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AX22 Drake Passage Near-Surface Time Series
Year round R/V L M GouldYear-round R/V L.M. Gould
underway observations:-
• AX22 High-resolution XBT: 
70 XBTs; 6-8 transects/year
96 T transects (1996 onward)
• XCTDs (2000 onward)( )
• ADCP: ~200 V transects 
(1999-2004 150 kHz; 
2004 onward 38 kHz)2004 onward 38 kHz)
• pCO2 & TCO2: 326K obs 
(2002 onward)
• IMET (full suite) & TSG

L t ti i f i lt t f V T S i h tLong-term time series of simultaneous measurements of V, T, S, air-sea heat 
and gas fluxes -> characterize spatial and temporal variability of near-surface 
processes in ACC.



What Mechanisms Control Change in the 
Southern Ocean?

T  (T) (u'T ')  forcingt .(uT).(u T )  forcing

Heat input from atmosphere • mean advection:Heat input from atmosphere mean advection: 
- poleward shift in ACC fronts?
• eddy advection: 
- changes in poleward eddy 

winds

Oceanic heat transport
Poleward displacement

g p y
heat transport?
• Surface forcing: 
-changes in upper air-sea heat p

of ACC exchange and heat input to the 
ocean? 
- dependence on changes in 

inds SST Ta h midit etcwinds, SST, Ta, humidity, etc.



AX22 Mean Temperature Transect: 15 years
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Strong Velocity Jet at Polar Front

ADCP V150m

X  XBT Subantarctic Front
• XBT Polar Front
◊ XBT Southern ACC Front

Lenn, Chereskin and Sprintall, JMR, 2007 



Frontal Filaments Coalesce in Drake Passage 

Multiple filaments of PF coalesce into 
single streamline in Drake Passage 
(strong f/h gradient)

SAF
(strong f/h gradient)

Mean and standard deviation of PF 
from AMSRE-E microwave SST
(D S i t ll d Gill JPO 2006)

PF

(Dong, Sprintall and Gille, JPO, 2006)

SACCF

0        .2       .4        .6     QuickTime™ and a
TIFF (Uncompressed) decompressor

PDF of instantaneous streamlines 
(SSH+mean streamfunction) at the XBT 
front positions in Drake Passage show 

i b bilit th t XBT PF

TIFF (Uncompressed) decompressor
are needed to see this picture.

narrow ranges in probability that XBT PF 
will fall within a dynamic height bin (5 cm)

Lenn, Y.D., T. Chereskin, and J. Sprintall, JPO, 2008



Anomalies: Removing the Seasonal Cycle
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AASW-MLD



PF and AASW Trends in Drake Passage

PF
Significant Trends:
P l d PF ( 50 k )

X Middle Transect

PF Poleward PF (~50 km)
Decreasing AASW (~20 km2)
Shoaling AASW-MLD (~15 m)

No significant trends: 
AASW-temperature
AASW-salinity

AASW-Area
AASW salinity

How do SAM and 
ENSO phases impact

AASW MLD

ENSO phases impact 
the Polar Front and the 
Antarctic Surface 
Water properties in 

AASW-MLD
p p

Drake Passage?



Forming Composites

Form composites of PF and AASW propertiesForm composites of PF and AASW properties 
(anomalies 3-month filtered) based on positive or 
negative values SAM and ENSO indices (>±1)

ENSO and SAM r = -0.45 



Composite Relationships to ENSO and SAM
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ENSO and SAM Forcing

 
SAMSAM++ La NiñaLa Niña
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Qanom = 0cphmld anom tQanom  0cphmld anom t
~ 10 Wm-2 for anom of 0.1oC



ENSO and SAM Forcing in Drake Passage
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Climate Impact on S.O. Gas Uptake
Surface pCO2 TrendsSurface pCO2 Trends
North of PF: high in winter -> cooler T
South of PF: vertical mixing and biological 
uptake more important

Increasing pCO2 trend from  winds?
- increased upwelling south of PF?
- impact of a warming ocean?
- changes in upwelling area?
Evaluate the trends and mechanisms of pCO2 in IPCC AR5 Climate models

Colm Sweeny



Observed Eddy Heat Fluxes
<v’T’> <u’T’>v T u T

equatorward -> downstream->• <v’T’> = <v(t)-<v>><T(t)-<T>>  are 
small - need a good mean!
• mean ADCP V to map ACC 
streamlines; project V into streamstreamlines; project V into stream 
coordinates and average fluxes 
along streamlines.
• 50 joint ADCP/XBT sections 

30 m
250 m

(Noisy!) eddy heat fluxes are polewards and 
downstream (where significant), typically 

Lenn, Chereskin, Sprintall, and McClean., JPO, 2011 

near the mean front positions



MLD as proxy for upper ocean air-sea heat exchange?

• MLD (solid) shows great 
cast-to-cast small-scale 
variability, particularly northvariability, particularly north 
of the Polar Front.

• Upper-ocean heat content 
(d h d) i b t(dashed) is a more robust 
measure

Stephenson, Gille and Sprintall, in prep., 2011



MLD as proxy for upper ocean air-sea heat exchange?

Mean integrated heat content 
over the mixed layer depth

Mean integrated heat content over the mixed layer depth

o e t e ed aye dept
(top) and upper 400 m
(bottom) for casts north and 
south of the Polar Front. 
(Least squares fit to seasonal(Least-squares fit to seasonal 
cycle)

OAFlux Surface Heat Flux
annual cycle (offset by 4 GJ m-

Mean integrated heat content over the upper 400 m

annual cycle (offset by 4 GJ m
2) shows better agreement 
with integrated heat content.

Stephenson, Gille and Sprintall, in prep., 2011



Quality Control for XCTD Profiles

•“Jitters” in T (~0.01oC) and conductivity (~0.015 mS 
cm-1) of XCTD profiles (left) results in significant 
spikes in their spectra at 10 hZ and 5 hZ (below)

CT
spikes in their spectra at 10 hZ and 5 hZ (below).
• Inherent to all XCTD probes (originate from digital 
noise cross-over to analog electronics) although most 
obvious in regions of low stratification.
• T and S still within manufacturer’s specification
• Application of low-pass filter (Gille et al., 2009)

T C

Gille, Lombrozo, Sprintall and Stephenson, JAOT, 2009



Patterns of Small Scale Mixing
XCTD di l diff i it

QuickTime™ and a
TIFF (Uncompressed) decompressor

XCTDs: diapycnal diffusivity
North: thermohaline intrusions, eddies, near-inertial internal waves
South: weakly stratified; double-diffusive convection

( p ) p
are needed to see this picture.

Distinctly different patterns in winter and summer; andDistinctly different patterns in winter and summer; and 
north and south of PF

Thompson, Gille, MacKinnon, Sprintall, JPO, 2007



Conclusions

• AX22 is a unique Southern Ocean time series: 
near-repeat transects; year-roundnear-repeat transects; year-round
• Synergistic measurements (e.g. v’T’; pCO2-T)
• Different variability patterns dependent on PF y p p
(e.g. , pCO2 & TCO2, MLD)
• 15-year time series to examine property 
changes in response to large scale climate 
modes (e.g. PF, AASW, pCO2)
• 4 PhD theses and >20 publications (so far!)• 4 PhD theses and >20 publications (so far!)





Conclusions

The HRX network’s unique contribution is in providing 
l l ti t t t hi l itregularly repeating temperature, geostrophic velocity 

and transport estimates that span ocean basins from 
boundary to boundaryy y

The HRX network increases the value of the combined 
observing system (Argo air-sea fluxes repeatobserving system (Argo, air-sea fluxes, repeat 
hydrography, ADCP, pCO2 etc.): complements these 
observing systems by supplying repeat, high resolution 

t i b d t ddi d f tmeasurements in boundary currents, eddies and fronts



Anomalies: Removing the Seasonal Cycle
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Frontal Variability from Streamlines 

0     .2    .4     .6     

• PDF of instantaneous streamlines (SSH and various mean streamfunctions) at 
the XBT positions of the main fronts in Drake Passage
• narrow ranges g
• Multiple filaments of PF (e.g. Sokolov and Rintoul, 2009) coalesce into single 
streamline in Drake Passage

Lenn, Y.D., T. Chereskin, and J. Sprintall, JPO, 2008



Mean Temperature Transect
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XBT Temperature Transects: 2001
eddies

High resolution of the 
Polar Front

Sprintall, J. Mar. Res., 61, 2003. 



PF and AASW Trends in Drake Passage
X Middle Transect

PF Significant Trends:
Poleward PF (~50 km)

X Middle Transect

AASW
Decreasing AASW (~20 km2)

WW
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AASW properties based on 
positive or negative (>1) p g ( )
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