
A Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in the Contiguous United States
Based on the Leading Patterns of Large-Scale Atmospheric Anomalies

SANG-KI LEE,a HOSMAY LOPEZ,a DONGMIN KIM,a,b ANDREW T. WITTENBERG,c AND ARUN KUMAR
d

aNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
bCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

cNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
dNOAA/Climate Prediction Center, College Park, Maryland

(Manuscript received 14 July 2020, in final form 6 November 2020)

ABSTRACT: This study presents an experimental model for Seasonal Probabilistic Outlook for Tornadoes (SPOTter) in

the contiguous United States forMarch, April, andMay and evaluates its forecast skill. This forecast model uses the leading

empirical orthogonal function modes of regional variability in tornadic environmental parameters (i.e., low-level vertical

wind shear and convective available potential energy), derived from the NCEP Coupled Forecast System, version 2, as the

primary predictors. A multiple linear regression is applied to the predicted modes of tornadic environmental parameters to

estimate U.S. tornado activity, which is presented as the probability for above-, near-, and below-normal categories. The

initial forecast is carried out in late February for March–April U.S. tornado activity and then is updated in late March for

April–May activity.A series of reforecast skill tests, including the jackknife cross-validation test, shows that the probabilistic

reforecast is overall skillful for predicting the above- and below-normal area-averaged activity in the contiguous United

States for the target months of both March–April and April–May. The forecast model also successfully reforecasts the 2011

super-tornado-outbreak season and the other threemost activeU.S. tornado seasons in 1982, 1991, and 2008, and thus it may

be suitable for an operational use for predicting future active and inactive U.S. tornado seasons. However, additional tests

show that the regional reforecast is skillful for March–April activity only in the Ohio Valley and South and for April–May

activity only in the Southeast and Upper Midwest. These and other limitations of the current model, along with the future

advances needed to improve the U.S. regional-scale tornado forecast, are discussed.

KEYWORDS: Tornadoes; Convective storms; Climate prediction; Forecast verification/skill; Probability

forecasts/models/distribution; Seasonal forecasting

1. Introduction

During the spring months of March–May (MAM), the cen-

tral United States east of theRockyMountains is most prone to

severe thunderstorms that often spawn off a series of violent

tornadoes, causing casualties and property losses. For instance,

during 2009–18, tornadoes in the United States claimed 890

lives and caused $20 billion in property and crop damages

(https://www.spc.noaa.gov/wcm/). Current operational fore-

casts for severe thunderstorm and tornado hazards (e.g., con-

vective outlooks) are issued a few days in advance. Yet there

is a pressing need for expanding severeweather outlooks beyond

the synoptic weather time scale toward subseasonal-to-seasonal

time scales, to provide emergency managers, government offi-

cials, businesses, insurers, and the public advance warning of the

potential for loss of life and damage to critical infrastructure.

Previous studies, especially during the past few years, have

advanced our understanding of the large-scale atmosphere,

ocean and sea ice environments conducive to U.S. tornado

outbreaks (e.g., Marzban and Schaefer 2001; Brooks et al.

2003; Marsh et al. 2007; Cook and Schaefer 2008; Muñoz and

Enfield 2011; Tippett et al. 2012; Weaver et al. 2012; Barrett

andGensini 2013; Lee et al. 2013, 2016; Thompson andRoundy

2013; Elsner and Widen 2014; Allen et al. 2015, 2018; Saide

et al. 2015; Jung and Kirtman 2016; Molina et al. 2016, 2018;

Cook et al. 2017; Lepore et al. 2017, 2018; Baggett et al. 2018;

Childs et al. 2018; Trapp and Hoogewind 2018; Chu et al. 2019;

Molina and Allen 2019). For example, Brooks et al. (2003)

derived the low-level vertical wind shear (WSHR) and con-

vective available potential energy (CAPE) threshold values

leading to tornadic environmental conditions in the United

States. Using similar criteria, Tippett et al. (2012) reasonably

reproduced the number of U.S. tornadoes during 1971–2010.

Lee et al. (2013) showed that seven of the ten most severe

tornado outbreaks in the United States during 1950–2010 were

linked to a positive-phase Trans-Niño condition (i.e., colder

sea surface temperature anomalies in the central equatorial

Pacific than in the eastern equatorial Pacific), which often oc-

curs during the decay phase of La Niña in boreal spring. Allen

et al. (2015) showed that La Niña events persisting into boreal

spring are linked to increased tornado activity in the central

United States, while El Niño events persisting into boreal

spring are linked to decreased tornado activity in the central

United States. Jung and Kirtman (2016) and Molina et al.

(2016) stressed the moisture supply from the Gulf of Mexico

as a critical factor that modulates tornado activity in the

southern United States. Lee et al. (2016) showed that U.S.

regional patterns of tornado outbreak risk are linked to the

four main flavors of El Niño–Southern Oscillation (ENSO) in

boreal spring, and to tripole variations in North Atlantic sea

surface temperature. Lepore et al. (2017, 2018) showed thatCorresponding author: Dr. Sang-Ki Lee, sang-ki.lee@noaa.gov
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ENSO could modulate monthly and seasonal forecast skill of

U.S. tornado activity during MAM, with higher skill during La

Niña conditions. Most recently, Trapp and Hoogewind (2018)

showed that Arctic sea ice loss may weaken the midlatitude

zonal winds and vertical wind shear over North America,

suppressing U.S. tornado activity in summer.

These and other recent studies have collectively shown that

U.S. tornado activity is directly linked to large-scale regional

tornadic environmental parameters (e.g., WSHR and CAPE),

which are modulated by ENSO and other slowly varying ocean

and sea ice processes. Building upon these findings, here we

present and test a hybrid statistical-dynamical seasonal fore-

cast model for U.S. tornado activity. This forecast model uses

WSHR and CAPE derived from the NCEP Coupled Forecast

System, version 2 (CFSv2; Saha et al. 2014), as the primary

predictors, with the premise that the modulating impacts of

ENSOand other slowly varying ocean and sea ice processes are

integrated into these two tornadic environmental parameters.

A multiple linear regression analysis is then applied to the

predicted WSHR and CAPE to estimate the likelihood of

above-, near-, or below-normal U.S. tornado activity in MAM.

The study is organized as follows. Section 2 presents the

tornado index, the atmospheric reanalysis, and the CFSv2

forecast data used in this study. Section 3 analyzes the vari-

ability and predictability of WSHR and CAPE using the at-

mospheric reanalysis and CFSv2. Sections 4 and 5 evaluate the

probabilistic reforecast skill of the hybrid statistical-dynamical

model for tornadic risk during the period of 1982–2018. The

skill evaluation is carried out separately for the contiguous

United States (CONUS) and each of the four U.S. climate

regions vulnerable to tornadoes (i.e., Ohio Valley, South,

Southeast, and Upper Midwest). The probabilistic reforecast

for U.S. regional-scale tornado activity (i.e., tornado activity

normalized for each of 18 3 18 grid point over the United

States) is also presented and its skill is evaluated. Sections 6

and 7 conclude the study with a discussion and summary.

2. Data and methods

a. Tornado data, atmospheric reanalysis, and CFSv2

Several datasets are used to develop and evaluate the seasonal

forecast model. We use the Severe Weather Database (SWD) of

theNationalOceanic andAtmosphericAdministration (NOAA),

available for downloading (https://www.spc.noaa.gov/wcm/),

to identify EF1–EF5 tornadoes in the United States during

MAM from 1982 to 2018. Note that EF0 tornadoes are ex-

cluded to avoid a spurious long-term trend in the SWD (e.g.,

Verbout et al. 2006; Lee et al. 2013). To represent the area-

averaged tornado activity for the contiguous United States and

each of the four climate regions, EF1 tornadoes are also ex-

cluded to focus on high-impact tornadoes. However, EF1 tor-

nadoes are included for representing regional-scale tornado

activity in 18 3 18 grid boxes over the contiguous United States,

to increase the sample size for reliable statistical analysis. To

avoidmulticounting, the location and EF-scale of each tornado

are determined at the time when each tornado achieves its

maximumEF-scale (Lee et al. 2016). The European Centre for

Medium-Range Weather Forecasts–Interim (ERA-Interim)

reanalysis for the period of 1979–2018 is used to derive

WSHR (850–1000 hPa) andCAPE anomalies (Dee et al. 2011).

CFSv2 reforecasts (1982–2011) and operational forecasts

(2011–18) are used as the primary dynamic component of

the hybrid statistical-dynamical forecast model. We use

20-member ensemble forecasts initialized every fifth day of

February, and four cycles (i.e., 0, 6, 12, and 18 h) from each

day, for the target months of March–April (MA). Note that

May is excluded from the target months, because a prelimi-

nary analysis indicates very little predictability of WSHR and

CAPE anomalies for May in the February-initialized CFSv2

forecasts. Therefore, here we use an alternative strategy to

update the seasonal forecast for the target months of April–

May (AM) using 20-member ensemble forecasts initialized in

every fifth day of March.

b. Tornado days versus numbers

To build a seasonal forecast model for tornadoes, we first

need to identify an appropriate tornado predictand. Both tor-

nado days and tornado numbers are widely used to represent

U.S. tornado activity (e.g., Verbout et al. 2006). Tornado days

are computed by counting the number of days in a given period

exceeding a threshold number of tornadoes. Tornado numbers

are simply the number of tornadoes for a given period. Figure 1

shows these two tornado indices based on EF2–EF5 tornadoes

in March–April (MA) and AM during 1954–2018. Also shown

are the numbers of tornado-related fatalities in MA and AM

during the same periods. All time series are normalized sepa-

rately for the reforecast period (1982–2018) and the earlier

period (1954–81). The correlations between the two indices are

statistically significant at the 99% level, based on a Student’s

t test. However, while the numbers of tornado-related fatalities

are highly correlated with tornado numbers, they are poorly

correlated with tornado days. The common practice of apply-

ing linear correlation (i.e., Pearson correlation) in this case

may be limited by the skewness (i.e., non-Gaussian distribu-

tion) of the tornado indices. An alternative is to use rank

correlation methods, such as Kendall’s tau and Spearman’s

rho, that replace the tornado indices in each year to their

rankings among the 65-yr time series, and thus are less sensitive

to extreme years like 2011. Spearman’s rho method is applied

to find that the results from rank correlation analysis are

largely consistent.

Many of the historical tornado outbreak seasons are domi-

nated by small number of extreme convective days. For in-

stance, MAM in 1974 is a historical outbreak season in term of

tornado numbers, but is a near-normal season in terms of

tornado days. On the other hands,MAM in 2011 is an outbreak

season in terms of both tornado numbers and days (Fig. 1).

Interestingly, the seasonal tornadic environmental parameters

were highly favorable in both the 1974 and 2011 seasons (Lee

et al. 2013). Therefore, it is still debatable whether the large-

scale background tornadic environmental parameters are

linked more closely to tornado numbers or tornado days.

Nevertheless, since the goal of this seasonal forecast model is

to provide advance warning of highly active seasons like the

1974 and 2011 seasons, it is preferable to use tornado numbers

as the forecast target. Therefore, the numbers of EF2–EF5
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tornadoes during MA and AM are used in this study to rep-

resent the area-averaged tornado activity in the contiguous

United States and each of the four climate regions. To rep-

resent regional-scale tornado activity in the United States, we

also use a tornado density index, which represents the num-

bers of EF1–EF5 tornadoes that occur within a 200-km radius

of each 18 3 18 grid point over the contiguous United States

during MA and AM (Lee et al. 2016).

c. Evaluation of probabilistic forecast skill

To evaluate the probabilistic forecast skill of the model, we

use the ranked probabilistic skill score (RPSS) and relative

FIG. 1. Tornado numbers and tornado days for the contiguous United States during 1954–

2018, as based on EF2–EF5 tornadoes in (top) MA and (bottom) AM, respectively, as diag-

nosed from SWD. The corresponding numbers of tornado-related fatalities for the same period

inMAandAMare also shown. The tornado days are computed by counting the number of days

in MA and AM of each year with at least one EF2–EF5 tornado. The tornado numbers are the

number of EF2–EF5 tornadoes during MA and AM of each year. Each of these time series is

normalized (i.e., the mean is removed, and the result is then divided by its standard deviation)

separately for the reforecast period (1982–2018) and the earlier period (1954–81). Also shown

are the correlations between the two tornado indices, between the tornado numbers and the

number of tornado-related fatalities, and between the tornado days and the number of tornado-

related fatalities. The values in parentheses are rank correlations from the Spearman’s rho

method. The thin vertical gray dashed lines indicate the three deadliest historical U.S. tornado

seasons in 1965 (287 fatalities in MAM), 1974 (328 fatalities in MAM), and 2011 (542 fatalities

in MAM). The thick vertical gray dashed line indicates the starting year (i.e., 1982) of the

reforecast analysis.
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operating characteristic (ROC) curve and score along with

more traditional statistical tools. RPSS is a skill score that

compares the cumulative squared probability error [i.e., the

ranked probability score (RPS)] of the probabilistic forecasts

for all three categories (i.e., above-, near-, and below-normal

activity) with the RPS of the climatology (i.e., 33% chance for

each of the three categories). It ranges from 1.0 (i.e., the perfect

skill score) to negative infinity. An RPSS value above 0 indi-

cates that the probabilistic forecast is better than the climato-

logical forecast, whereas a value below 0 indicates that the

probabilistic forecast skill is worse than that of the climato-

logical forecast.

ROC is a method to evaluate the probabilistic skill of a

prediction system based on a 2 3 2 contingency table (e.g.,

Swets 1973; Mason and Graham 1999). For example, Table 1

is a contingency table for a system with n observations of e

events and e0 nonevents, for which w warnings and w0 non-
warnings were forecast. For each forecast there are four pos-

sible outcomes: a hit if a warning is issued and the event occurs;

a miss if no warning is issued for an event that occurs; a false

alarm if a warning is issued and no event occurs; and a correct

rejection if no warning is issued and no event occurs. The total

numbers of hits, misses, false alarms, and correct rejections are

given by h,m, f, and c, respectively. The probabilistic skill of a

prediction system can be evaluated by comparing hit rates with

false alarm rates (e.g., Swets 1973; Mason and Graham 1999).

The hit rate (HR) is the proportion of events for which warn-

ings were issued correctly; it provides an estimate of the

probability that an event is correctly predicted. The false alarm

rate (FAR) is the proportion of nonevents for which warnings

were issued incorrectly. These ratios can be written as

hit rate5
h

h1m
5
h

e
5p(WjE) and (1)

false alarm rate5
f

f 1 c
5

f

e0
5 p(WjE0) . (2)

For each of the three categories (i.e., above-, near-, and

below-normal activity), the contingency table can be con-

structed and further used to plot the ROC curve, which com-

pares hit rates and false alarm rates for a range of warning

threshold values. The ROC curve can be used to find the op-

timal warning threshold, an application-dependent best trade-

off between hit rate and false alarm rate, for each of the three

categories. The ROC score is the area under the ROC curve. It

ranges between 0 and 1, and measures the utility of the fore-

casts compared to the utility of a perfect forecast. An ROC

score of 0.5–0.6 generally indicates no forecast skill relative to

random guesses from the climatological probability density

function, whereas an ROC score above 0.7 indicates that the

forecast fairly well discriminates between events and non-

events better than a random guess from the climatological

probability density function, so that the system is much more

likely to correctly predict an actual event than to issue a false

alarm. An ROC score of 0.6–0.7 generally indicates that the

forecast skill is poor-to-marginal. Further details on RPSS, the

ROC curve, and their applications for meteorological and cli-

mate problems can be found in Swets (1973), Harvey et al.

(1992), Mason and Graham (1999), Kharin and Zwiers (2003),

Hamill and Juras (2006), and Lopez and Kirtman (2014).

3. Variability and predictability of background WSHR
and CAPE

As shown in earlier studies, tornadogenesis is closely tied to

WSHR and CAPE, and occurs predominantly when both

WSHR and CAPE exceed certain threshold values (e.g.,

Brooks et al. 2003). Therefore, we first use ERA-Interim to

explore the leadingmodes ofWSHRandCAPE variability and

their linkages to U.S. tornado activity. This is achieved by

performing empirical orthogonal function (EOF) analysis of

WSHR and CAPE separately for MA and AM over the region

most vulnerable to tornado activity (308–408N and 1008–808W).

The independent sets of the first two EOFs of WSHR and

CAPE variability are shown in Figs. 2a and 2b for MA and in

Figs. 2e and 2f for AM. The two sets of the first EOF (EOF1) of

WHSR and CAPE, which explain about 45%–62% of the

WSHR and CAPE variances, describe WSHR and CAPE

variability over the broad U.S. region east of the Rockies

(Figs. 2a,e), and are linked to tornado activity in the South,

Ohio Valley, and Southeast (Figs. 2c,g). The two sets of the

second EOF (EOF2) of WSHR and CAPE, which account for

15%–29% of the WSHR and CAPE variances, describe

dipole-like variability of WSHR and CAPE between the re-

gions northwest and southeast of the Ohio River (Figs. 2b,f),

and are linked to dipole-like tornado density variability, with

one pole over Oklahoma and Kansas, and the other pole over

Arkansas, Mississippi, Tennessee, and Alabama (Figs. 2d,h).

A multiple linear regression analysis, with the independent

sets of EOF1 and EOF2 time series of WSHR and CAPE

variability (i.e., a total of four time series) as the independent

variables (predictors), reasonably well simulates the normal-

ized numbers of EF2–EF5 tornadoes for the contiguous United

States, with high correlations between the predicted and ob-

served numbers of tornadoes (r 5 0.68 for both MA and AM,

not shown). This suggests that the independent sets of EOF1

and EOF2 of CAPE and WSHR variability explain more than

45% of the variance in the total number of EF2–EF5 tornadoes

for both MA and AM.

The next task is to apply the same EOF analysis to the

CFSv2 forecasts, to test if there is any useful skill in predicting

the leading EOFs ofWSHR and CAPE. Figure 3 is identical to

Fig. 2, but derived from the CFSv2 forecasts of WSHR and

CAPE. As discussed in section 2a, we use 20 ensemble mem-

bers initialized in February of each year for the MA forecasts,

and those initialized in March for the AM forecasts for the

TABLE 1. Contingency table for the probabilistic forecast

verification.

Forecasts

Observations Warnings W Nonwarnings W0 Total

Event E H M e

Nonevent E0 F C e0

Total w w0 n
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period of 1982–2018. All 20 ensemble forecasts are first merged

into a single long time series consisting of 740 samples (i.e., 37

years 3 20 ensemble members) before performing the EOF

analysis. The two sets of EOF1, which explain about 62%–69%

of the forecast WSHR and CAPE variances, describe WSHR

and CAPE variability over the broad U.S. region east of the

Rockies (Figs. 3a,e) consistent with the two sets of EOF1 de-

rived from ERA-Interim (Figs. 2a,e), and are mainly linked to

tornado density variability across Arkansas and Mississippi

in the South, the Ohio Valley, and Alabama and Georgia in

the Southeast (Figs. 3c,g). The two sets of EOF2, which

explain about 13%–23% of WHSR and CAPE variances,

FIG. 2. Major spatial patterns of WSHR (8502 1000 hPa; shaded) and CAPE (contoured) variability in (a), (b)

MAand (e), (f) AMduring 1979–2018 derived fromERA-Interim. TheWSHRandCAPEfields are regressed onto

their corresponding time series of the (left) first and (right) second principal components (PC1 and PC2). The

WSHR and CAPE variances explained by each of the two EOFs are also indicated (values in parentheses are for

CAPE). Also shown is the observed tornado density field regressed onto the two sets of (c),(g) PC1 and (d),(h) PC2

time series of WSHR and CAPE variability. To compute the regression coefficients in (c) and (g), the two sets of

PC1 of WSHR and CAPE variability are combined to perform a multiple linear regression analysis to best fit the

tornado density averaged over the box region of 308–408N, 1008–808W. Similarly, the two sets of PC2 ofWSHR and

CAPE variability are used to best fit the tornado density averaged over the southern U.S. box region (308–358N,

1008–808W), which is then used to compute the regression coefficients in (d) and (h).
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mainly describe dipole-like variability of CAPE and WSHR

between the regions northwest and southeast of the Ohio

River (Fig. 3b), similar to the two sets of EOF2 derived from

ERA-Interim (Figs. 2b,f). They are largely linked to tor-

nado density variability across Arkansas, Louisiana and

Mississippi, with weaker variability of opposite sign over

Oklahoma in MA (Fig. 3d). A similar tornado density var-

iability pattern is linked to the two sets of EOF2 in AM

(Fig. 3h). However, the tornado density variability pattern

in AM is more wide spread from the South to the Northeast,

and the largest variability is located across Mississippi and

Alabama.

The spatial patterns of WSHR and CAPE variability de-

scribed by the two sets of EOF1 and EOF2 are quite consistent

between ERA-Interim and the CFSv2 forecasts. However, the

temporal correlations between ERA-Interim and the CFSv2

forecasts for these EOFs are not very strong. For instance, the

temporal correlations between ERA-Interim and the CFSv2

forecasts in MA are 0.40 and 0.43 for EOF1 of WSHR and

EOF1 of CAPE, respectively. These correlation values are

statistically significant at the 99% level based on a Student’s t

test. However, the correlations decrease drastically to 0.09 and

0.07 for EOF2 of WSHR and EOF2 of CAPE, respectively. In

AM, the temporal correlations between ERA-Interim and the

FIG. 3. As in Fig. 2, but using the CFSv2 forecasts. The 20 ensemble members initialized in February of each year

during 1982–2018 are merged into a single time series (i.e., 740 samples) to perform the EOF analysis for the target

months of MA. Similarly, those initialized in March are used for the target months of AM.
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CFSv2 forecasts are 0.51 and 0.10 for EOF1 of WSHR and

EOF1 of CAPE, respectively, and 0.20 and 0.13 for EOF2 of

WSHR and EOF2 of CAPE, respectively.

Despite the moderate to weak correlations between ERA-

Interim and the CFSv2 forecasts, the two sets of EOF1 derived

from the CFSv2 forecasts are linked to tornado density vari-

ability over multiple U.S. states in the South, Southeast and

Ohio valley, while the two sets of EOF2 from the CFSv2

forecasts are largely linked to dipole-like tornado density

variability between the southern and central United States.

These suggest that the independent sets of EOF1 and EOF2

derived from the CFSv2 forecasts may provide useful pre-

dictability of U.S. tornado activity in MA and AM. In the next

section, we present the seasonal forecast model, using the in-

dependent sets of EOF1 and EOF2 time series from the CFSv2

forecasts as the primary predictors, and test its probabilistic

forecast skill for U.S. tornado activity.

4. Probabilistic forecast skill for the contiguous United
States and four U.S. climate regions

First, we perform a multiple linear regression analysis with

the number of EF2–EF5 tornadoes in MA for the contiguous

United States as the dependent variable (i.e., predictand) and

the independent sets of EOF1 and EOF2 ofWSHR and CAPE

for MA derived from the February-initialized CFSv2 forecasts

as the independent variables (i.e., predictors). The multiple

linear regression analysis is performed for each of the 20 en-

semble members. Then, for each of the 20 members, the pre-

dicted numbers of MA tornadoes for the period of 1982–2018

are sorted into three categories, namely above-, near-, and

below-normal activity. We perform the same analysis by using

the number of EF2–EF5 tornadoes in AM for the contiguous

United States, and the independent sets of EOF1 and EOF2 of

WSHR and CAPE for AM derived from the March-initialized

CFSv2 forecasts. The fraction of the ensemble that falls into

each of the three categories represents the probability of

occurrence. For instance, if 12, 2, and 6 members indicate

above-, near-, and below-normal categories, respectively, the

probabilistic forecast is 60% of above-normal, 10% of near-

normal, and 30% of below-normal activity. The same ana-

lyses are repeated and presented for each of the four U.S.

climate regions most vulnerable to tornadoes: the Ohio

Valley, South, Southeast, and Upper Midwest—see Fig. 4 for

the map of the U.S. climate regions, as defined by the

National Centers for Environmental Information (NCEI).

For cross validation of the probabilistic reforecast skill, a

jackknife resampling technique (e.g., Mosteller and Tukey

1977) is used. Specifically, for each of the 20 ensemble mem-

bers, the multiple linear regression analysis is repeated by

withholding one year of training data, computing the partial

regression coefficients using only the remaining 36 years, and

then predicting the withheld year. This process is repeated for

each of the 37 years, withholding a different year each time,

and then the forecast skill for the withheld years is evaluated.

The jackknife cross-validation skill can be considered as a

lower bound of the prediction skill, while the full-year (in-

cluding the target year) trained model skill as an upper bound.

Therefore, in this section, the skill scores of the full-year

trained model for the contiguous United States and the four

climate regions are evaluated and compared with the corre-

sponding jackknife cross-validated skill scores. Specifically, we

use an ad hoc criteria that the probabilistic reforecast in any

category is a useful discriminator between events and non-

events (i.e., skillful) only if the ROC score from the full-year

trainedmodel is higher than or equal to 0.7, and the ROC score

from the jackknife cross-validation test is higher than or equal

to 0.6.

Table 2 is a summary of the probabilistic reforecast skill

scores for the contiguous United States and the four climate

regions. The cross-validated skill scores based on the jackknife

tests are also shown in parentheses. For the contiguous United

States, the probabilistic reforecast is skillful for the above- and

below-normal MA and AM tornado activity. The reforecast is

also skillful for the above- and below-normal MA activity in

the Ohio Valley and South, the above- and below-normal AM

FIG. 4. U.S. climate regions defined by the NCEI. Probabilistic forecast skill of the seasonal

forecast model is evaluated for the contiguous United States and for the four U.S climate

regions most vulnerable to tornadoes: the Ohio Valley, Southeast, South, and Upper Midwest.
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activity in the Upper Midwest, and the above-normal AM ac-

tivity in the Southeast. However, the reforecast shows low skill

for the above- and below-normal MA activity in the Ohio

Valley and South, and the above- and below-normal AM ac-

tivity in the Southeast and Upper Midwest. In general, there is

little to no forecast skill in the February-initialized forecast for

MAM, the March-initialized forecast for AMJ or in the near-

normal category. In the next subsections, the probabilistic re-

forecast skills for the contiguous United States and the four

climate regions are examined in more detail, focusing on the

reforecast skill for the above- and below-normal MA and AM

activity.

a. Contiguous United States

Figure 5 summarizes the probabilistic reforecast for the

area-averaged tornado activity in the contiguous United States

for the above- and below-normal categories and the corre-

sponding reforecast skill metrics (i.e., RPSS; ROC curves and

scores). The solid lines are based on the full-year trained

model (FYM), whereas the dashed lines are derived from the

jackknife model (JKM). The points on the ROC curve indi-

cate the threshold percentage of ensemble members needed

to issue a warning for the given category. Starting from the

bottom-left corner, the first point indicates the hit rate versus

false alarm rate for which all 20 ensemble members are re-

quired to be in the tercile (i.e., 100% threshold probability) to

issue a warning. The second point away from the bottom-left

corner indicates the forecast skill for which 19 of the total 20

(i.e., 95% threshold probability) are required to issue a

warning, and so forth. A forecast system that always issues a

warning will have hit and false alarm rates equal to one (i.e.,

perpetual warning or top-right corner), whereas a forecast

system that never issues a warning will have hit and false

alarm rates equal to zero (i.e., perpetual nonwarning, or

bottom-left corner). An ideal forecast system would have

relatively high hit rates and low false alarm rate, thus at least

some of the points on the ROC curve would lie near the top-

left corner of the diagram.

For the target months of MA, the RPSS values for the

contiguous United States are 0.25 and 0.10 for FYM and JKM,

respectively, which means that the probabilistic reforecast is

overall better than the forecast based on climatology (i.e., 33%

chance for all three categories). The ROC curves are on the

top-left side for both the above- and below-normal categories.

Therefore, the ROC scores are higher than 0.5 for both the

above-normal (0.81 for FYM and 0.71 for JKM) and below-

normal categories (0.79 for FYM and 0.75 for JKM). These

ROC scores also meet the requirement (i.e., FYM $ 0.7 and

JKM $ 0.6), thus indicating that the probabilistic reforecasts

for these two categories are skillful. For instance, a warning

issued at the threshold probability of 50% for the above-

normal category (i.e., 10 of 20 ensemble members fall into this

category) results in 61% hit rate at the expense of 20% false

alarm rate for FYM, and 48% hit rate at the expense of 26%

false alarm rate for JKM. Therefore, the hit rate is;2–3 times

the false alarm rate, which indicates that the probabilistic re-

forecast is useful for this category.

For the target of months of AM, the RPSS values for the

contiguous United States are 0.22 and 0.03 for FYM and

JKM, respectively. These values are lower than those forMA,

TABLE 2. RPSS and ROC score values for the three categories (above normal, near normal, and below normal): The RPSS and ROC

score values are obtained by using the entire data period (1982–2018) to train the forecast model. The cross-validated RPSS and ROC

score values from the jackknife test are also shown in parentheses. For all tests, the number of EF2–EF5 tornadoes is used as the tornado

index. TheRPSS andROC score values are in boldface type if RPSS$ 0.1 and the cross-validated RPSS. 0.0 or ROC score$ 0.7 and the

cross-validated ROC score $ 0.6.

Initial

month

Forecast

months

Forecast

regions

RPSS

(jackknife)

ROCS: Above normal

(jackknife)

ROCS: Near normal

(jackknife)

ROCS: Below normal

(jackknife)

Feb Mar–Apr CONUS 0.25 (0.10) 0.81 (0.71) 0.54 (0.39) 0.79 (0.75)

Ohio Valley 0.32 (0.15) 0.77 (0.65) 0.62 (0.56) 0.83 (0.73)

South 0.30 (0.11) 0.82 (0.69) 0.73 (0.67) 0.84 (0.73)

Southeast 20.01 (20.18) 0.62 (0.48) 0.41 (0.33) 0.65 (0.55)

Upper Midwest 0.14 (20.09) 0.72 (0.49) 0.41 (0.40) 0.73 (0.47)

Mar–May CONUS 0.13 (20.02) 0.62 (0.52) 0.56 (0.47) 0.78 (0.65)

Ohio Valley 0.25 (20.02) 0.71 (0.50) 0.44 (0.36) 0.83 (0.67)

South 0.15 (20.10) 0.73 (0.55) 0.51 (0.53) 0.67 (0.36)

Southeast 0.12 (20.06) 0.68 (0.52) 0.49 (0.45) 0.71 (0.62)

Upper Midwest 0.17 (20.06) 0.77 (0.48) 0.38 (0.41) 0.69 (0.50)

Mar Apr–May CONUS 0.22 (0.03) 0.75 (0.62) 0.54 (0.38) 0.82 (0.64)
Ohio Valley 0.27 (0.06) 0.74 (0.50) 0.61 (0.57) 0.76 (0.60)

South 0.19 (20.10) 0.81 (0.45) 0.64 (0.48) 0.70 (0.43)

Southeast 0.14 (0.04) 0.76 (0.68) 0.28 (0.26) 0.63 (0.57)

Upper Midwest 0.31 (0.07) 0.88 (0.67) 0.62 (0.45) 0.81 (0.62)
Apr–Jun CONUS 0.11 (20.17) 0.72 (0.43) 0.41 (0.31) 0.64 (0.41)

Ohio Valley 0.23 (0.02) 0.71 (0.49) 0.39 (0.37) 0.81 (0.64)

South 0.16 (20.17) 0.76 (0.31) 0.36 (0.34) 0.69 (0.40)

Southeast 0.15 (0.00) 0.80 (0.62) 0.47 (0.43) 0.61 (0.51)

Upper Midwest 0.26 (20.03) 0.82 (0.52) 0.62 (0.50) 0.80 (0.52)
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FIG. 5. (left) Probabilistic reforecast of the area-averaged tornado activity in the contiguousUnited States for the

target months of (a),(b) MA and (c),(d) AM, and (right) the corresponding ROC curves for the (top),(bottom

middle) above- and (topmiddle),(bottom) below-normal categories. The solid lines are based on the FYM,whereas

the dashed lines are derived from the JKM. The RPSS and ROC scores are indicated for FYM and in parentheses

for JKM. The blue dots in the left panels indicate observed events for which the probability is 100% if an incident

occurs and 0% if an event does not occur. The gray dashed lines indicate the three most activeMA (1982, 1991, and

2011) and the three most active AM (1982, 2008, and 2011) in the contiguous United States. For the ROC curves in

the right panels, dots and corresponding numbers along each curve represent different warning thresholds, i.e., the

fraction of ensemble members that must fall into that category to issue a warning for that category. The lowest

threshold (the top right of each panel) always warns; it hits every actual event but also issues false alarms whenever

there is a nonevent. The highest threshold (the bottom left of each panel) never warns; it avoids false alarms but also

never hits actual events. A perfect forecast warning system and thresholdwould lie at the top left of each panel, with

a 100% hit rate and no false alarms. An ROC curve for forecasts that are based simply on the observed climato-

logical probability distribution would lie along the diagonal.
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but still indicate that the probabilistic reforecast is overall better

than the forecast based on climatology. The ROC scores are

higher than 0.5 for both the above-normal (0.75 for FYM and

0.62 for JKM) and below-normal categories (0.82 for FYM and

0.64 for JKM), and meet the requirement (i.e., FYM $ 0.7

and JKM$ 0.6). For instance, a warning issued at the threshold

probability of 45% for the above-normal category (i.e., 9 of 20

ensemblemembers fall into this category) results in 61%hit rate

at the expense of 26% false alarm rate for FYM, and 54% hit

rate at the expense of 36% false alarm rate for JKM. Therefore,

the hit rate is ;1.5–2 times the false alarm rate, indicating that

the probabilistic reforecast is useful for this category.

In summary, the probabilistic reforecast for the area-

averaged activity in the contiguous United States is skillful

for both the February-initialized forecast for MA and theMarch-

initialized forecast for AM, and for both the above-normal and

below-normal categories. Consistent with these results, the 2011

super-tornado-outbreak season is successfully predicted by both

FYM(95%probability of above-normal activity for bothMAand

AM) and JKM(75%probability of above-normal activity forMA

and 60% for AM), as well as the three other most active U.S.

tornado seasons in 1982, 1991, and 2008 at the threshold proba-

bility of 50% for MA and 45% for AM (Figs. 5a,c).

b. Ohio Valley

Figure 6 shows the probabilistic reforecast for the area-

averaged tornado activity in the Ohio Valley for the above- and

below-normal categories and the corresponding skill metrics.

FIG. 6. As in Fig. 5, but for the area-averaged activity in the Ohio Valley. The gray dashed lines indicate the three

most active MA (1998, 2006, and 2011) and the three most active AM (1995, 2003, and 2011) in the Ohio Valley.
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For the target months ofMA, the RPSS values are 0.32 and 0.15

for FYMand JKM, respectively, indicating that the probabilistic

reforecast is more skillful than the reforecast based on clima-

tology. For both the above- and below-normal categories, the

ROC curves are in the top-left side, indicating that hit rates are

higher than false alarm rates. Consistently, the ROC scores are

higher than 0.5 for both the above-normal (0.77 for FYM and

0.65 for JKM) and below-normal categories (0.83 for FYM and

0.73 for JKM), and meet the requirement (i.e., FYM $ 0.7

and JKM$ 0.6). For instance, a warning issued at the threshold

probability of 40% for the above-normal category (i.e., 8 of 20

ensemble members fall into this category) results in an 84% hit

rate at the expense of a 41% false alarm rate for FYM, and an

80% hit rate at the expense of a 46% false alarm rate for JKM.

This means that the hit rate is ;2 times the false alarm rate,

whichmakes the probabilistic reforecast useful for this category.

For the below-normal category, the ROC curves are clustered

toward the bottom-left corner, indicating a very good trade-off

between hit rate and false alarm rate.

For the target months of AM, the RPSS values are 0.27 and

0.06 for FYM and JKM, respectively, indicating that the prob-

abilistic reforecast is more skillful than the reforecast based on

climatology. For the below-normal category, the ROC curves

are in the top-left side, indicating that hit rates are higher than

false alarm rates. For the above-normal category, however, the

ROC curve for JKM largely follows the diagonal. Therefore, the

ROC scores for the above-normal category (0.74 for FYM and

0.50 for JKM) do notmeet the requirement. TheROC scores for

the below-normal category (0.76 for FYM and 0.60 for JKM)

barely meet the minimum requirement. Nevertheless, the ROC

curves are clustered toward the lower-left corner for both FYM

and JKM, indicating a good trade-off between hit rate and false

alarm rate. For instance, a warning issued at the threshold

probability of 40% results in a 52% hit rate at the expense of

only a 10% false alarm rate for FYM, and a 45% hit rate at the

expense of a 16% false alarm rate for JKM. This indicates that

the hit rate is ;3–5 times the false alarm rate, which makes the

probabilistic reforecast very useful for predicting the below-

normalAMactivity. This is a good example that shows the value

of looking at the shape of the ROC curve and not replying ex-

clusively on the ROC score for decision making.

In summary, the probabilistic reforecast for the Ohio Valley

is skillful for predicting the above- and below-normal MA

activity and the below-normal AM activity. However, it does

not meet the requirement for the above-normal AM activity.

Nevertheless, of the five most active regional tornado seasons

(1995, 1998, 2003, 2006, and 2011), three seasons, including the

2011 tornado outbreak season, (1995, 2006, and 2011) are

successfully predicted by both FYM and JKM at the threshold

probability of 40% (Figs. 6a,c).

c. South

For the target months of MA, the RPSS values for the South

are 0.31 for FYM and 0.10 for JKM (Fig. 7). These values are

slightly smaller than the corresponding RPSS values for the

Ohio Valley, but indicate a useful skill relative to the reforecast

based on climatology. As in the case of the Ohio Valley, the

ROC curves are above the diagonal and the ROC scores meet

the requirement for both the above-normal (0.82 for FYM and

0.69 for JKM) and below-normal categories (0.84 for FYM and

0.73 for JKM), indicating that the probabilistic reforecast is

useful for those two categories. For instance, a warning issued at

the threshold probability of 40% for the above-normal category

results in an 88%hit rate at the expense of a 33% false alarm rate

for FYM, and a 75% hit rate at the expense of a 41% false alarm

rate for JKM. Similarly, a warning issued at the threshold

probability of 40% for the below-normal category results in a

71% hit rate at the expense of a 16% false alarm rate for FYM,

and a 50% hit rate at the expense of a 20% false alarm rate for

FYM. Consistently, three most active MA in the South (i.e.,

1982, 1991, and 2011) are successfully predicted at the threshold

probability of 40% (Fig. 7a). For the target months of AM,

however, the RPSS values are very low, and the ROC scores do

not meet the requirement for either the above- or below-normal

category. Nevertheless, two of the three most active AM in the

South (i.e., 1982 and 2011) are still predicted by both FYM and

JKM at the threshold probability of 40% (Fig. 7c).

d. Southeast

For the target months of MA, the RPSS values for the

Southeast are 20.01 for FYM and 20.18 for JKM (Fig. 8), in-

dicating that the reforecast is generally not better than a simple

reforecast based on climatological probabilities. For both the

above- and below-normal categories, the ROC curves for FYM

are in the top-left side. However, the correspondingROC curves

for JKMmostly follow the diagonal. Therefore, the ROC scores

do not meet the requirement for either the above- or below-

normal category. Nevertheless, two of the threemost activeMA

in the Southeast (i.e., 2007 and 2011) are still predicted by both

FYM and JKM at the threshold probability of 50% (Fig. 8a).

For the target months of AM, the RPSS values for the

Southeast are 0.14 for FYM and 0.03 for JKM (Fig. 8). These

values are relatively small, but still indicate a useful skill com-

pared to the reforecast based on climatology. The ROC curves

are above the diagonal, and thus theROC scores are higher than

0.5 for both the above-normal (0.76 for FYM and 0.68 for JKM)

and below-normal categories (0.63 for FYM and 0.57 for JKM).

However, the ROC scores meet the minimum requirement only

for the above-normal category, but not for the below-normal

category, indicating that the probabilistic reforecast for AM is

skillful only for the above-normal category. For instance, a

warning issued at the threshold probability of 45% for the

above-normal category results in a 66% hit rate at the expense

of a 20% false alarm rate for FYM, and a 63% hit rate at the

expense of a 29% false alarm rate for JKM. This indicates that

the hit rate is ;2–3 times the false alarm rate, which makes the

probabilistic reforecast very useful for the above-normal cate-

gory. Consistently, three most active AM in the Southeast (i.e.,

1989, 2008, and 2011) are successfully predicted by both FYM

and JKM at the threshold probability of 45% (Fig. 8c).

e. Upper Midwest

As in the case of the Southeast, for the target months of MA,

the RPSS values for the Upper Midwest are very low and the

ROC scores do not meet the requirement for either the above- or

below-normal category (Figs. 9a,b). Despite the poor skill scores,
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two of the three most activeMA in the UpperMidwest (i.e., 1991

and 2011) are still predicted by both FYM and JKM at the

threshold probability of 40% (Fig. 9a). For the target months of

AM, on the other hand, the RPSS values for the Southeast are

0.31 for FYMand 0.07 for JKM, indicating a useful skill relative to

the reforecast based on climatology. The ROC curves are above

the diagonal and the ROC scores meet the requirement for

both the above-normal (0.88 for FYM and 0.67 for JKM) and

below-normal categories (0.81 for FYM and 0.62 for JKM), in-

dicating that the probabilistic reforecast for AM is skillful for

those two categories. For instance, a warning issued at the

threshold probability of 40% for the above-normal category re-

sults in an 85%hit rate at the expense of a 26% false alarm rate for

FYM, and a 65% hit rate at the expense of a 43% false alarm rate

for JKM. This indicates that the hit rate is;1.5–3 times the false

alarm rate, which makes the probabilistic reforecast useful for the

above-normal category. Consistently, the threemost activeMA in

the Upper Midwest (i.e., 1988, 1991, and 2011) are successfully

predicted by both FYM and JKM at the threshold probability of

40% for a warning (Fig. 9c).

5. Probabilistic forecast skill for U.S. regional-scale tor-
nado activity

a. Probabilistic forecast skill metrics

We perform a similar multiple linear regression analysis

using the independent sets of EOF1 and EOF2 time series of

WSHR and CAPE variability derived from the CFSv2

FIG. 7. As in Fig. 5, but for the area-averaged activity in the South. The gray dashed lines indicate the three most

active MA (1982, 1991, and 2011) and the three most active AM (1982, 1990, and 2011) in the South.
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forecasts as the independent variables (i.e., predictors), but

using the tornado density as the dependent variable (i.e., pre-

dictand) for each 18 3 18 grid point over the contiguous United

States. Figure 10 shows the RPSS values based on FYM. Dark-

gray dots indicate where the RPSS values based on JKM are

greater than 0, whereas light-gray dots indicate where the

RPSS values based on FYM are less than 0.1. The RPSS values

based on FYMaremostly above 0.1 in theUnited States east of

1058W, except in Alabama and Mississippi for the target

months of both MA and AM, and the Upper Midwest and

Northeast for the target months of MA. However, the positive

RPSS values based on JKM for the target months of AM are

clustered only in parts of Louisiana, Texas, Kentucky, Tennessee,

Iowa, Missouri, and Indiana, and for the target months of MA

only in parts of Texas,Oklahoma,Kansas, and several states in the

Northeast.

Figure 11 shows the ROC scores based on FYM for the

above-, near- and below-normal categories. Dark-gray dots

indicate where the ROC scores based on JKM are greater than

or equal to 0.6, whereas light-gray dots indicate where the

ROC scores based on FYM are less than 0.6. The ROC scores

based on FYM are relatively high for both the above- and

below-normal categories, but largely less than 0.6 for the near-

normal category. For the above-normal category the ROC

scores based on JKM for the target months ofMA are above or

equal to 0.6 (dark-gray dots) over the broad regions around

Louisiana andKentucky and in parts of several states including

Texas, Oklahoma, Missouri, Alabama and Georgia. For the

FIG. 8. As in Fig. 5, but for the area-averaged activity in the Southeast. The gray dashed lines indicate the threemost

active MA (1984, 2007, and 2011) and the three most active AM (1989, 2008, and 2011) in the Southeast.
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target months of AM, the regions where the ROC scores based

on JKM are above or equal to 0.6 (dark-gray dots) generally

shift northward toward Iowa, Michigan, Virginia and North

Carolina. Therefore, in the southern United States including

Oklahoma, Mississippi, Alabama and Georgia, the ROC

scores based on JKM are largely less than 0.6. The spatial

distributions of the ROC scores for the below-normal category

are quite similar to those for the above-normal category for

both MA and MA.

In summary, the probabilistic reforecast for U.S. regional-scale

tornado activity is skillful in some regions for the above- and

below-normal categories. However, the skill is demonstrated only

for either MA or AM in those regions. Additionally, there are

many other regions where the reforecast skill is not demonstrated.

Therefore, the seasonal outlook for U.S. regional-scale tornado

activity based on our method may not yet be ready for an

operational use.

b. Seasonal forecast for the 2011 superoutbreaks

As illustrated in the previous section, the seasonal forecast

model presented in this study cannot be used to accurately

forecast year-to-year variability in regional-scale tornado ac-

tivity, which is greatly affected or driven by synoptic weather

patterns, weather regimes and subseasonal processes (e.g.,

Miller et al. 2020). Instead, this model is designed to forecast

large-scale active tornado seasons, such the 2011 superoutbreak

FIG. 9. As in Fig. 5, but for the area-averaged activity in the Upper Midwest. The gray dashed lines indicate the

three most active MA (1984, 1991, and 2011) and the three most active AM (1988, 1991, and 2011) in the Upper

Midwest.
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season, that are partly driven by ENSO and other slow-varying

ocean and sea ice signals. In that sense, probably the most im-

portant test for the seasonal forecast model is to reforecast the

2011 superoutbreak season. As shown in section 4, the 2011

super-tornado-outbreak season is successfully reforecast for the

contiguous United States and for each of the four climate re-

gions, for the target months of both MA and AM at the

threshold probability of 50%.Here, we further test to explore to

what extent the seasonal forecast model can reforecast the

regional-scale distribution of U.S. tornado activity of the 2011

season. Figure 12 shows the probabilistic reforecast for U.S.

regional-scale tornado activity for the below- (indicated by

negative values and green shades) and above-normal (indicated

by positive values and red shades) categories, and the validation

for the 2011 tornado outbreak season. Gray dots in the left and

center panels indicate that the forecast probability is above 50%

for either the above- or below-normal category. Note that the

threshold tornado density values for the above- and below cat-

egories are different in each of the 18 3 18 grid points. For

example, a tornado density value of 7 may fall into an above-

normal category for a certain grid point, but may fall into a near-

normal category in another grid point (Lee et al. 2016).

As shown in Fig. 12 (in the left panels), the probabilistic

reforecast based on FYM well captures the above-normal re-

gions of the 2011 super-tornado-outbreak season for the target

months of both MA and AM. In particular, the increased tor-

nado activity in the Ohio Valley, South and Southeast is rela-

tively well captured. However, it should be noted that the

tornado density data for the 2011 outbreak season are already

utilized in the multiple linear regressions to construct FYM.

Thus, a more stringent and realistic test is carried out by re-

constructing the forecast model with the tornado density data

FIG. 10. Local RPSS for the reforecast of U.S. regional-scale tornado activity for the target

months of (a) MA and (b) AM from FYM. Dark-gray dots indicate where the RPSS values

from FYM are higher than or equal to 0.1 and the scores from JKM are higher than 0.0. Light-

gray dots indicate where the RPSS values from FYM are lower than 0.1.
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from 2011 to 2018 excluded. As shown in Fig. 12 (in the center

panels), the probabilistic reforecast for MA 2011 based on the

revised regression period (1982–2010) still captures the above-

normal regions across Oklahoma and Arkansas in the South,

Illinois, Indiana, Ohio, Kentucky and Tennessee in the Ohio

Valley, and Alabama and Georgia in the Southeast. However,

the reforecast forAM2011 based on the revised regression period

only captures a portion of the above-normal regions, mainly over

the Southeast, but fails to capture other above-normal regions

around Arkansas, Mississippi, Missouri, Wisconsin, Illinois, and

most of the Northeast. These results largely confirm that the

seasonal outlook for U.S. regional-scale tornado activity based on

FIG. 11. Local ROC scores for the reforecast ofU.S. regional-scale tornado activity for the targetmonths of (top)MA and (bottom)MA

for the (left) above-, (center) near-, and (right) below-normal categories. Dark-gray dots indicate where the ROC scores from FYM are

higher than equal to 0.7 and the scores from JKM are higher than or equal 0.6. Light-gray dots indicate where the ROC scores from FYM

are lower than 0.6.

FIG. 12. Probabilistic reforecast for U.S. regional tornado-scale activity for the below-normal (indicated by negative values and green

shades) and above-normal (indicated by positive values and red shades) categories for (left) FYM and (center) the revised regression

period (1982–2010) and (right) the validation for the 2011 tornado outbreak season for (top) MA and (bottom) AM. Gray dots in the left

and center panels indicate that the reforecast probability is above 50%.
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our method is not yet suitable for an operational use.

Nevertheless, it is very encouraging that the increased regional-

scale tornado activity inMA2011 is fairly well captured over the

broad regions in the Ohio Valley, South and Southeast.

6. Discussion

It is interesting to note that the seasonal forecast model

shows low to no reforecast skill for the area-averaged MA

activity in the Southeast, but shows useful reforecast skill for

the area-averaged MA activity in the Ohio Valley and South,

and vice versa for the AM activity. To better understand this

regional difference in the reforecast skill, it is important to note

that the predictability of the current model largely comes from

the two sets of EOF1 of WSHR and CAPE variability, which

have peak loadings over the Ohio Valley and South (Figs. 2a

and 3a). Additionally, the two sets of EOF2 of WSHR and

CAPE variability have peak loadings over the Southeast

(Figs. 2b and 3b), but their temporal variations are poorly

captured by the CFSv2 forecast for MA. For target months of

AM, the EOF1 time series of CAPE variability is poorly cap-

tured by the CFSv2 forecast, while the EOF2 time series of

WSHR variability is better captured comparing to the MA

forecast. These help to explain why the seasonal forecastmodel

has useful reforecast skill for the MA activity in the Ohio

Valley and South, but low to no skill in the Southeast, and vice

versa for the AM activity.

There are other limitations of the experimental seasonal

forecast model. The current model is a hybrid model, which

uses both a dynamic forecast model and a statistical model.

Therefore, it suffers from many issues inherent in the dynam-

ical and statistical forecast models used. For example, the

current model heavily relies on historical tornadoes and their

links to large-scale tornadic environmental parameters. Since

CFSv2 forecasts are only available from 1982 onward, the

statistical model is trained for a relatively short period of

37 years (1982–2018). Consequently, if an active tornado sea-

son occurs in the future and is not represented by any of the

active seasons during the training period, the probabilistic

forecast may fail for some regions (e.g., the Southeast for the

target months of MA), as demonstrated in the jackknife cross-

validation tests. Therefore, there is a need for a global climate

reforecast product that goes back to the 1950s, in order to

take a full advantage of the historical tornado database.

Another issue is that the probabilistic reforecast skill for the

near-normal category is poor. This is commonly observed in

many categorical forecasts (e.g., Van denDool and Toth 1991),

and also expected for forecast systems that are partly based on

regression (i.e., hybrid dynamical-statistical forecast systems)

as in this forecast model. In other words, a regressionmodel, by

construction, cannot depict near-normal anomalies very well.

Another way to interpret the poor reforecast skill for the near-

normal category is that the absence of climate signals in the

forecast does not necessarily imply near-normal U.S. tornado

activity. In other words, active or inactive tornado seasons may

occur due to unpredictable weather events, even when the

seasonal forecast model predicts near-normal conditions for

the tornadic environmental parameters.

Another potential problem originates from the CFSv2

forecasts. As discussed in section 3, the spatial patterns of

WSHR and CAPE variability described by the two sets of

EOF1 and EOF2 are very similar between the ERA-Interim

reanalysis and the CFSv2 forecasts. However, the temporal

correlations of the two sets of EOF2 between ERA-Interim

and the CFSv2 forecasts are weak, indicating that the skill in

predicting large-scale seasonal WSHR and CAPE variability

may currently limit the predictions of U.S. tornado activity.

Future work should test whether this issue applies to other

dynamic seasonal forecast systems participating in the North

American Multi-Model Ensemble (Infanti and Kirtman 2014;

Kirtman et al. 2014; Becker and van den Dool 2016), and if it

can be improved by using a multimodel ensemble approach.

Earlier studies have shown the ENSO-induced extratropical

teleconnection patterns over the United States can be greatly

modulated by the Madden–Julian oscillation (MJO) at the

subseasonal time scale (i.e., 14–30 days). In particular, the

extratropical response is enhanced when theMJO- and ENSO-

induced tropical convections are in-phase, and weakened when

they are out-of-phase (e.g., Roundy et al. 2010; Moon et al.

2011; Riddle et al. 2013; Johnson et al. 2014; Arcodia et al.

2020). Therefore, it may be useful to explore subseasonal

predictability of U.S. tornado activity in MAM using various

potential predictors such as tropical atmospheric convective

activity associated with the MJO, global atmospheric angular

momentum oscillations, and regional weather regimes (e.g.,

Thompson and Roundy 2013; Barrett and Gensini 2013;

Gensini and Marinaro 2016; Tippett 2018; Baggett et al. 2018;

Moore and McGuire 2020; Gensini et al. 2019, Kim et al. 2020;

Miller et al. 2020). For example, a recent study (Kim et al.

2020) showed a promising result that subseasonal U.S. tornado

activity in May-June-July is strongly tied to certain phases of

the MJO and associated convective activity across the north-

east Pacific and Central America.

7. Summary and conclusions

This study describes an experimental model for Seasonal

Probabilistic Outlook for Tornadoes (SPOTter) in the con-

tiguous United States for the target season of MAM. We test

the probabilistic forecast skill by using various statistical

measures including the RPSS, and ROC curve and score. The

independent sets of EOF1 and EOF2 of WSHR and CAPE

variability over the contiguous United States are obtained

from the CFSv2 forecasts and used as the primary predictors,

with the premise that the modulating impacts of ENSO and

other slowly varying ocean and sea ice processes are integrated

into these predictors. The initial forecast is carried out using

the February-initialized CFSv2 forecasts for the target months

of MA, and then updated using the March-initialized CFSv2

forecasts for the target months of AM. A series of compre-

hensive cross-validation reforecast skill tests for the period of

1982–2018 shows that the probabilistic reforecast is skillful in

predicting the area-averaged tornado activity over the contig-

uousUnited States for the above- and below-normal categories

for the target months of both MA and AM. Consistently, the

2011 super-tornado-outbreak season as well as the three other
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most active U.S. tornado seasons in 1982, 1991, and 2008 are

successfully reforecast. Therefore, the probabilistic forecast

model presented in this study may be suitable for an opera-

tional use in predicting future active and inactive U.S. tornado

seasons.

Additional skill tests applied to the four U.S. climate regions

show that the probabilistic reforecast successfully captures the

2011 outbreak season in all four climate regions, and is skillful

for the area-averaged tornado activity in the Ohio Valley and

South for the target months of MA, and in the Southeast and

Upper Midwest for the target months of AM, particularly for

the above-normal category. However, the probabilistic refor-

ecast skill is poor for predicting the area-averaged tornado

activity in the Ohio Valley and the South for the target months

of AM, and in the Southeast and Upper Midwest for the target

months of MA. Consistent with these results, the probabilistic

reforecast skill for U.S. regional-scale tornado activity is

demonstrated only in certain regions for the target months of

eitherMAorAM. Therefore, although the reforecast using the

model trained for 1982–2010 fairly well captures the increased

regional-scale tornado activity in MA 2011 over the Ohio

Valley, South and Southeast, the seasonal outlook for U.S.

regional-scale tornado activity based on our method (i.e.,

CFSv2-based hybrid dynamic-statistical forecast) may not yet

be ready for an operational use.
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