Use and Requirements for XBT Surface Temperature Observations by the Group for High Resolution SST (GHRSST)

Helen Beggs¹ and David Meldrum²

¹Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia ²Scottish Association for Marine Science, Oban, Scotland

Presented at the 1st XBT Workshop, Melbourne, 7 – 8 July 2011.

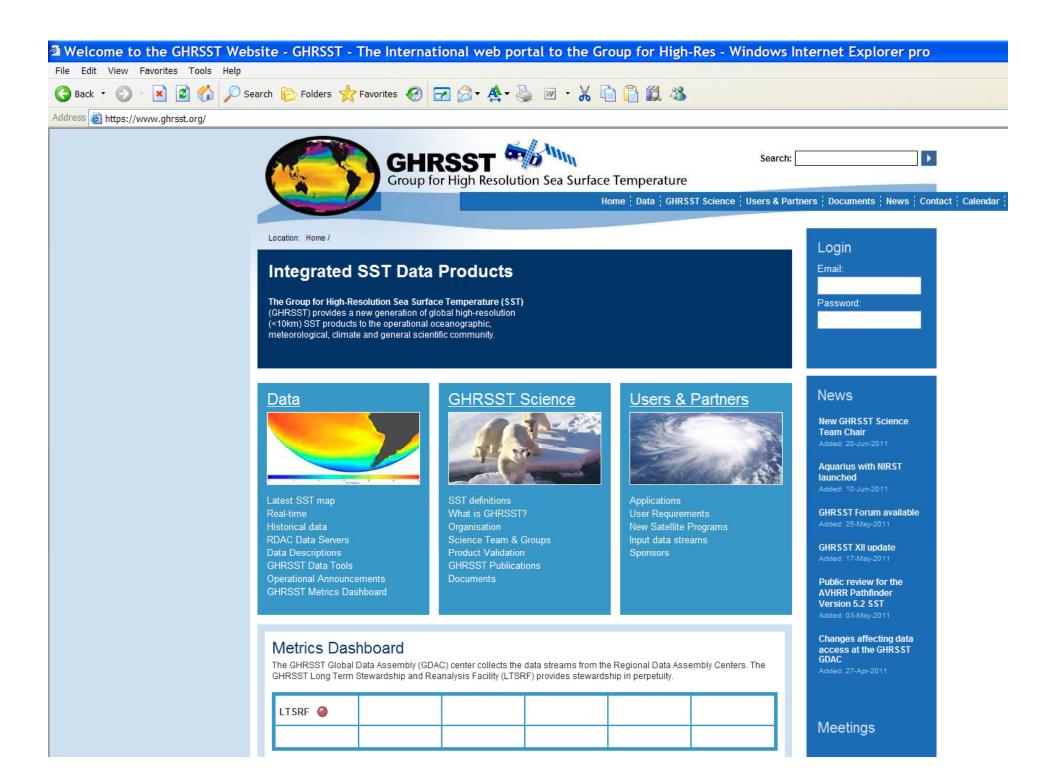
Australian Government

Bureau of Meteorology

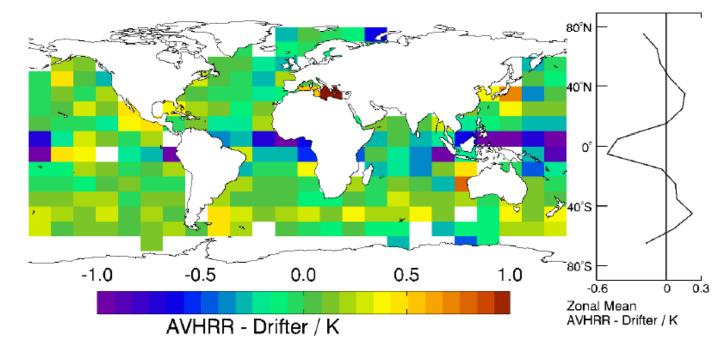
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Introduction

- What is GHRSST?
- GHRSST requirements from drifting buoys
- New eSURFMAR proposal for ship observation formats
- GHRSST requirements from ship underway observations
- Use of Argo data in GHRSST
- Use of XBT data in GHRSST
- Future GHRSST XBT SST requirements?

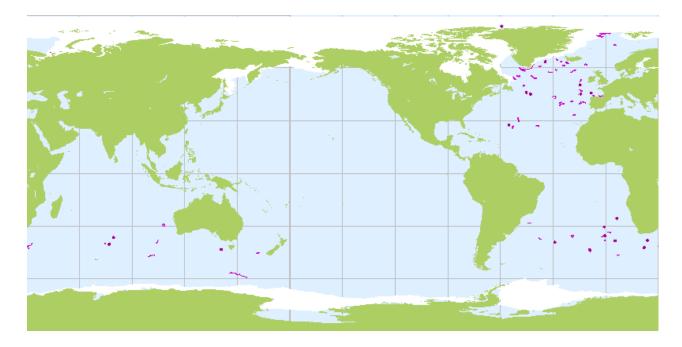


Australian Government Bureau of Meteorology

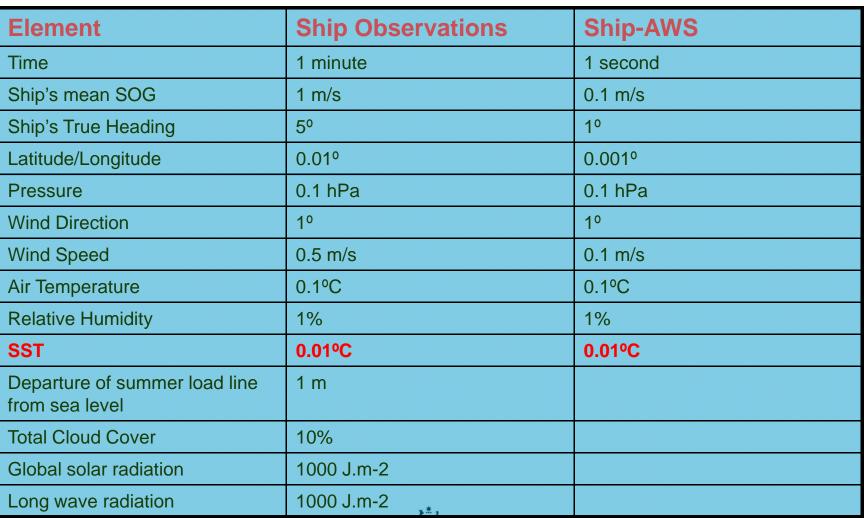

- Started in 2002 as GODAE pilot project
- Now main expert group of users and providers of satellite SST data
- Aim: to provide the best quality sea surface temperature data for applications in short, medium and decadal/climate time scales in the most cost effective and efficient manner through international collaboration and scientific innovation
- Set standards for satellite SST processing and formats (CFcompliant netCDF)
- Share satellite SST level 2 ("L2P") and level 3 ("L3") data products
 - For each pixel: Time, lat, lon, SST(depth), error estimates (bias, standard deviation), quality level, wind speed, sea-ice fraction, land/ice/water flag, difference from SST climatology, etc
- Share global and regional SST analysis products ("L4")
- See web page at: http://www.ghrsst.org

DBCP – GHRSST Pilot Project

- Drifting buoys are currently main reference dataset for GHRSST
- Used for common reference for GHRSST satellite SST product error statistics
- DBCP and GHRSST established a joint Pilot Project in 2010 to upgrade elements of the GDP buoy fleet to allow the reporting of higher resolution SST and position
- Aim: Driving down regional biases in satellite SST


DBCP-GHRSST Pilot Project Proposal

Craig Donlon and David Meldrum, 11 July 2010



Data Buoy Element	Resolution	Accuracy
Time	5 minutes	5 minutes
Latitude/Longitude	0.005°	0.005°
SST	0.01°C	0.05°C

- Data buoys report in binary BUFR format to GTS at hourly intervals
- So far ~100 upgraded drifting buoys deployed that report to 0.01°C
- see http://www.jcommops.org/dbcp/iridium-pp/index.html

Proposed E-SURFMAR Data Resolution from Ships Pierre Blouch, Meteo-France, 26 Apr 2011

Australian Government

Bureau of Meteorology

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

CSIRO

GHRSST requirements from underway ship observations on GTS

- SOT requested advice on future data transmission resolution for ship measurements
- 0.01°C resolution in SST is endorsed by GHRSST
- Liz Kent noted 10% resolution for cloud cover contradicts existing Octal climate record
- GHRSST has little knowledge or use of Trackob records apart from BoM operational SST analyses

Australian Government Bureau of Meteorology

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

GHRSST Use of Argo Data

- GHRSST has need for independent global validation measurements for retrievals, skin to depth models (including diurnal variability)
- High accuracy Argo data offers such capability
- GHRSST currently uses closest to surface measurement (3-5 m) for validation
- Investigating using near surface profiles (un-pumped and second sensor)
- The near-surface measurements from Argo profiling floats provide a valuable, very accurate new data set that has yet to be fully exploited within GHRSST

Australian Government Bureau of Meteorology

GHRSST use of XBT data

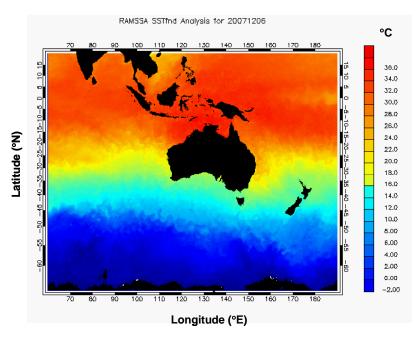
- XBTs on the GTS report to 0.1°C resolution in BATHY code, 0.01°C if in TESAC
- Absolute accuracy: quoted as ± 0.1°C to 0.15°C (standard drifting buoys are ± 0.2°C)
- Problems for satellite validation:
 - response time of the thermistor is 0.16 s, meaning that the probe has to descend several metres before the sensor has equilibrated. Values of up to 5 m are quoted
 - T spikes at surface which must be QC'd out of record
- ICOADS and HadSST long-term in situ SST analyses use QC'd XBT SST
- To the GHRSST Science Team's knowledge only one GHRSST product uses XBT data BoM RAMSSA SST analysis

Australian Government Bureau of Meteorology

BoM Regional Australian Multi-Sensor SST Analysis System

Optimal Interpolation analysis of observations

Depth: Foundation (pre-dawn SST) **Resolution:** Daily, 1/12°


Domain: 60°E - 170°W , 20°N - 70°S Data Inputs:

- 1 km HRPT AVHRR (NOAA-18, 19)
- 9 km NAVOCEANO GAC AVHRR (NOAA-18, METOP-A) L2P
- 25 km AMSR-E (Aqua) L2P
- 1/6° AATSR (EnviSat)
- Buoy, ship, Argo, CTD, XBT obs (GTS)
- 1/12° NCEP ice edge analyses
- NAVOCEANO 1/120° land/sea mask

Uses:

- Boundary condition for BoM regional NWP models
- Validating BoM's ocean model SST5m analyses/forecasts

Daily foundation SST analyses available as netCDF GDS v1.7 L4 files from http://godae.bom.gov.au and

http://podaac.jpl.nasa.gov

Australian Government

Bureau of Meteorology

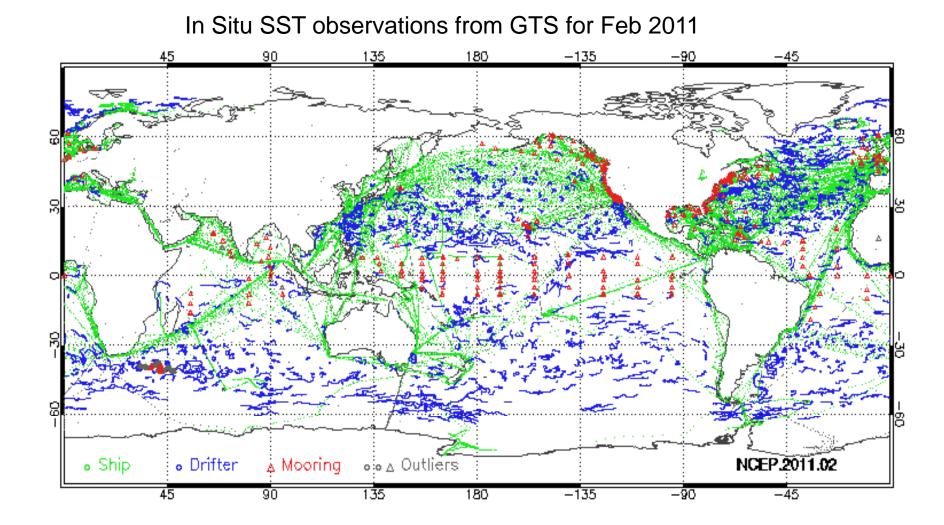
Future GHRSST Requirements for XBT data?

• Near real-time access to QC'd XBT SSTs (with any spikes removed)

XBT Element	Resolution	Accuracy
Time	5 minutes	5 minutes
Latitude/Longitude	0.005°	0.005°
Depth (in top 10 m)	0.1 m	0.5 m?
SST	0.01°C	0.05°C

Australian Government Bureau of Meteorology The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Extra Slides for discussion


Australian Government

Bureau of Meteorology

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

How can we improve the validation of satellite SST products and ocean forecasts over regions sparse in buoy observations?

One solution: Improve the availability and accuracy of SSTdepth observations from ships reporting to the GTS

IMOS Ship of Opportunity SST Goal

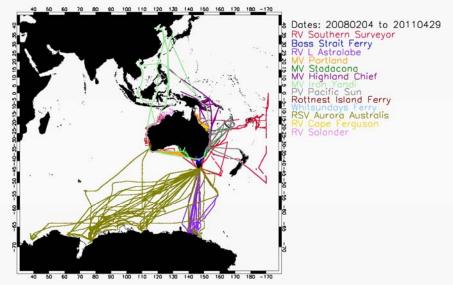
Significantly enhance quantity, quality and timeliness of ship SST data in the Australian region

Status June 2011

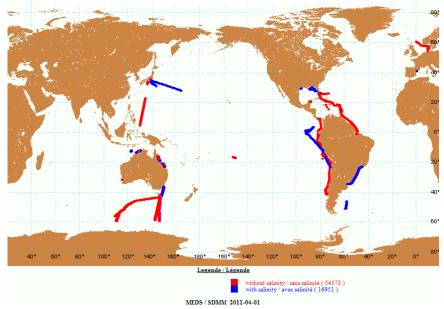
NRT QA'd SST data from 13 vessels (6 with hull-contact sensors) available from GTS and Ocean Portal

http://imos.aodn.org.au/webportal

- All except Rottnest and Whitsunday Ferries (engine intake SST from catamarans) have comparable errors to drifting buoys


- IMOS ship SST used for satellite SST and ocean model validation at BoM

- RV SST sent in Trackob format to GTS


By June 2012

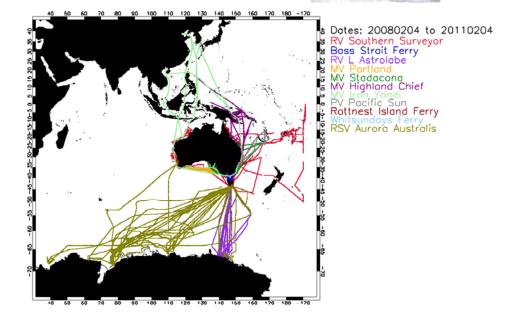
NRT QA'd SST from 2 more vessels – RV Tangaroa and RV Linnaeus

Locations of IMOS ship SST observations to 29 Apr 2011

Locations of Trackob SST observations Feb 2011

EIF 2c: Ship SST Sensors 2011/12 Plans

By Dec 2011: Recalibrate hull-contact sensors deployed > 12 months


Supply QA'd bulk SST from RV Cape Ferguson, RV Solander and RV Tangaroa to Ocean Portal and GTS in near real-time

By Jun 2012: At least **13** QA'd IMOS ship SST data streams on GTS and Ocean Portal in near real-time

By Dec 2012: Instrument MV Whana Bhum and MV Xutra Bhum with hullcontact temperature sensors

Locations of IMOS ship SST observations to 4 Fe

Whana Bhum and Xutra Bhum cruise tracks

Operational System Satellite SST Requirements

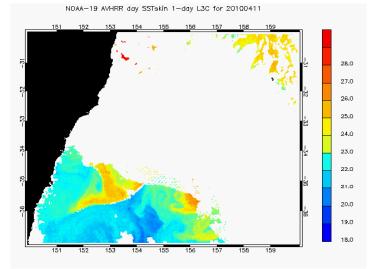
One SST product can not best suit every application

Operational systems need SST products in consistent, well-described formats (eg. CF-compliant netCDF) that are:

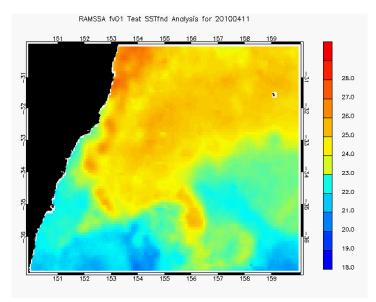
- Timely
- Reliable
- Accurate (with specified uncertainties)
- Stable over time
- With spatial and temporal scales appropriate for the application
 - Sea fog prediction requires small spatial scales (~1 km) and frequent updates during 24 hours
 - Higher resolution NWP models require higher resolution SST products
- At the appropriate and specified depth
 - skin, subskin, depth, "blend" or foundation

Applications of different depth SST products

- Skin (infrared sensors)
 - measure air-sea heat/gas flux
 - measure diurnal variation (cool-skin and diurnal warming)
 - validate diurnal variation models
- Subskin (microwave sensors)
 - measure diurnal warming
 - fill in gaps in IR satellite SST
- Blend (0-20 m) (Satellites, Ships, buoys, Argo, XBT, etc)
 - climate change records (eg. HADSST, ICOADS)
 - SST climatology (eg. NCDC's Reynolds analyses)
- Foundation (Satellite and in situ SST adjusted using models or filtering)
 - input to ocean models
 - input to seasonal prediction coupled models
 - boundary condition for Numerical Weather Prediction models



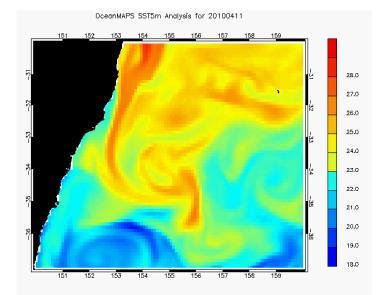
Australian Government Bureau of Meteorology



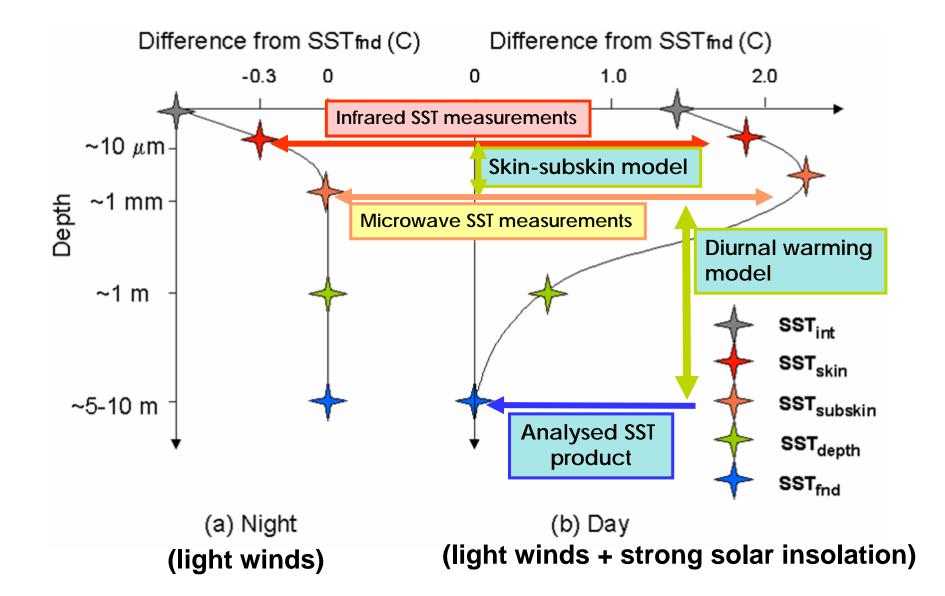
Different BoM SST products using AVHRR L2P SST for 11 Apr 2010

IMOS AVHRR 0.02° 1-day daytime L3C SSTskin from NOAA-19 (quality level > 2)

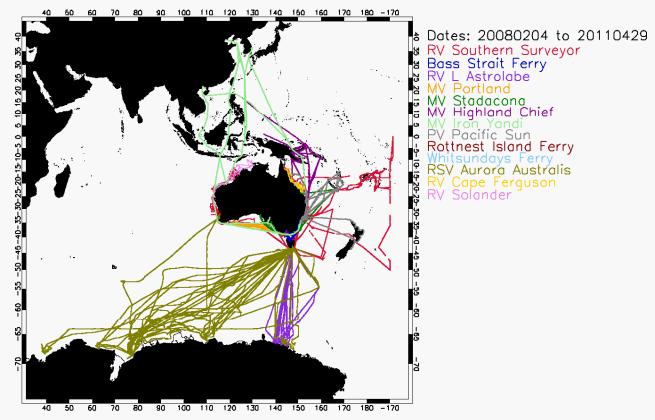
RAMSSA 0.083° L4 SSTfnd OI Analysis



IMOS AVHRR 0.02° 5-day L3S SSTskin from NOAA-17, 18 and 19 for 7-11 Apr 2010 (QL > 2)


biased Mean NOAA-17, NOAA-18 and NOAA-19 HRPT AVHRR skin SST for 201004 orbits

OceanMAPS 0.1° OGCM SST5m Analysis

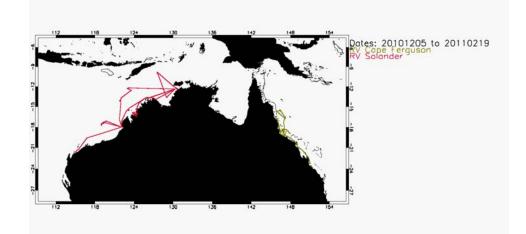

SST at what depth? skin, sub-skin, "blend" or "foundation"

IMOS Ship of Opportunity SST sub-facility (Contact: Helen Beggs)

Goal: Significantly enhance quantity, quality and timeliness of ship SST data in the Australian region

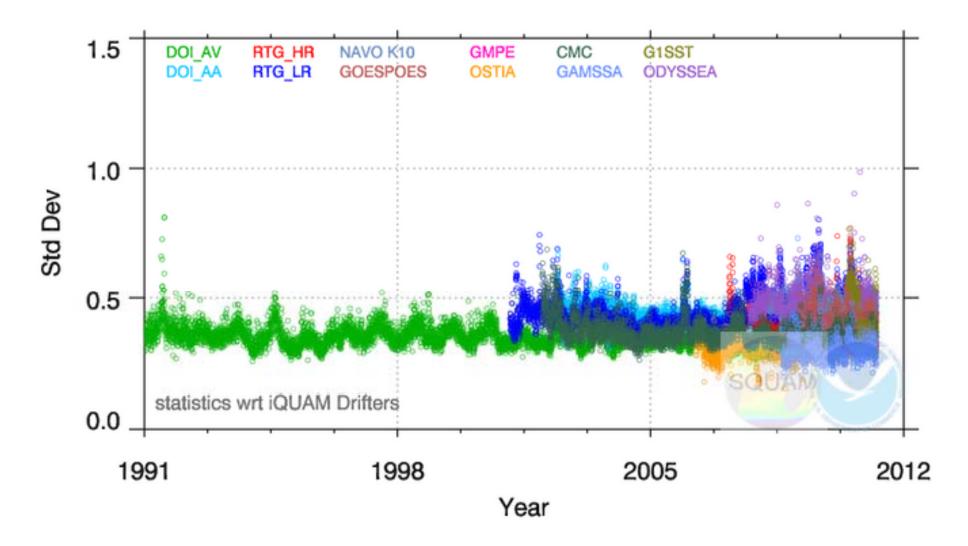
Current Status: NRT QA'd SST data from **13** vessels (6 with hull-contact temperature sensors) available from GTS and IMOS Ocean Portal

Locations of IMOS ship SST observations from 4 Feb 2008 to 29 Apr 2011


IMOS Ship SST Plans

By Dec 2011: Supply QA'd SST from RV Cape Ferguson, RV Solander, RV Linnaeus and RV Tangaroa to IMOS Ocean Portal and GTS in near real-time

Develop stand-alone system to transmit hull-contact SST data in NRT from merchant vessels **not** instrumented with automatic weather stations


By Dec 2012: Instrument MV Whana Bhum and MV Xutra Bhum with hullcontact temperature sensors Locations of RV Cape Ferguson and RV Solander ship SST observations uploaded to GTS in delayed mode

Whana Bhum and Xutra Bhum cruise tracks

SST Analyses vs Drifting Buoy SST

http://www.star.nesdis.noaa.gov/sod/sst/squam/index.html