Preliminary Results of Meridional Heat Transport in the South Atlantic Since 1993

Gustavo J. Goni (1)

Silvia L. Garzoli (1), Molly Baringer (1), F. Bringas (1,2), Y. Chong (1), Q. Yao (1,2), and P. DiNezio (1,2)

(1) NOAA/AOML, Miami, FL, USA

(2) CIMAS, University of Miami, Miami, FL, USA

First XBT Science Workshop Melbourne, Australia July 8-9, 2011

Meridional Heat Transport in the South Atlantic

What we know:

- Ekman and geostrophic components are out of phase
- Variability of both components are comparable
- Geostrophic is the dominant contribution
- Mean value = 0.51 +/- 0.15 PW
- Range = 0.3 to 0.8 PW

This work:

• Investigate the temporal variability of the meridional heat transport in the South Atlantic using blended XBT and altimetry observations

• Assess the contribution of the geostrophic and Ekman components to this transport since 1993

South Atlantic circulation

Upper ocean

Peterson and Stramma, 1991

Atlantic Ocean HD XBT transects AX18

80'W 70'W 60'W 50'W 40'W 30'W 20'W 10'W 0'

AX18 XBT POSITIONS

mar08

10°N

10°S

20°S

30°S

40°S

50°S

60°S

10°E 20°E 30°E

Atlantic Ocean HD XBT transect AX18

YEAR 2004 Number of Obs: ARGO- 4408 XBT- 2127 0' 20'S 20'S 20'S

Atlantic Ocean XBT and Argo observations

Variability Atlantic Ocean

SW Atlantic

Agulhas Retroflection

Goni et al, 2011

Atlantic Ocean MHT

Garzoli and Baringer (2007) Baringer and Garzoli (2007)

Altimetry and MHT

- Investigate if vertical thermal structure can be observed by altimetry
- Ekman remains the same (from monthly wind stress NCEP/NCAR reanalysis)
- Assessment of geostrophic contribution derived from altimetry and comparison with those obtained from XBTs
- Estimate MHT since 1993 (altimetry period) and evaluate changes during 1993-2002

Altimetry and MHT

MHT from XBTs and Altimetry

MHT from XBTs and Altimetry

XBT 2002-2007

Altimetry 2002-2007

MHT from XBTs and Altimetry

MHT from Altimetry

MHT from Altimetry

Conclusions

- Altimetry captures overall geostrophic contribution to MHT variability
- Results here confirm previous results on seasonal time scales
- Altimetry allows to extend record back to 1993
- A long period variability signal appears in the longer altimetry time series

Other Current and Immediate Future Work

• Investigate contribution of boundaries and interior of gyre

- Investigate meridional changes of MHT
- Comparison of XBTs and altimetry results with numerical models
- Introduce results from other platforms: IES, PIES, CPIES, Argo, etc

