1. Carter, B.R., J.D. Sharp, A.G. Dickson, M. Álvarez, M.B. Fong, M.I. García-Ibáñez, R.J. Woosley, Y. Takeshita, L. Barbero, R.H. Byrne, W.-J. Cai, M. Chierici, S.L. Clegg, R.A. Easley, A.J. Fassbender, K.L. Fleger, X. Li, M. Martín-Mayor, K.M. Schockman, and Z.A Wang. Uncertainty sources for measurable ocean carbonate chemistry variables. Limnology and Oceanography, 69(1):1-21, https://doi.org/10.1002/lno.12477 2024

    Abstract:

    The ocean carbonate system is critical to monitor because it plays a major role in regulating Earth's climate and marine ecosystems. It is monitored using a variety of measurements, and it is commonly understood that all components of seawater carbonate chemistry can be calculated when at least two carbonate system variables are measured. However, several recent studies have highlighted systematic discrepancies between calculated and directly measured carbonate chemistry variables and these discrepancies have large implications for efforts to measure and quantify the changing ocean carbon cycle. Given this, the Ocean Carbonate System Intercomparison Forum (OCSIF) was formed as a working group through the Ocean Carbon and Biogeochemistry program to coordinate and recommend research to quantify and/or reduce uncertainties and disagreements in measurable seawater carbonate system measurements and calculations, identify unknown or overlooked sources of these uncertainties, and provide recommendations for making progress on community efforts despite these uncertainties. With this paper we aim to (1) summarize recent progress toward quantifying and reducing carbonate system uncertainties; (2) advocate for research to further reduce and better quantify carbonate system measurement uncertainties; (3) present a small amount of new data, metadata, and analysis related to uncertainties in carbonate system measurements; and (4) restate and explain the rationales behind several OCSIF recommendations. We focus on open ocean carbonate chemistry, and caution that the considerations we discuss become further complicated in coastal, estuarine, and sedimentary environments.

  2. Gomez, F.A., R. Wanninkhof, L. Barbero, and S.-K. Lee. Mississippi River chemistry impacts on the interannual variability of aragonite saturation state in the northern Gulf of Mexico. Journal of Geophysical Research-Oceans, 129(2):e2023JC020436, https://doi.org/10.1029/2023JC020436 2024

    Abstract:

    In the northern Gulf of Mexico shelf, the Mississippi-Atchafalaya River System (MARS) impacts the carbonate system by delivering freshwater with a distinct seasonal pattern in both total alkalinity (Alk) and dissolved inorganic carbon (DIC), and promoting biologically driven changes in DIC through nutrient inputs. However, how and to what degree these processes modulate the interannual variability in calcium carbonate solubility have been poorly documented. Here, we use an ocean-biogeochemical model to investigate the impact of MARS's discharge and chemistry on interannual anomalies of aragonite saturation state (ΩAr). Based on model results, we show that the enhanced mixing of riverine waters with a low buffer capacity (low Alk-to-DIC ratio) during high-discharge winters promotes a significant ΩAr decline over the inner-shelf. We also show that increased nutrient runoff and vertical stratification during high-discharge summers promotes strong negative anomalies in bottom ΩAr, and less intense but significant positive anomalies in surface ΩAr. Therefore, increased MARS discharge promotes an increased frequency of suboptimal ΩAr levels for nearshore coastal calcifying species. Additional sensitivity experiments further show that reductions in the Alk-to-DIC ratio and nitrate concentration from the MARS significantly modify the simulated interannual ΩAr patterns, weakening the positive surface ΩAr anomalies during high-discharge summers or even producing negative surface ΩAr anomalies. Our findings suggest that riverine water carbonate chemistry is a main driver of interannual variability in ΩAr over river dominated ocean margins.

  3. Berghoff, C.F., D. Pierrot, L. Epherra, R.I. Silva, V. Segura, R.M. Negri, M.C. Hozbor, M.O. Carignan, L. Barbero, and V.A. Lutz. Physical-biological effects on the carbonate system during summer in the northern Argentine Continental Shelf (southwestern Atlantic). Journal of Marine Systems, 237:103828, https://doi.org/10.1016/j.jmarsys.2022.103828 2023

    Abstract:

    The Argentine shelf and its shelf-break (southwestern Atlantic Ocean) are known for their high biological productivity, and as an important CO2 sink region. However, many aspects of the carbonate system dynamics in the area, especially those related to the biological activity, deserve further study. Here we investigated the mechanisms affecting the carbonate system distributions, using in situ physical, chemical and biological observations collected along a section (COSTAL-AR) on the Northern Argentine Continental Shelf during two summer cruises in 2019. Our main goal was to evaluate the role of the microbial communities on the modulation of the carbonate system in the area. For that, we characterized (i) the distribution of the thermohaline properties, chlorophyll a, dissolved oxygen, carbonate system (pH, total alkalinity, dissolved inorganic carbon and high resolution underway CO2 fugacity, fCO2), dissolved inorganic nutrients, and (ii) the microbial communities (bacterioplankton, phytoplankton, and protozooplankton). Our results show that the COSTAL-AR section was likely an important CO2 sink and presented high seawater fCO2 spatial variability in both middle (272–430 μatm) and early (211–365 μatm) summer conditions. Phytoplankton played a key role in modulating the CO2 uptake and carbonate system spatial variability during summer, especially in the middle and outer shelf. The main contribution to CO2 fixation was given by small cells, since the microbial community was dominated by autotrophic picoplankton (2 distribution and biological processes was evident. These findings provide new insights on the connection between the biology and the carbonate system in this sparsely sampled area of the southwestern Atlantic Ocean.

  4. Boyer, T., H.M. Zhang , K. O’Brien, J. Reagan , S. Diggs, E. Freeman, H. Garcia, E. Heslop, P. Hogan, B. Huang, L.-Q. Jiang, A. Kozyr, C. Liu, R. Locarnini, A.V. Mishonov, C. Paver, Z. Wang, M. Zweng, S. Alin, L. Barbero, J.A. Barth, M. Belbeoch, J. Cebrian, K.J. Connell, R. Cowley, D. Dukhovskoy, N.R. Galbraith, G. Goni, F. Katz, M. Kramp, A. Kumar, D.M. Legler, R. Lumpkin, C.R. McMahon, D. Pierrot, A.J. Plueddemann, E.A. Smith, A. Sutton, V. Turpin, L. Jiang, V. Suneel, R. Wanninkhof, R.A. Weller, and A.P.S. Wong. Effects of the pandemic on observing the global ocean. Bulletin of the American Meteorological Society, 104(2):E389-E410, https://doi.org/10.1175/BAMS-D-21-0210.1 2023

    Abstract:

    The years since 2000 have been a golden age in in situ ocean observing with the proliferation and organization of autonomous platforms such as surface drogued buoys and subsurface Argo profiling floats augmenting ship-based observations. Global time series of mean sea surface temperature and ocean heat content are routinely calculated based on data from these platforms, enhancing our understanding of the ocean’s role in the Earth’s climate system. Individual measurements of meteorological, sea surface and subsurface variables directly improve our understanding of the Earth System, weather forecasting, and climate projections. They also provide the data necessary for validating and calibrating satellite observations. Maintaining this ocean observing system has been a technological, logistical, and funding challenge. The global COVID-19 pandemic, which took hold in 2020, added strain to the maintenance of the observing system. A survey of the contributing components of the observing system illustrates the impacts of the pandemic from January 2020 through December 2021. The pandemic did not reduce the short-term geographic coverage (days to months) capabilities mainly due to the continuation of autonomous platform observations. In contrast, the pandemic caused critical loss to longer-term (years to decades) observations, greatly impairing the monitoring of such crucial variables as ocean carbon and the state of the deep ocean. So, while the observing system has held under the stress of the pandemic, work must be done to restore the interrupted replenishment of the autonomous components and plan for more resilient methods to support components of the system that rely on cruise-based measurements.

  5. Friedlingstein, P., M. O’Sullivan, M.W. Jones, R.M. Andrew, D.C.E. Bakker, J. Hauck, P. Landschützer, C. Le Quéré, I.T. Luijkx, G.P. Peters, W. Peters, J. Pongratz, C. Schwingshackl, S. Sitch, J.G. Canadell, P. Ciais, R.B. Jackson, S.R. Alin, P. Anthoni, L. Barbero, N.R. Bates, M. Becker, N. Bellouin, B. Decharme, L. Bopp, I.B. Mandhara Brasika, P. Cadule, M.A. Chamberlain, N. Chandra, T.-T.-T. Chau, F. Chevallier, L.P. Chini, M. Cronin, X. Dou, K. Enyo, W. Evans, S. Falk, R.A. Feely, L. Feng, D.J. Ford, T. Gasser, J. Ghattas, T. Gkritzalis, G. Grassi, L. Gregor, N. Gruber, Ö. Gürses, I. Harris, M. Hefner, J. Heinke, R.A. Houghton, G.C. Hurtt, Y. Iida, T. Ilyina, A.R. Jacobson, A. Jain, T. Jarníková, A. Jersild, F. Jiang, Z. Jin, F. Joos, E. Kato, R.F. Keeling, D. Kennedy, K. Klein Goldewijk, J. Knauer, J.I. Korsbakken, A. Körtzinger, X. Lan, N. Lefèvre, H. Li, J. Liu, Z. Liu, L. Ma, G. Marland, N. Mayot, P.C. McGuire, G.A. McKinley, G. Meyer, E.J. Morgan, D.R. Munro, S.-I. Nakaoka, Y. Niwa, K.M. O’Brien, A. Olsen, A.M. Omar, T. Ono, M. Paulsen, D. Pierrot, K. Pocock, B. Poulter, C.M. Powis, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, T.M. Rosan, J. Schwinger, R. Séférian, T.L. Smallman, S.M. Smith, R. Sospedra-Alfonso, Q. Sun, A.J. Sutton, C. Sweeney, S. Takao, P.P. Tans, H. Tian, B. Tilbrook, H. Tsujino, F. Tubiello, G.R. van der Werf, E. van Ooijen, R. Wanninkhof et al. Global carbon budget 2023. Earth System Science Data, 15(12):5301-5369, https://doi.org/10.5194/essd-15-5301-2023 2023

    Abstract:

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based fCO2 products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2022, EFOS increased by 0.9% relative to 2021, with fossil emissions at 9.9±0.5 Gt C yr−1 (10.2±0.5 Gt C yr−1 when the cement carbonation sink is not included), and ELUC was 1.2±0.7 Gt C yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1±0.8 Gt C yr−1 (40.7±3.2 Gt CO2 yr−1). Also, for 2022, GATM was 4.6±0.2 Gt C yr−1 (2.18±0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.8±0.4 Gt C yr−1, and SLAND was 3.8±0.8 Gt C yr−1, with a BIM of −0.1 Gt C yr−1 (i.e., total estimated sources marginally too low or sinks marginally too high). The global atmospheric CO2 concentration averaged over 2022 reached 417.1±0.1 ppm. Preliminary data for 2023 suggest an increase in EFOS relative to 2022 of +1.1% (0.0 % to 2.1%) globally and atmospheric CO2 concentration reaching 419.3 ppm, 51% above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2022, with a near-zero overall budget imbalance, although discrepancies of up to around 1 Gt C yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living-data update documents changes in methods and data sets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle.

  6. Hernández-Sánchez, O.G., V.F. Camacho-Ibar, L. Barbero, J.C. Herguera, and S.Z. Herzka. A gulf-wide synoptic isoscape of zooplankton isotope ratios reveals the importance of nitrogen fixation in supporting secondary production in the central Gulf of Mexico. Frontiers in Marine Science, 9:1025387, https://doi.org/10.3389/fmars.2022.1025387 2023

    Abstract:

    A synoptic gulf-wide isoscape of carbon (δ13C) and nitrogen (δ15N) in the Gulf of Mexico based on mesozooplankton (335-1000 um) was used as a proxy for the isotopic baseline and for calculating regional contributions of dissolved inorganic nitrogen sources. Mesozooplankton were sampled at 0-200 m (depth permitting) during the XIXIMI-06 and GOMECC-3 cruises held during the summer of 2017. A striking latitudinal gradient was found in δ15N values of zooplankton, with the highest values (10.4 ± 1.2‰) found over the northern shelf, and lowest values in the central, oligotrophic gulf (1.9 ± 0.5‰). To estimate the fractional contribution of potential nitrogen sources, the gulf was divided into six regions based on the spatial distribution of surface Chl-a, SST from remote sensing products and likely region-specific source contributions. A literature survey of (δ13C and δ15N values of particulate organic matter was used to characterize region-specific endpoint isotope ratios for use in a Bayesian isotope mixing model. Regional differences in δ15N values and the results of mixing models indicated nitrogen fixation is most likely an important source (45-74% contribution) of new nitrogen in the oceanic regions of the Gulf, the Loop Current and the Yucatan Shelf. In the oligotrophic gulf, the potential input of relatively light nitrate that reflects remineralization of surface layer POM or the excretion of light nitrogen by heterotrophs was insufficient to explain the low δ15N values found in the central Gulf, although it could account for about 40% of the N supporting secondary production. The high nitrogen isotope ratios found in the northern shelf were attributed to denitrified N (60%) and the inflow of heavy nitrogen from the Mississippi-Atchafalaya river system. Our results support the potential importance of fixed nitrogen in the deep waters of the Gulf of Mexico during the summer, characteristic for its highly stratified surface waters.

  7. Cervantes-Díaz, G.Y., J.M. Hernández-Ayón, A. Zirino, S.Z. Herzka, V. Camacho-Ibar, O. Norzagaray, L. Barbero, I. Montes, J. Sudre, and J.A. Delgado. Understanding upper water mass dynamics in the Gulf of Mexico by linking physical and biogeochemical features. Journal of Marine Systems, 225:103647, https://doi.org/10.1016/j.jmarsys.2021.103647 2022

    Abstract:

    In the Gulf of Mexico (GoM), the upper 300 m of the water column contains a mixture of water types derived from water masses from the North Atlantic and the Caribbean Sea, namely Caribbean Surface Water (CSW), Subtropical Underwater (SUW), Gulf Common Water (GCW), and Tropical Atlantic Central Water (TACW). These are mainly altered by mesoscale processes and local evaporation, which modulate biogeochemical cycles. In this study, we improve our understanding of water mass dynamics by including biogeochemical data when evaluating the T-S relationship to define water-mass boundaries, particularly when the observed thermohaline characteristics overlap. The variables considered were apparent oxygen utilization (AOU), nitrate, and dissolved inorganic carbon (DIC). The data were obtained from eight cruises carried out in the central and southern regions of the GoM and an additional cruise that covered the entire coastal-ocean region. The new proposed boundaries were instrumental in clarifying the dynamics of surface waters. Of note, GCW on the western side of the GoM is not formed from the mixing of CSW and SUW but by the mixing of remnant CSW with TACW. In winter, a remnant of CSW mixed with GCW, and the biogeochemical composition of surface waters was affected, as observed from an increase in nitrate and DIC concentrations and positive AOU values. CSW was mainly detected at the surface during summer with negative AOU values, low DIC values, and almost undetectable nitrate concentrations. The presence or absence of CSW modulated the depth of the nitracline and likely influenced primary productivity.

  8. Jiang, L.-Q., D. Pierrot, R. Wanninkhof, R.A. Feely, B. Tilbrook, S.R. Alin, L. Barbero, R.H. Byrne, B.R. Carter, A.G. Dickson, J.-P. Gattuso, D. Greeley, M. Hoppema, M.P. Humphreys, J. Karstensen, N. Lange, S.K. Lauvset, E. Lewis, A. Olsen, F.F. Perez, C. Sabine, J.D. Sharp, T. Tanhua, T.W. Trull, A. Velo, A.J. Allegra, P. Barker, E. Burger, W.-J. Cai, C.-T.A. Chen, J. Cross, H. Garcia, J.M. Hernandez-Ayon, X. Hu, A. Kozyr, C. Langdon, K. Lee, J. Salisbury, Z.A. Wang, and L. Xue. Best practice data standards for discrete chemical oceanographic observations. Frontiers in Marine Science, 8:705638, https:/doi.org/10.3389/fmars.2021.705638 2022

    Abstract:

    Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.

  9. Lauvset, S.K., N. Lange, T. Tanhua, H.C. Bittig, A. Olsen, A. Kozyr, S. Alin, M. Álvarez, K. Azetsu-Scott, L. Barbero, S. Becker, P.J. Brown, B.R. Carter, L.C. da Cunha, R.A. Feely, M. Hoppema, M.P. Humphreys, M. Ishii, E. Jeansson, L.-Q. Jiang, S.D. Jones, C. Lo Monaco, A. Murata, J.D. Müller, F.F. Pérez, B. Pfeil, C. Schirnick, R. Steinfeldt, T. Suzuki, B. Tilbrook, A. Ulfsbo, A. Velo, R.J. Woosley, and R.M. Key. GLODAPv2.2022: The latest version of the global interior ocean biogeochemical data product. Earth System Science Data, 14(12):5543–5572, https://doi.org/10.5194/essd-14-5543-2022 2022

    Abstract:

    The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2022 is an update of the previous version, GLODAPv2.2021 (Lauvset et al., 2021). The major changes are as follows: data from 96 new cruises were added, data coverage was extended until 2021, and for the first time we performed secondary quality control on all sulfur hexafluoride (SF6) data. In addition, a number of changes were made to data included in GLODAPv2.2021. These changes affect specifically the SF6 data, which are now subjected to secondary quality control, and carbon data measured on board the RV Knorr in the Indian Ocean in 1994–1995 which are now adjusted using certified reference material (CRM) measurements made at the time. GLODAPv2.2022 includes measurements from almost 1.4 million water samples from the global oceans collected on 1085 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 96 new cruises were derived by comparing those data with the data from the 989 quality-controlled cruises in the GLODAPv2.2021 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2) chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1% in oxygen, 2% in nitrate, 2% in silicate, 2% in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5% in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon and Acidification Data System of NOAA NCEI (https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/GLODAPv2_2022/, last access: 15 August 2022). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/1f4w-0t92 (Lauvset et al., 2022). These bias-adjusted product files also include significant ancillary and approximated data, which were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2022 methods and provides a broad overview of the secondary quality control procedures and results.

  10. Osborne, E., X. Hu, E.R. Hall, K. Yates, J. Vreeland-Dawson, K. Shamberger, L. Barbero, J.M. Hernandez-Ayon, F.A. Gomez, T. Hicks, Y. Xu, M.R. McCutcheon, M. Acquafredda, C. Chapa-Balcorta, O. Norzagaray, D. Pierrot, A. Munoz-Caravaca, K.L. Dobson, N. Williams, N. Rabalais, and P. Dash. Ocean acidification in the Gulf of Mexico: Drivers, impacts, and unknowns. Progress in Oceanography, 209:102882, https://doi.org/10.1016/j.pocean.2022.102882 2022

    Abstract:

    Ocean acidification (OA) has resulted in global-scale changes in ocean chemistry, which can disturb marine organisms and ecosystems. Despite its extensively populated coastline, many marine-dependent communities, and valuable economies, the Gulf of Mexico (GOM) remains a relatively understudied region with respect to acidification. In general, the warm waters of the GOM are better buffered from acidification compared to higher latitude seas, yet long-term acidification has been documented in several GOM regions. OA within the GOM is recognized as spatially variable, particularly within the coastal zone where numerous physical and biogeochemical processes contribute to carbonate chemistry dynamics. The historical progression of OA within the entire GOM is difficult to assess because only a few dedicated long-term monitoring sites have recently been established, and full-water column observations are limited. However, environmental drivers on smaller scales that affect GOM acidification were found to include freshwater, nutrient, and carbonate discharge from large rivers; ocean warming, circulation and residence times; and episodic extreme weather events. GOM marine ecosystems provide essential services, including coastline protection and carbon dioxide removal, and habitats for many marine species that are economically and ecologically important. However, organismal and ecosystem responses to OA are not well constrained for the GOM due to a lack of studies examining the specific effects of OA on regionally relevant species under contemporary and projected conditions. Tackling the vast number of remaining scientific unknowns in this region can be coordinated through regional capacity networks, such as the Gulf of Mexico Coastal Acidification Network (GCAN), working to achieve a system-wide understanding of Gulf OA and its impacts. Here we synthesize the current peer-reviewed literature on GOM acidification across the ocean-estuarine continuum and identify critical knowledge, research, and monitoring gaps that limit our current understanding of environmental, ecological, and socioeconomic impacts from acidification.

  11. Wanninkhof, R., D. Pierrot, K. Sullivan, P. Mears, and L. Barbero. Comparison of discrete and underway CO2 measurements: Inferences on the temperature dependence of the fugacity of CO2 in seawater. Marine Chemistry, 247:104178, https://doi.org/10.1016/j.marchem.2022.104178 2022

    Abstract:

    The fugacity or partial pressure of CO2 in surface water (fCO2w) is a key parameter to determine air-sea CO2 fluxes and the evolution of ocean acidification. Despite its importance some key physical chemical characteristics are not fully resolved, notably its dependence on temperature. The fCO2w is mostly measured by autonomous underway systems near in situ sea surface temperature (SST). Subsurface measurements are commonly carried out on individual (discrete) samples at a fixed temperature, normally 20 °C. Here, the underway system observations are compared with co-located discrete observations to determine the consistency of these types of measurements. The co-located discrete fCO2w at 20 °C and underway fCO2w measurements at SST are used to infer the temperature dependence of CO2. In addition, calculated fCO2w from total alkalinity (TA) and total dissolved inorganic carbon (DIC) are compared with the underway and discrete fCO2w measurements. For 21 cruises spanning the major ocean basins from 1992 to 2020 a temperature dependence of 4.13 ± 0.01% °C−1 is determined in close agreement with a widely used previous empirical estimate of 4.23 ± 0.02% °C−1 for North Atlantic surface water. The temperature dependency of calculated fCO2w from TA and DIC using recommended constants is 4.10% °C−1 for 17 cruises where there are co-located measurements of fCO2w, TA and DIC.

  12. Xu, Y.-Y., R. Wanninkhof, E. Osborne, M. Baringer, L. Barbero, W-J. Cai, and J. Hooper. Inorganic carbon transport and dynamics in the Florida Straits. Journal of Geophysical Research-Oceans, 127(10):e2022JC018405, https://doi.org/10.1029/2022JC018405 2022

    Abstract:

    Ocean heat and carbon are transported through the Florida Straits, contributing to the Atlantic Meridional Overturning Circulation, and playing an important role in climate. Insufficient observations of carbonate chemistry within the Florida Straits have limited our understanding of ocean acidification within this region. To examine carbonate chemistry and carbon transport dynamics within this region, we developed an algorithm to estimate dissolved inorganic carbon (DIC) using more routinely measured input parameters (temperature, salinity, and dissolved oxygen [DO]) and the corresponding sampling date, depth, and longitude. The developed DIC algorithm output demonstrates good agreement with limited existing in situ observations. By applying this algorithm, we developed a seasonally resolved time series of DIC spanning from 2002 to 2018 for the Florida Straits at 27°N. This time series suggests that short-term variations in surface water DO and DIC were strongly influenced by the Florida Current transport. The long-term increase in DIC was mainly caused by anthropogenic carbon accumulation and DO decrease. The highest increasing rate in DIC was found in North Atlantic Central Water where DO decrease was fastest while the decreasing rate in pH was highest in Antarctic Intermediate Water (AAIW) because of the lower buffer capacity of this water mass. The long-term pH decrease, especially in AAIW, can impact the health of deep corals in the Florida Straits. Quantifying carbon transport between the coast of Florida and the Bahamas is important to understanding the carbonate chemistry dynamics and the long-term acidification of this important region.

  13. Carter, B.R., H.C. Bittig, A.J. Fassbender, J.D. Sharp, Y. Takeshita, Y.-Y. Xu, M. Álvarez, R. Wanninkhof, R.A. Feely, and L. Barbero. New and updated global empirical seawater property estimation routines. Limnology and Oceanography: Methods, 19(12):785-809, (https://doi.org/10.1002/lom3.10461 2021

    Abstract:

    We introduce three new Empirical Seawater Property Estimation Routines (ESPERs) capable of predicting seawater phosphate, nitrate, silicate, oxygen, total titration seawater alkalinity, total hydrogen scale pH (pHT), and total dissolved inorganic carbon (DIC) from up to 16 combinations of seawater property measurements. The routines generate estimates from neural networks (ESPER_NN), locally interpolated regressions (ESPER_LIR), or both (ESPER_Mixed). They require a salinity value and coordinate information, and benefit from additional seawater measurements if available. These routines are intended for seawater property measurement quality control and quality assessment, generating estimates for calculations that require approximate values, original science, and producing biogeochemical property context from a data set. Relative to earlier LIR routines, the updates expand their functionality, including new estimated properties and combinations of predictors, a larger training data product including new cruises from the 2020 Global Data Analysis Project data product release, and the implementation of a first-principles approach for quantifying the impacts of anthropogenic carbon on DIC and pHT. We show that the new routines perform at least as well as existing routines, and, in some cases, outperform existing approaches, even when limited to the same training data. Given that additional training data has been incorporated into these updated routines, these updates should be considered an improvement over earlier versions. The routines are intended for all ocean depths for the interval from 1980 to ~2030 c.e., and we caution against using the routines to directly quantify surface ocean seasonality or make more distant predictions of DIC or pHT.

  14. Gomez, F.A., R. Wanninkhof, L. Barbero, and S.-K. Lee. Increasing river alkalinity slows ocean acidification in the northern Gulf of Mexico. Geophysical Research Letters, 48(24):e2021GL096521, https://doi.org/10.1029/2021GL096521 2021

    Abstract:

    Ocean acidification (OA) progression is affected by multiple factors, such as ocean warming, biological production, and river runoff. Here we used an ocean-biogeochemical model to assess the impact of river runoff and climate variability on the spatiotemporal patterns of OA in the Gulf of Mexico (GoM) during 1981–2014. The model showed the expected pH and aragonite saturation state (ΩAr) decline, due to the increase in anthropogenic carbon, with trends close to values reported for the Subtropical North Atlantic. However, significant departures from the basin-averaged pattern were obtained in part of the northern GoM shelf, where pH and ΩAr increased. Model sensitivity analyses showed that OA progression was counteracted by enhanced alkalinity from the Mississippi-Atchafalaya River System. Our findings highlight that river alkalinity is a key driver of carbon system variability in river-dominated ocean margins and emphasize the need to quantify riverine chemistry to properly assess acidification in coastal waters.

  15. Jiang, L.-Q., R.A. Feely, R. Wanninkhof, D. Greeley, L. Barbero, S. Alin, B.R. Carter, D. Pierrot, C. Featherstone, J. Hooper, C. Melrose, N. Monacci, J.D. Sharp, S. Shellito, Y.-Y Xu, A. Kozyr, R.H. Byrne, W.-J. Cai, J. Cross, G.C. Johnson, B. Hales, C. Langdon, J. Mathis, J. Salisbury, and D.W. Townsend. Coastal Ocean Data Analysis Product in North America (CODAP-NA)—An internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins. Earth System Science Data, 13(6):2777-2799, https://doi.org/10.5194/essd-13-2777-2021 2021

    Abstract:

    Internally consistent, quality-controlled (QC) data products play an important role in promoting regional-to-global research efforts to understand societal vulnerabilities to ocean acidification (OA). However, there are currently no such data products for the coastal ocean, where most of the OA-susceptible commercial and recreational fisheries and aquaculture industries are located. In this collaborative effort, we compiled, quality-controlled, and synthesized 2 decades of discrete measurements of inorganic carbon system parameters, oxygen, and nutrient chemistry data from the North American continental shelves to generate a data product called the Coastal Ocean Data Analysis Product in North America (CODAP-NA). There are few deep-water (> 1500 m) sampling locations in the current data product. As a result, crossover analyses, which rely on comparisons between measurements on different cruises in the stable deep ocean, could not form the basis for cruise-to-cruise adjustments. For this reason, care was taken in the selection of data sets to include in this initial release of CODAP-NA, and only data sets from laboratories with known quality assurance practices were included. New consistency checks and outlier detections were used to QC the data. Future releases of this CODAP-NA product will use this core data product as the basis for cruise-to-cruise comparisons. We worked closely with the investigators who collected and measured these data during the QC process. This version (v2021) of the CODAP-NA is comprised of 3391 oceanographic profiles from 61 research cruises covering all continental shelves of North America, from Alaska to Mexico in the west and from Canada to the Caribbean in the east. Data for 14 variables (temperature; salinity; dissolved oxygen content; dissolved inorganic carbon content; total alkalinity; pH on total scale; carbonate ion content; fugacity of carbon dioxide; and substance contents of silicate, phosphate, nitrate, nitrite, nitrate plus nitrite, and ammonium) have been subjected to extensive QC. CODAP-NA is available as a merged data product (Excel, CSV, MATLAB, and NetCDF; https://doi.org/10.25921/531n-c230, https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html, last access: 15 May 2021) (Jiang et al., 2021a). The original cruise data have also been updated with data providers' consent and summarized in a table with links to NOAA's National Centers for Environmental Information (NCEI) archives (https://www.ncei.noaa.gov/access/ocean-acidification-data-stewardship-oads/synthesis/NAcruises.html).

  16. Larkin, A.A., C.A. Garcia, N. Garcia, M.L. Brock, J.A. Lee, L.J. Ustick, L. Barbero, B.R. Carter, R.E. Sonnerup, L.D. Talley, G.A. Tarran, D.L. Volkov, and A.C. Martiny. High spatial resolution global ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. Scientific Data, 8:107, https://doi.org/10.1038/s41597-021-00889-9 2021

    Abstract:

    Detailed descriptions of microbial communities have lagged far behind physical and chemical measurements in the marine environment. Here, we present 971 globally distributed surface ocean metagenomes collected at high spatio-temporal resolution. Our low-cost metagenomic sequencing protocol produced 3.65 terabases of data, where the median number of base pairs per sample was 3.41 billion. The median distance between sampling stations was 26 km. The metagenomic libraries described here were collected as a part of a biological initiative for the Global Ocean Ship-based Hydrographic Investigations Program, or “Bio-GO-SHIP.” One of the primary aims of GO-SHIP is to produce high spatial and vertical resolution measurements of key state variables to directly quantify climate change impacts on ocean environments. By similarly collecting marine metagenomes at high spatiotemporal resolution, we expect that this dataset will help answer questions about the link between microbial communities and biogeochemical fluxes in a changing ocean.

  17. Le-Alvarado, M., A.E. Romo-Curiel, O. Sosa-Nishizaki, O. Hernandez-Sanchez, L. Barbero, and S.Z. Herzka. Yellowfin tuna (Thunnus albacares) foraging habitat and trophic position in the Gulf of Mexico based on intrinsic isotope tracers. PLoS ONE 16(2):e0246082, https://doi.org/10.1371/journal.pone.0246082 2021

    Abstract:

    Yellowfin tuna (YFT, Thunnus albacares) is a commercially important species targeted by fisheries in the Gulf of Mexico (GM). Previous studies suggest a high degree of residency in the northern GM, although part of the population performs movements to southern Mexican waters. Whether YFT caught in southern waters also exhibit residency or migrate to the northern gulf is currently uncertain, and little is known regarding their trophic ecology. The isotopic composition (bulk and amino acids) of YFT muscle and liver tissues were compared to a zooplankton-based synoptic isoscape from the entire GM to infer feeding areas and estimate Trophic Position (TP). The spatial distribution of δ15Nbulk and δ15NPhe values of zooplankton indicated two distinct isotopic baselines: one with higher values in the northern GM likely driven by denitrification over the continental shelf, and another in the central-southern gulf, where nitrogen fixation predominates. Based on the contribution of the two regional isotopic baselines to YFT tissues, broad feeding areas were inferred, with a greater contribution of the northern GM (over a one-year time scale by muscle), and to a lesser extent, in the central-southern GM (over the ca. 6-month scale by liver). This was corroborated by similarities in δ15NPhe values between YFT and the northern GM. TP estimates were calculated based on stable isotope analysis of bulk (SIA) and compound-specific isotope analysis (CSIA-AA) of the canonical source and trophic amino acids. Mean TP based on SIA was 4.9 ± 1.0 and mean TP based on CSIA-A was 3.9 ± 0.2. YFT caught within the Mexican region seem to feed in northern and in central and southern GM, while feeding in the northern GM has a temporal component. Thus, management strategies need to consider that YFT caught in US and Mexican waters are a shared binational resource that exhibit feeding migrations within the GM.

  18. Roemmich, D., L. Talley, N. Zilberman, E. Osborne, K.S. Johnson, L. Barbero, H.C. Bittig, N. Briggs, A.J. Fassbender, G.C. Johnson, B.A. King, E. McDonagh, S. Purkey, S. Riser, T. Suga, Y. Takeshita, V. Thierry, and S. Wijffels. The technological, scientific, and sociological revolution of global subsurface ocean observing. Oceanography, 34(4):2-8, https://doi.org/10.5670/oceanog.2021.supplement.02 2021

    Abstract:

    No abstract.

  19. Cai, W.-J., Y.-Y. Xu, R.A. Feely, R. Wanninkhof, B. Jönsson, S.R. Alin, L. Barbero, J.N. Cross, K. Azetsu-Scott, A.J. Fassbender, B.R. Carter, L.-Q. Jiang, P. Pepin, B. Chen, N. Hussain, J.J. Reimer, L. Xue, J.E. Salisbury, J.M. Hernández-Ayón, C. Langdon, Q. Li, A.J. Sutton, C.-T.A. Chen, and D. Gledhill. Controls on surface water carbonate chemistry along North American ocean margins. Nature Communications, 11:2691, https://doi.org/10.1038/s41467-020-16530-z 2020

    Abstract:

    Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in relatively low DIC and high Ω in warm southern waters and the opposite in cold northern waters. However, pH and the partial pressure of CO2 (pCO2) do not exhibit a simple spatial pattern and are controlled by local physical and net biological processes which impede equilibrium with the atmosphere. Along the Pacific coast, upwelling brings subsurface waters with low Ω and pH to the surface where net biological production works to raise their values. Different temperature sensitivities of carbonate properties and different timescales of influencing processes lead to contrasting property distributions within and among margins.

  20. Gomez, F.A., R. Wanninkhof, L. Barbero, S.-K. Lee, and F.J. Hernandez. Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean-biogeochemical model. Biogeosciences, 17(6):1685-2020, https://doi.org/10.5194/bg-17-1685-2020 2020

    Abstract:

    Uncertainties in carbon chemistry variability still remain large in the Gulf of Mexico (GoM), as data gaps limit our ability to infer basin-wide patterns. Here we configure and validate a regional high-resolution ocean biogeochemical model for the GoM to describe seasonal patterns in surface pressure of CO2 (pCO2), aragonite saturation state (ΩAr), and sea–air CO2 flux. Model results indicate that seasonal changes in surface pCO2 are strongly controlled by temperature across most of the GoM basin, except in the vicinity of the Mississippi–Atchafalaya river system delta, where runoff largely controls dissolved inorganic carbon (DIC) and total alkalinity (TA) changes. Our model results also show that seasonal patterns of surface ΩAr are driven by seasonal changes in DIC and TA, and reinforced by the seasonal changes in temperature. Simulated sea–air CO2fluxes are consistent with previous observation-based estimates that show CO2 uptake during winter–spring, and CO2 outgassing during summer–fall. Annually, our model indicates a basin-wide mean CO2 uptake of 0.35 mol m2 yr1, and a northern GoM shelf (< 200 m) uptake of 0.93 mol m2 yr1. The observation and model-derived patterns of surface pCO2 and CO2 fluxes show good correspondence; thus, this study contributes to improved constraints of the carbon budget in the region.

  21. Hall, E.R., L. Wickes, L.E. Burnett, G.I. Scott, D. Hernandez, K.K. Yates, L. Barbero, J.J. Reimer, M. Baalousha, J. Mintz, W.-J. Cai, J.K. Craig, M.R. DeVoe, W.S. Fisher, T.K. Hathaway, E.B. Jewett, Z. Johnson, P. Keener, R.S. Mordecai, S. Noakes, C. Phillips, P.A. Sandifer, A. Schnetzer, and J. Styron. Acidification in the US southeast: Causes, potential consequences and the role of the Southeast Ocean and Coastal Acidification Network. Frontiers in Marine Science, 7:548, https://doi.org/10.3389/fmars.2020.00548 2020

    Abstract:

    Coastal acidification in southeastern U.S. estuaries and coastal waters is influenced by biological activity, run-off from the land, and increasing carbon dioxide in the atmosphere. Acidification can negatively impact coastal resources such as shellfish, finfish, and coral reefs, and the communities that rely on them. Organismal responses for species located in the U.S. Southeast document large negative impacts of acidification, especially in larval stages. For example, the toxicity of pesticides increases under acidified conditions and the combination of acidification and low oxygen has profoundly negative influences on genes regulating oxygen consumption. In corals, the rate of calcification decreases with acidification and processes such as wound recovery, reproduction, and recruitment are negatively impacted. Minimizing the changes in global ocean chemistry will ultimately depend on the reduction of carbon dioxide emissions, but adaptation to these changes and mitigation of the local stressors that exacerbate global acidification can be addressed locally. The evolution of our knowledge of acidification, from basic understanding of the problem to the emergence of applied research and monitoring, has been facilitated by the development of regional Coastal Acidification Networks (CANs) across the United States. This synthesis is a product of the Southeast Coastal and Ocean Acidification Network (SOCAN). SOCAN was established to better understand acidification in the coastal waters of the U.S. Southeast and to foster communication among scientists, resource managers, businesses, and governments in the region. Here we review acidification issues in the U.S. Southeast, including the regional mechanisms of acidification and their potential impacts on biological resources and coastal communities. We recommend research and monitoring priorities and discuss the role SOCAN has in advancing acidification research and mitigation of and adaptation to these changes.

  22. Jiang, M., C. Pan, L. Barbero, J. Reed, J.E. Salisbury, J.H. Van Zwieten, and R. Wanninkhof. Variability of bottom carbonate chemistry over the deep coral reefs in the Florida Straits and the impacts of mesoscale processes. Ocean Modelling, 147:101555, https://doi.org/10.1016/j.ocemod.2019.101555 2020

    Abstract:

    Abundant and diverse cold-water coral and fish communities can be found in the deep waters of the Florida Straits, which are believed to be living under suboptimal conditions impacted by increasing oceanic CO2 levels. Yet, little is known regarding the spatial–temporal variability of bottom carbonate chemistry parameters and their dynamic drivers in this area. To address this issue, we present results from numerical simulations of a coupled physical-biogeochemical model for the south Florida shelf and Florida Straits. Our exploratory analysis focuses on two well-known deep-coral habitats: Pourtalès Terrace (200-450 m) and Miami Terrace (270-600 m). Results suggest that bottom waters along the northern/western slope of the Straits are comprised primarily of the North Atlantic Central Water (NWCW) and Antarctic Intermediate Water (AAIW), driven by upwelling associated with the bottom Ekman transport of the Florida Current. Over the Pourtalès Terrace, both the meandering of the Florida Current and mesoscale eddies modulate the upwelling (downwelling) of cold (warm) waters. In contrast, Florida Current makes a sharp turn at the southern end of the Miami Terrace leading to persistent island wakes, frequent occurrences of a transient eddy, and strong upwelling of deep waters toward the platform of the terrace. Passage of the transient eddy often accompanies strong downwelling of warm waters and a return (southward) flow on top of the platform. Overall, bottom water properties including temperature (T), dissolved inorganic carbon (DIC) and total alkalinity (TA) show strong variability on weekly to monthly time-scales over entire Pourtalès Terrace and on the platform of Miami Terrace mostly driven by physics. In deeper areas (>400 m), bottom water properties are fairly stable with both DIC and TA showing narrow ranges. Interestingly, waters over the southeastern portion of the Pourtalès Terrace show consistently warmer temperature, lower DIC, and higher TA than those on top of this terrace. The aragonite saturation state (Ω) ranges from 1.2-2 on top of the Pourtalès Terrace and 1.2-1.7 both on top of Miami Terrace and on the upper slope of Pourtalès Terrace. In the deeper slope areas (>400 m), it is nearly constant at 1.2-1.3. This modeling effort suggests that remote forcing and biogeochemical processes along the transport paths, from the Gulf of Mexico to the Straits, are significant but second-order contributors to the variability of bottom carbonate chemistry. The impacts of benthic biogeochemical processes along the transit paths are not resolved.

  23. Wanninkhof, R., D. Pierrot, K. Sullivan, L. Barbero, and J. Trinanes. A 17-year dataset of surface water fugacity of CO2 along with calculated pH, aragonite saturation state, and air-sea CO2 fluxes in the northern Caribbean Sea. Earth System Science Data, 12(3):1489-1509, https://doi.org/10.5194/essd-12-1489-2020 2020

    Abstract:

    A high-quality dataset of surface water fugacity of CO2 (fCO2w), consisting of over a million observations, and derived products are presented for the northern Caribbean Sea, covering the time span from 2002 through 2018. Prior to installation of automated pCO2 systems on cruise ships of Royal Caribbean International and subsidiaries, very limited surface water carbon data were available in this region. With this observational program, the northern Caribbean Sea has now become one of the best-sampled regions for pCO2 of the world ocean. The dataset and derived quantities are binned and averaged on a 1° monthly grid and are available at http://accession.nodc.noaa.gov/0207749 (last access: 30 June 2020) (https://doi.org/10.25921/2swk-9w56; Wanninkhof et al., 2019a). The derived quantities include total alkalinity (TA), acidity (pH), aragonite saturation state (ΩAr), and air-sea CO2 flux and cover the region from 15–28°N and 88–62°W. The gridded data and products are used for determination of status and trends of ocean acidification, for quantifying air-sea CO2 fluxes, and for ground-truthing models. Methodologies to derive the TA, pH, and ΩAr and to calculate the fluxes from fCO2w temperature and salinity are described.

  24. Carter, B.R., N.L. Williams, W. Evans, A. Fassbender, L. Barbero, C. Hauri, R.A. Feely, and A.J. Sutton. Time of detection as a metric for prioritizing between climate observation quality, frequency, and duration. Geophysical Research Letters, 46(7):3853-3861, https://doi.org/10.1029/2018GL080773 2019

    Abstract:

    We advance a simple framework based on “time of detection” for estimating the observational needs of studies assessing climate changes amidst natural variability and apply it to several examples related to ocean acidification. This approach aims to connect the Global Ocean Acidification Observing Network “weather” and “climate” data quality thresholds with a single dynamic threshold appropriate for a range of potential ocean signals and environments. A key implication of the framework is that measurement frequency can be as important as measurement accuracy, particularly in highly variable environments. Pragmatic cost‐benefit analyses based on this framework can be performed to quantitatively determine which observing strategy will accomplish a given detection goal soonest and resolve a signal with the greatest confidence and to assess how the trade‐offs between measurement frequency and accuracy vary regionally.

  25. Chen, S., C. Hu, B.B. Barnes, R. Wanninkhof, W.-J. Cai, L. Barbero, and D. Pierrot. A machine learning approach to estimate surface ocean pCO2 from satellite measurements. Remote Sensing of Environment, 228:203-226, https://doi.org/10.1016/j.rse.2019-04.019 2019

    Abstract:

    Surface seawater partial pressure of CO2 (pCO2) is a critical parameter in the quantification of air-sea CO2 flux, which further plays an important role in quantifying the global carbon budget and understanding ocean acidification. Yet, the remote estimation of pCO2 in coastal waters (under influences of multiple processes) has been difficult due to complex relationships between environmental variables and surface pCO2. To date there is no unified model to remotely estimate surface pCO2 in oceanic regions that are dominated by different oceanic processes. In our study area, the Gulf of Mexico (GOM), this challenge is addressed through the evaluation of different approaches, including multi-linear regression (MLR), multi-nonlinear regression (MNR), principle component regression (PCR), decision tree, supporting vector machines (SVMs), multilayer perceptron neural network (MPNN), and random forest based regression ensemble (RFRE). After modeling, validation, and extensive tests using independent cruise datasets, the RFRE model proved to be the best approach. The RFRE model was trained using data comprised of extensive pCO2 datasets (collected over 16 years by many groups) and MODIS (Moderate Resolution Imaging Spectroradiometer) estimated sea surface temperature (SST), sea surface salinity (SSS), surface chlorophyll concentration (Chl), and diffuse attenuation of downwelling irradiance (Kd). This RFRE-based pCO2 model allows for the estimation of surface pCO2 from satellites with a spatial resolution of ~1 km. It showed an overall performance of a root mean square difference (RMSD) of 9.1 μatm, with a coefficient of determination (R2) of 0.95, a mean bias (MB) of −0.03 μatm, a mean ratio (MR) of 1.00, an unbiased percentage difference (UPD) of 0.07%, and a mean ratio difference (MRD) of 0.12% for pCO2 ranging between 145 and 550 μatm. The model, with its original parameterization, has been tested with independent datasets collected over the entire GOM, with satisfactory performance in each case (RMSD of ≤~10 μatm for open GOM waters and RMSD of ≤~25 μatm for coastal and river-dominated waters). The sensitivity of the RFRE-based pCO2 model to uncertainties of each input environmental variable was also thoroughly examined. The results showed that all induced uncertainties were close to, or within, the uncertainty of the model itself with higher sensitivity to uncertainties in SST and SSS than to uncertainties in Chl and Kd. The extensive validation, evaluation, and sensitivity analysis indicate the robustness of the RFRE model in estimating surface pCO2 for the range of 145–550 μatm in most GOM waters. The RFRE model approach was applied to the Gulf of Maine (a contrasting oceanic region to GOM), with local model training. The results showed significant improvement over other models suggesting that the RFRE may serve as a robust approach for other regions once sufficient field-measured pCO2 data are available for model training.

  26. Fennel, K., S. Alin, L. Barbero, W. Evans, T. Bourgeois, S. Cooley, J. Dunne, R.A. Feely, J.M. Hernandez-Ayon, X. Hu, S. Lohrenz, F. Muller-Karger, R. Najjar, L. Robbins, E. Shadwick, S. Siedlecki, N. Steiner, A.Sutton, D. Turk, P. Vlahos, and Z.A. Wang. Carbon cycling in the North American coastal ocean: A synthesis. Biogeosciences, 16(6):1281-1304, https://doi.org/10.5194/bg-16-1281-2019 2019

    Abstract:

    A quantification of carbon fluxes in the coastal ocean and across its boundaries with the atmosphere, land, and the open ocean is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but this is currently a missing component of global carbon budgeting. This synthesis reviews recent progress in characterizing these carbon fluxes for the North American coastal ocean. Several observing networks and high-resolution regional models are now available. Recent efforts have focused primarily on quantifying the net air–sea exchange of carbon dioxide (CO2). Some studies have estimated other key fluxes, such as the exchange of organic and inorganic carbon between shelves and the open ocean. Available estimates of air–sea CO2 flux, informed by more than a decade of observations, indicate that the North American Exclusive Economic Zone (EEZ) acts as a sink of 160±80 Tg C yr−1, although this flux is not well constrained. The Arctic and sub-Arctic, mid-latitude Atlantic, and mid-latitude Pacific portions of the EEZ account for 104, 62, and −3.7 Tg C yr−1, respectively, while making up 51 %, 25 %, and 24 % of the total area, respectively. Combining the net uptake of 160±80 Tg C yr−1 with an estimated carbon input from land of 106±30 Tg C yr−1 minus an estimated burial of 65±55 Tg C yr−1 and an estimated accumulation of dissolved carbon in EEZ waters of 50±25 Tg C yr−1 implies a carbon export of 151±105 Tg C yr−1 to the open ocean. The increasing concentration of inorganic carbon in coastal and open-ocean waters leads to ocean acidification. As a result, conditions favoring the dissolution of calcium carbonate occur regularly in subsurface coastal waters in the Arctic, which are naturally prone to low pH, and the North Pacific, where upwelling of deep, carbon-rich waters has intensified. Expanded monitoring and extension of existing model capabilities are required to provide more reliable coastal carbon budgets, projections of future states of the coastal ocean, and quantification of anthropogenic carbon contributions.

  27. Friedlingstein, P., M.W. Jones, M. O’Sullivan, R.M. Andrew, J. Hauck, G.P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, D.C.E. Bakker, J.G. Canadell, P. Ciais, R.B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L.P. Chini, K.I. Currie, R.A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D.S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R.A. Houghton, G. Hurtt, T. Ilyina, A.K. Jain, E. Joetzjer, J.O. Kaplan, E. Kato, K.K. Goldewijk, J.I. Korsbakken, P. Landschützer, S.K. Lauvset, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P.C. McGuire, J.R. Melton, N. Metzl, D.R. Munro, J.E.M.S. Nabel, S.-I. Nakaoka, C. Neill, A.M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, R. Séférian, J. Schwinger, N. Smith, P.P. Tans, H. Tian, B. Tilbrook, F.N. Tubiello, G.R. van der Werf, A.J. Wiltshire, and S. Zaehle. Global carbon budget 2019. Earth System Science Data, 11(4):1783-1838, https://doi.org/10.5194/essd-11-1783-2019 2019

    Abstract:

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).

  28. Wanninkhof, R., P.A. Pickers, A.M. Omar, A. Sutton, A. Murata, A. Olsen, B.B. Stephens, B. Tilbrook, D. Munro, D. Pierrot, G. Rehder, J.M. Santana-Casiano, J.D. Muller, J. Trinanes, K. Tedesco, K. O’Brien, K. Currie, L. Barbero, M. Telszewski, M. Hoppema, M. Ishii, M. Gonzalez-Davila, N.R. Bates, N. Metzl, P. Suntharalingam, R.A. Feely, S.-I. Nakaoka, S.K. Lauvset, T. Takahashi, T. Steinhoff, and U. Schuster. A surface ocean CO2 reference network, SOCONET, and associated marine boundary layer CO2 measurements. Frontiers in Marine Science, 6:400, https://doi.org/10.3389/fmars.2019.00400 2019

    Abstract:

    The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (μatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices.

  29. Hu, X., M.F. Nuttall, H. Wang, H. Yao, C.J. Staryk, M.M. McCutcheon, R.J. Eckert, J.A. Embresi, M.A. Johnston, E.L. Hickerson, G.P. Schmahl, D.P. Manzello, I.C. Enochs, S. DiMarco, and L. Barbero. Seasonal variability of carbonate chemistry and decadal changes in waters of a marine sanctuary in the northwestern Gulf of Mexico. Marine Chemistry, 205:16-28, https://doi.org/10.1016/j.marchem.2018.07.006 2018

    Abstract:

    We report seasonal water column carbonate chemistry data collected over a three-year period (late 2013 to 2016) at Flower Garden Banks National Marine Sanctuary (FGBNMS) located on the subtropical shelf edge of the northwestern Gulf of Mexico. The FGBNMS hosts the northernmost tropical coral species in the contiguous United States, with over 50% living coral cover. Presented here are results from samples of the upper 25 m of the water column collected from September 2013 to November 2016. Additionally, following a localized mortality event likely associated with major continental flooding in summer 2016, water samples from up to ~250 m depth were collected in the broader FGBNMS area on a rapid response cruise to examine the seawater carbonate system. Both surface (alkalinity (TA) and total dissolved inorganic carbon (DIC) vary over small ranges (2391 ± 19 μmol kg−1 and 2060 ± 19 μmol kg−1, respectively) for all times-series samples. Temperature and salinity both played an important role in controlling the surface water carbonate system dynamics, although temperature was the sole significant factor when there was no flooding. The FGBNMS area acted as a sink for atmospheric CO2 in winter and a CO2 source in summer, while the time-integrated CO2 flux is close to zero (−0.14 ± 1.96 mmol-C m−2 yr−1). Results from three cruises, i.e., the Gulf of Mexico and East Coast Carbon Project (GOMECC-1) in 2007, the rapid response study, and the Gulf of Mexico Ecosystems and Carbon Cruise (GOMECC-3), revealed decreases in both pH and saturation state with respect to aragonitearag) in subsurface waters (~100–250 m) over time. These decreases are larger than those observed in other tropical and subtropical waters. Based on reaction stoichiometry, calculated anthropogenic CO2 contributed 30–41% of the overall DIC increase, while elevated respiration accounted for the rest.

  30. Le Quere, C., R.M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P.A. Pickers, J.I. Korsbakken, G.P. Peters, J.G. Canadell, A. Arneth, V.K. Arora, L. Barbero, A. Bastos, L. Bopp, F. Chevallier, L.P. Chini, P. Ciais, S.C. Doney, T. Gkritzalis, D.S. Goll, I. Harris, V. Haverd, F.M. Hoffman, M. Hoppema, R.A. Houghton, G. Hurtt, T. Ilyina, A.K. Jain, T. Johannessen, C.D. Jones, E. Kato, R.F. Keeling, K.K. Goldewijk, P. Landschutzer, N. Lefevre, S. Lienert, Z. Liu, D. Lombardozzi, N. Metzl, D.R. Munro, J.E.M.S. Nabel, S.-I. Nakaoka, C. Neill, A. Olsen, T. Ono, P. Patra, A. Peregon, W. Peters, P. Peylin, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, M. Rocher, C. Rodenbeck, U. Schuster, J. Schwinger, R. Seferian, I. Skjelvan, T. Steinhoff, A. Sutton, P.P. Tans, H. Tian, B. Tilbrook, F.N. Tubiello, I.T. van der Laan-Luijkx, G.R. van der Werf, N. Viovy, A.P. Walker, A.J. Wiltshire, R. Wright, S. Zaehle, and B. Zheng. Global carbon budget 2018. Earth System Science Data, 10(4):2141-2194, https://doi.org/10.5194/essd-10-2141-2018 2018

    Abstract:

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a,b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.

  31. Le Quéré, C., R.M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A.C. Manning, J.I. Korsbakken, G.P. Peters, J.G. Canadell, R.B. Jackson, T.A. Boden, P.P. Tans, O.D. Andrews, V.K. Arora, D.C.E. Bakker, L. Barbero, M. Becker, R.A. Betts, L. Bopp, F. Chevallier, L.P. Chini, P. Ciais, C.E. Cosca, J. Cross, K. Currie, T. Gasser, I. Harris, J. Hauck, V. Haverd, R.A. Houghton, C.W. Hunt, G. Hurtt, T. Ilyina, A.K. Jain, E. Kato, M. Kautz, R.F. Keeling, K. Klein Goldewijk, A. Körtzinger, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, I. Lima, D. Lombardozzi, N. Metzl, F. Millero, P.M.S. Monteiro, D.R. Munro, J.E.M.S. Nabel, S. Nakaoka, Y. Nojiri, X.A. Padin, A. Peregon, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, J. Reimer, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, B.D. Stocker, H. Tian, B. Tilbrook, F.N. Tubiello, I.T. van der Laan-Luijkx, G.R. van der Werf, S. van Heuven, N. Viovy, N. Vuichard, A.P. Walker, A.J. Watson, A.J. Wiltshire, S. Zaehle, and D. Zhu. Global carbon budget 2017. Earth System Science Data, 10(1):405-448, https://doi.org/10.5194/essd-10-405-2018 2018

    Abstract:

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).

  32. Robbins, L.L., K.L. Daly, L. Barbero, R. Wanninkhof, R. He, H. Zong, J.T. Lisle, W.-J. Cai, and C.G. Smith. Spatial and temporal variability of pCO2, carbon fluxes, and saturation state on the West Florida Shelf. Journal of Geophysical Research-Oceans, 123(9):6174-6188, https://doi.org/10.1029/2018JC014195 2018

    Abstract:

    The West Florida Shelf (WFS) is a source of uncertainty for the Gulf of Mexico carbon budget. Data from the synthesis of approximately 135,000 pCO2 values from 97 cruises from the WFS show that the shelf waters fluctuate between being a weak source to a weak sink of carbon. Overall, the shelf acts as a weak source of CO2 at 0.32 ± 1.5 mol m−2 yr−1. Subregions, however, reveal slightly different trends, where surface waters associated with 40–200‐m isobath in the northern and southern WFS are generally weak sinks all year, except for summer when they act as sources of CO2. Conversely, nearshore waters (2, particularly the southern shallow waters, which are a source all year round. The pCO2 of seawater has been increasing at a rate of approximately 4.37 μatm/year as compared to atmospheric pCO2 which has increased at a rate of about 1.7 μatm per year from 1996 to 2016. The annual CO2 flux has increased from −0.78 to 0.92 mol m−2 yr−1 on the shelf from 1996–2016. The WFS is emitting 9.23 Tg C/year, with the southern nearshore region emitting the most at 9.01 Tg C/year and the northern region acting as a sink of −1.96 Tg C/year. Aragonite saturation state on the WFS shows seasonal and geographic trends with values ranging from 2 to 5. Lowest values are found in winter associated with subregion <40‐m isobath.

  33. Ho, D.T., S. Ferron, V.C. Engel, W.T. Anderson, P.K. Swart, R.M. Price, and L. Barbero. Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades. Biogeosciences, 14(9):2543-2559, https://doi.org/10.5194/bg-14-2543-2017 2017

    Abstract:

    The Shark and Harney rivers, located on the southwest coast of Florida, USA, originate in the freshwater, karstic marshes of the Everglades and flow through the largest contiguous mangrove forest in North America. In November 2010 and 2011, dissolved carbon source–sink dynamics were examined in these rivers during SF6 tracer release experiments. Approximately 80% of the total dissolved carbon flux out of the Shark and Harney rivers during these experiments was in the form of inorganic carbon, either via air–water CO2 exchange or longitudinal flux of dissolved inorganic carbon (DIC) to the coastal ocean. Between 42 and 48% of the total mangrove-derived DIC flux into the rivers was emitted to the atmosphere, with the remaining being discharged to the coastal ocean. Dissolved organic carbon (DOC) represented ca. 10% of the total mangrove-derived dissolved carbon flux from the forests to the rivers. The sum of mangrove-derived DIC and DOC export from the forest to these rivers was estimated to be at least 18.9 to 24.5 mmol m−2 d−1, a rate lower than other independent estimates from Shark River and from other mangrove forests. Results from these experiments also suggest that in the Shark and Harney rivers, mangrove contribution to the estuarine flux of dissolved carbon to the ocean is less than 10%.

  34. Laurent, A., K. Fennel, W.-J. Cai, W.-J. Huang, L. Barbero, and R. Wanninkhof. Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physical-biogeochemical model. Geophysical Research Letters, 44(2):946-956, https://doi.org/10.1002/2016GL071881 2017

    Abstract:

    Nutrient inputs from the Mississippi/Atchafalaya River system into the northern Gulf of Mexico promote high phytoplankton production and lead to high respiration rates. Respiration coupled with water column stratification results in seasonal summer hypoxia in bottom waters on the shelf. In addition to consuming oxygen, respiration produces carbon dioxide (CO2), thus lowering the pH and acidifying bottom waters. Here we present a high-resolution biogeochemical model simulating this eutrophication-driven acidification and investigate the dominant underlying processes. The model shows the recurring development of an extended area of acidified bottom waters in summer on the northern Gulf of Mexico shelf that coincides with hypoxic waters. Not reported before, acidified waters are confined to a thin bottom boundary layer where the production of CO2 by benthic metabolic processes is dominant. Despite a reduced saturation state, acidified waters remain supersaturated with respect to aragonite.

  35. Bakker, D.C.E., B. Pfeil, C.S. Landa, N. Metzl, K.M. O'Brien, A. Olsen, K. Smith, C. Cosca, S. Harasawa, S.D. Jones, S.-I. Nakaoka, Y. Nojiri, U. Schuster, T. Steinhoff, C. Sweeney, T. Takahashi, B. Tilbrook, C. Wada, R. Wanninkhof, S.R. Alin, C.F. Balestrini, L. Barbero, N.R. Bates, A.A. Bianchi, F. Bonou, J. Boutin, Y. Bozec, E.F. Burger, W.-J. Cai, R.D. Castle, L. Chen, M. Chierici, K. Currie, W. Evans, C. Featherstone, R.A. Feely, A. Fransson, C. Goyet, N. Greenwood, L. Gregor, S. Hankin, N.J. Hardman-Mountford, J. Harlay, J. Hauck, M. Hoppema, M.P. Humphreys, C.W. Hunt, B. Huss, J.S.P. Ibánhez, T. Johannessen, R. Keeling, V. Kitidis, A. Körtzinger, A. Kozyr, E. Krasakopoulou, A. Kuwata, P. Landschützer, S.K. Lauvset, N. Lefèvre, C. Lo Monaco, A. Manke, J.T. Mathis, L. Merlivat, F.J. Millero, P.M.S. Monteiro, D.R. Munro, A. Murata, T. Newberger, A.M. Omar, T. Ono, K. Paterson, D. Pearce, D. Pierrot, L.L. Robbins, S. Saito, J. Salisbury, R. Schlitzer, B. Schneider, R. Schweitzer, R. Sieger, I. Skjelvan, K.F. Sullivan, S.C. Sutherland, A.J. Sutton, K. Tadokoro, M. Telszewski, M. Tuma, S.M.A.C. Van Heuven, D. Vandemark, B. Ward, A.J. Watson, and S. Xu. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8:383-413, https://doi.org/10.5194/essd-8-383-2016 2016

    Abstract:

    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.

  36. Le Quéré, C., R.M. Andrew, J.G. Canadell, S. Sitch, J.I. Korsbakken, G.P. Peters, A.C. Manning, T.A. Boden, P.P. Tans, R.A. Houghton, R.F. Keeling, S. Alin, O.D. Andrews, P. Anthoni, L. Barbero, L. Bopp, F. Chevallier, L.P. Chini, P. Ciais, K. Currie, C. Delire, S.C. Doney, P. Friedlingstein, T. Gkritzalis, I. Harris, J. Hauck, V. Haverd, M. Hoppema, K. Klein Goldewijk, A.K. Jain, E. Kato, A. Körtzinger, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, J.R. Melton, N. Metzl, F. Millero, P.M.S. Monteiro, D.R. Munro, J.E.M.S. Nabel, S.I. Nakaoka, K. O'Brien, A. Olsen, A.M. Omar, T. Ono, D. Pierrot, B. Poulter, C. Rödenbeck, J. Salisbury, U. Schuster, J. Schwinger, R. Séférian, I. Skjelvan, B.D. Stocker, A.J. Sutton, T. Takahashi, H. Tian, B. Tilbrook, I.T. van der Laan-Luijkx, G.R. van der Werf, N. Viovy, A.P. Walker, A.J. Wiltshire, and S. Zaehle. Global carbon budget 2016. Earth System Science Data, 8(2):605-649, https://doi.org/10.5194/essd-8-605-2016 2016

    Abstract:

    The global carbon budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.

  37. DiNezio, P.N., L. Barbero, M.C. Long, N. Lovenduski, and C. Deser. Are anthropogenic changes in the tropical ocean carbon cycle masked by Pacific decadal variability? U.S. CLIVAR Variations, 13(2):12-16, 2015

    Abstract: No abstract.

  38. Le Quéré, C., R. Moriarty, R.M. Andrew, J.G. Canadell, S. Sitch, J.I. Korsbakken, P. Friedlingstein, G.P. Peters, R.J. Andres, T.A. Boden, R.A. Houghton, J.I. House, R.F. Keeling, P. Tans, A. Arneth, D.C.E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L.P. Chini, P. Ciais, M. Fader, R.A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A.K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S.K. Lauvset, N. Lefèvre, A. Lenton, I.D. Lima, N. Metzl, F. Millero, D.R. Munro, A. Murata, J.E.M.S. Nabel, S. Nakaoka, Y. Nojiri, K. O’Brien, A. Olsen, T. Ono, F.F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B.D. Stocker, A.J. Sutton, T. Takahashi, B. Tilbrook, I.T. van der Laan-Luijkx, G.R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng. Global carbon budget 2015. Earth System Science Data, 7(2):349-396, https://doi.org/10.5194/essd-7-349-2015 2015

    Abstract:

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2005-2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2% yr−1 that took place during 2005-2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005-2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6% [range of −1.6 to +0.5], based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870-2015, about 75% from EFF and 25% from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).

  39. Wanninkhof, R., L. Barbero, R. Byrne, W.-J. Cai, W.-J. Huang, J.-Z. Zhang, M. Baringer, and C. Langdon. Ocean acidification along the gulf coast and east coast of the USA. Continental Shelf Research, 98:54-71, https://doi.org/10.1016/j.csr.2015.02.008 2015

    Abstract:

    As part of an effort to monitor changes in inorganic carbon chemistry of the coastal ocean, near-synoptic cruises are being conducted in the northern Gulf of Mexico and along the east coast of the United States. Here we describe observations obtained on a cruise in the summer of 2012 and compare them with results from a cruise following a similar track in 2007. The focus is on describing spatial patterns of aragonite saturation state (ΩAr). This parameter is an indicator of ecosystem health, in particular, for calcifying organisms. The results show large-scale regional trends from different source waters at the northeastern and southwestern edges of the domain, along with the modulating effects of remineralization/respiration and riverine inputs. The broader patterns and changes over five years along the coast can be well described by the impacts of large-scale circulation, notably changes in source waters contributions. Changes in the well-buffered Loop Current and Gulf Stream with high ΩAr impact the waters in the southern part of the study area. The less buffered southward coastal currents with low ΩAr originating from the Labrador Sea and Gulf of St. Lawrence impact the ΩAr patterns in the northern regions. The expected 2% average decrease in ΩAr in the surface mixed layer due to increasing atmospheric CO2 levels over the 5-year period is largely overshadowed by local and regional variability from changes in hydrography and mixed layer dynamics.

  40. Bakker, D.C.E., B. Pfeil, K. Smith, S. Hankin, A. Olsen, S.R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K.M. O’Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N.R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R.D. Castle, F.P. Chavez, L. Chen, M. Chierici, K. Currie, H.J.W. de Baar, W. Evans, R.A. Feely, A. Fransson, Z. Gao, B. Hales, N.J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C.W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E.M. Jones, S.D. Jones, S. Jutterstrom, V. Kitidis, A. Kortzinger, P. Llandschutzer, S.K. Lauvset, N. Lefevre, A.B. Manke, J.T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A.M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A.F. Rios, C.L. Sabine, S. Saito, J. Salisbury, V.V.S.S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K.F. Sullivan, H. Sun, A.J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S.M.A.C. van Heuven, D. Vandemark, P. Vlahos, D.W.R. Wallace, R. Wanninkhof, and A.J. Watson. An update to the surface CO2 atlas (SOCAT version 2). Earth System Science Data, 6(1):69-90, https://doi.org/10.5194/essd-6-69-2014 2014

    Abstract:

    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968–2007 to 1968–2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink, and its spatial, seasonal, year-to-year and longer term variation, as well as initialization or validation of ocean carbon models and coupled climate-carbon models.

  41. Robbins, L.L., R. Wanninkhof, L. Barbero, X. Hu, S. Mitra, S. Yvon-Lewis, W.-J. Cai, W.-J. Huang, and T. Ryerson. Air-sea exchange. In Report of the U.S. Gulf of Mexico Carbon Cycle Synthesis Workshop, March 27-28, 2013. Ocean Carbon and Biogeochemistry Program and North American Carbon Program, H.M. Benway and P.G. Coble (eds.). American Carbon Program, 17-23, 2014

    Abstract:

    No abstract.

  42. Barbero, L., J. Boutin, L. Merlivat, N. Martin, T. Takahashi, S.C. Sutherland, and R. Wanninkhof. Importance of water mass formation regions for the air-sea CO2 flux estimate in the Southern Ocean. Global Biogeochemical Cycles, 25:GB1005, 16 pp., https://doi.org/10.1029/2010GB003818 2011

    Abstract:

    CARIOCA drifters and ship data from several cruises in the Subantarctic Zone (SAZ) of the Pacific Ocean, approximately 40°S-55°S, have been used in order to investigate surface CO2 partial pressure (pCO2) and dissolved inorganic carbon (DIC) patterns. The highest DIC values were determined in regions of deep water formation, characterized by deep mixed layer depths (MLD) as estimated from Argo float profiles. As a result, these areas act as sources of CO2 to the atmosphere. Using an empirical linear relationship between DIC, sea surface temperature (SST), and MLD, we then combine DIC with AT based on salinity and compute pCO2. Finally, we derive monthly fields of air-sea CO2 flux in the SAZ. Our fit predicts the existence of a realistic seasonal cycle, close to equilibrium with the atmosphere in winter and a sink when biological activity takes place. It also reproduces the impact that deep water formation regions close to the Subantarctic Front (SAF) and in the eastern part of the SAZ have on the uptake capacity of the area. These areas, undersampled in previous studies, have high pCO2, and as a result, our estimates (0.05 - 0.03 PgC yr-1) indicate that the Pacific SAZ acts as a weaker sink of CO2 than suggested by previous studies which neglect these source regions.