Evaluating Numerical Models to Improve the Prediction of Tropical Cyclone Intensity

Robert Rogers AOML Program Review 18-20 March 2008

Outline

- Background and motivation
- Examples
 - Surface winds
 - Boundary layer structure
 - Humidity
 - Microphysics
 - Rainfall

Background and motivation

Improvements in intensity forecasts have lagged improvements in track forecasts

Numerical model guidance can be key contributor to intensity forecasts

Limitations in numerical models a significant contributor to slower improvements in intensity forecasts

- inadequate specification of the TC vortex in the initial conditions
- deficient representation of physical processes
- insufficient resolution

Background and motivation

Comparing numerical models with observations in a robust manner can identify deficiencies in the models and lead to improvements in those models

HRD is uniquely positioned to contribute to this effort through a combination of data collection and analysis and numerical model experiments

Surface wind structure

How well do numerical models predict magnitude and distribution of surface wind field?

valid 18 UTC Sept. 11

Errors in forecasts of radial location (nm) of 34-kt wind radii for landfalling TCs

Comparisons between models and observations

- peak wind weaker
- RMW larger, 34- and 64-kt isotachs at larger radii
- wind field more symmetric

Possible deficiencies

- initial vortex too large, symmetric
- resolution too coarse

Boundary layer structure

How well do numerical models depict the mean and turbulence structure of the tropical cyclone boundary layer?

Comparisons between models and observations

- uncoupled model boundary layer is too warm; coupling improves profile
- uncoupled heat flux is in wrong direction

Possible deficiencies

- heat and moisture transfer coefficients specified incorrectly
- sea-spray effects not represented adequately

Humidity

How well do numerical models represent initial humidity fields?

Comparisons between models and observations

- low- to mid-tropospheric air too moist around east side of storm in initial fields of control runs
- bias persists throughout forecast

Possible deficiencies

 moisture data from dropsondes not routinely incorporated into operational analyses until 2006

Microphysics

How well do numerical models depict the magnitude and distribution of hydrometeors and vertical velocity?

Rainfall

How well do numerical models depict the magnitude and distribution of tropical cyclone rainfall?

Comparisons between models and observations

- GFDL (NAM) produces too much (too little) rain in inner core
- GFS, R-CLIPER produce inner-core distribution well

PDFs of rain flux 0-100 km band NCEP/NAM Observed 15 Frequency (%) Rain (in) 0-100 km band CI IPER 15 10 10 1 100 Rain (in)

Possible deficiencies

- errors in convective, microphysical parameterizations
- resolution deficiencies compensating?

Summary

- HRD involved in several model evaluation activities
 - surface winds
 - boundary layer structure
 - humidity
 - microphysics
 - rainfall
- HRD uniquely positioned to contribute to these activities
- Insights gained from evaluations can guide activities toward improving model parameterization, initialization, ultimately intensity forecasts

Evaluating Numerical Models to Improve the Prediction of Tropical Cyclone Intensity

RI/Decay

(John Kaplan)

QUESTIONS?

Background Material

