricane Forecast Improvement Project (**HFIP**) & Sandy Supplemental.


Who We Are: HFIP

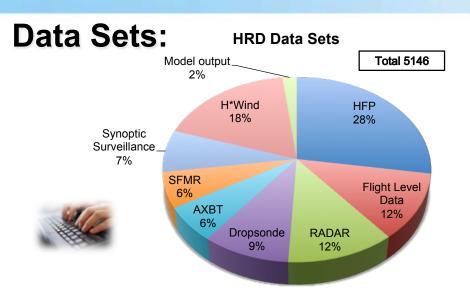
- Unified NOAA approach to guide and accelerate improvements in TC forecasts, with emphasis on rapid intensity change, and reduction in uncertainty.
- Improve TC forecasts and increase confidence to enhance mitigation and preparedness decisions.
- Responds to input from stakeholders, NSB, OFCM, and HIRWG reports.
- Embraces strong collaboration with non-NOAA partners with objective to transition research into operations.

http://www.hfip.org

Who We Are: Budget

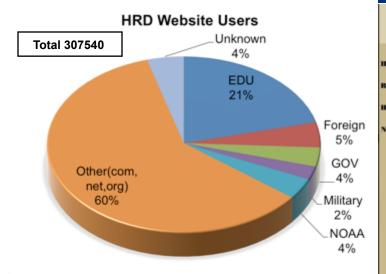

Who We Are: Partners

- Joint research programs with NASA, NSF, ONR, and DOE.
- Cooperative research with scientists at NCAR, and universities.
- Interact with WMO WWRP and THORPEX, and cooperative research with other countries.
- Ensure research benefits NOAA and HFIP.



Who We Are: Publications

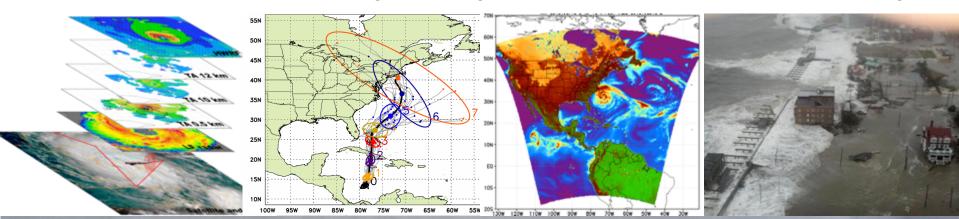
HRD publications



Who We Are: Products

Users:

http://w


Who We Are: Transitions

2013-2014 JHT & HFIP Transitions:	Customer	Collaborator
Improved Rapid Intensity Index (JHT)	NHC/NCEP	CIRA, CIMSS
 Improved SFMR Surface Wind Measurements in Intense Rain Conditions (JHT) 	NHC/NCEP, USAF, AOC	
 Development of a Probabilistic TC Genesis Prediction Scheme (JHT) 	NHC/NCEP	CIRA, CIMSS
 Improvements in Statistical-Dynamical TC Forecast Models (JHT) 	NHC/NCEP	CIRA, CIMSS
 High resolution basin-scale HWRF system at 27 km with multiple moving nests at 9:3 km (HFIP) 	EMC/NCEP/DTC	EMC/NCEP
 Advanced nest motion algorithm for high resolution HWRF system (HFIP) 	EMC/NCEP/DTC	EMC/NCEP
 Advanced vortex initialization for the 3-km moving nest in the basin scale HWRF (HFIP) 	EMC/NCEP/DTC	EMC/NCEP
 Advanced PBL physics package for TC addressing horizontal and vertical diffusion (HFIP) 	EMC/NCEP/DTC	EMC/NCEP
 Idealized HWRF framework with 1-D HYCOM ocean model (HFIP) 	EMC/DTC/TC research community	ESRL/PSD
 Advanced diagnostics for high resolution HWRF system (HFIP) 	NCEP/ WFO/DTC/IMD, India	EMC/NCEP
 Advanced diagnostic web-based products from high resolution HWRF system (HFIP) 	HFIP/TCMT/TC research community	EMC/NCEP

Research Themes

- Observing Techniques: Designing, testing, and transitioning data collection to improve initialization/evaluation of TC models and further basic understanding;
- Modeling & Prediction: R&D on dynamical and statistical-dynamical models for real-time TC forecasting;
- Data Assimilation: Use of observations for analysis of TCs and their environments to improve understanding & forecasts;
- **Dynamics & Physics**: Improve understanding of TCs through application of fundamental physical principles; and
- Impacts on life & property: Through wind, rain, waves, and storm surge.

Questions?

Presentations on key HRD Research Thrusts:

- 1. What is the role of convective-scale processes in TC intensity change? **Rob Rogers**
- 2. How can high-resolution models be improved to best represent structure & intensity change in TCs? Sundararaman Gopalakrishnan (Gopal)
- 3. What observations will result in accurate and precise representation and forecasts of the TC inner core in numerical models? **Tomislava Vukicevic (Tomi)**
- 4. How does the interaction of a TC with vertically sheared flow contribute to intensity change? **Paul Reasor**
- How can we improve TC forecasts through systematic evaluation to document & understand model biases using observations? – Joe Cione

Who We Are: Outreach

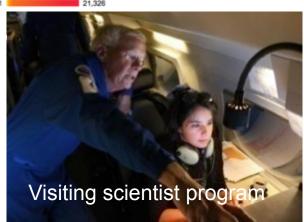
 Our blog http://noaahrd.wordpress.com

HRD Web page
 http://www.aoml.noaa.gov/hrd

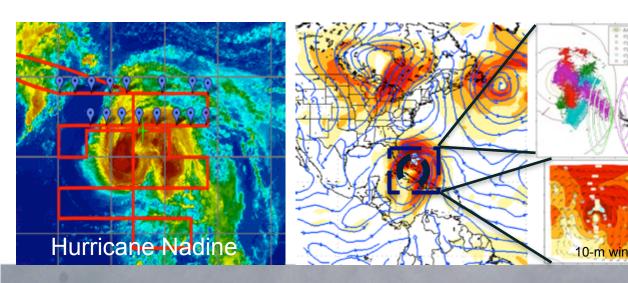
Facebook (2,689 likes)
 http://www.facebook.com/noaahrd

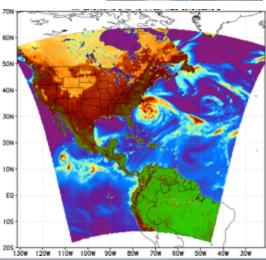
• Twitter (11,118 followers)

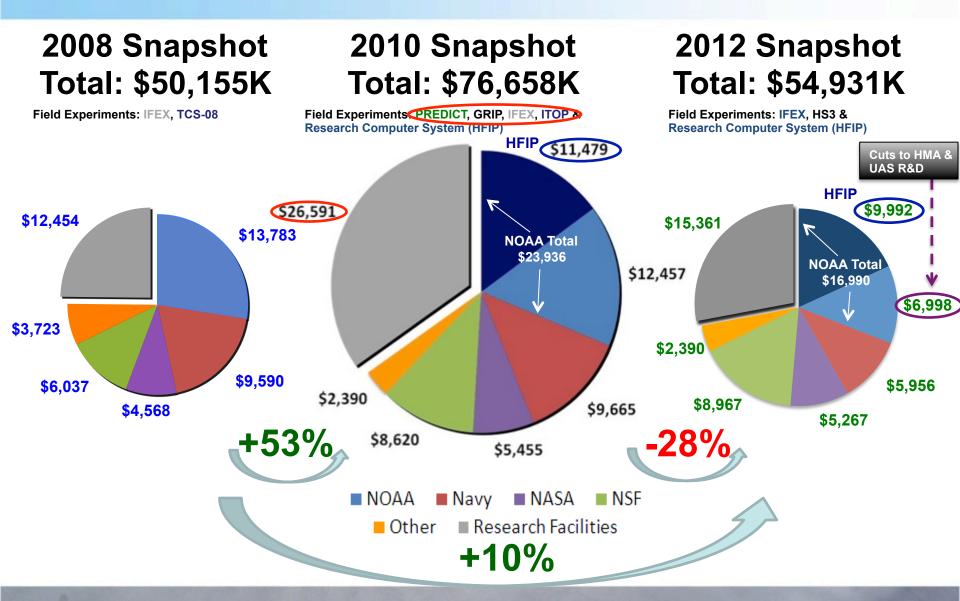
http://twitter.com/#!/HRD AOML NOAA



Research Thrusts


Accomplished through:


- Research experiments in hurricane (IFEX)
- Improving hurricane observing strategies
- Developing & evaluating numerical models
- New technology and applications
- Outreach to the public.



Challenges

- 1. Increase high performance computing
- 2. Accelerate TC Forecast System (TCFS) improvements
 - Accelerate NOAA operational TCFS Development
 - R&D to improve TCFS
 - R&D for TCFS ensemble systems
- 3. Fully fund transition of research to operations
 - Broaden Testbed charter and increase support
 - Enhance interactions between JHT, DTC, JCSDA, & OSSE Testbed
- 4. Develop observing system strategy analysis capability
 - Optimal use of TC inner core observations
 - R&D to improve observing strategy to inform NOAA investments
- 5. Coordinate with research community and stakeholders
 - Broaden base of expertise in TC research community
 - Coordinate with federal, academic, and private sector communities

Total Support by Agency

