Ocean circulation and the mass and heat budgets of large ocean regions

D. Roemmich and J. Gilson Scripps Institution of Oceanography, UCSD

> First XBT Science Workshop Melbourne July 7-8, 2011

Outline

- Part I: The High Resolution XBT (HRX) Network samples the world's boundary currents - the subtropical WBCs and EBCs, the low latitude WBCs, and the ACC.
 - Global in scope (i.e. all 5 subtropical WBCs)
 - Enhanced BC sampling is highest priority, OO'09.
 - Argo provides complementary absolute and/or deep relative reference level velocities.
 - The HRX Network integrates the BCs and interior.
- Part II: Closing the mass and heat budgets of large ocean regions the North Pacific example.
 - Mean budgets close, with a shallow overturning circulation of 13 Sv and 0.75 pW of heat transport into the region north of PX37/10/44.
 - Time-varying budgets remain a challenge, but significant interannual variability is seen during the well-measured Argo era: ~3 Sv in volume transport and ~.2 pW.

Upstream Kuroshio near Taiwan

HRX Line PX37/10/44

HRX: Observing the world's boundary current systems

HRX transects are sampling:

- Kuroshio (3 HRX tracks)
- Gulf Stream (3 HRX tracks)
- Agulhas
- Brazil Current
- East Australian Current (2 HRX tracks)
- East Auckland Current and Tasman Outflow
- Eastern boundary currents (California Current, Alaska Current, Leeuwin Current, ...)
- Low latitude WBCs: Solomon Sea, Indonesian Throughflow
- Antarctic Circumpolar Current (3 HRX tracks)

AOML status map

"Upstream" Kuroshio near Taiwan, PX44

w/Argo ref. velocity; 0-800m Kuroshio 21 Sv (120°E – 123°E); similar to Gilson and Roemmich (2002)

"Downstream" Kuroshio near Yokohama, PX05

w/Argo ref. velocity; 0-800m Kuroshio 39 Sv Consistent with Imawaki et al (2001) "throughflow"

Argo Steric Height, 0/2000 dbar

East Australian Current near Brisbane, PX30

w/Argo ref. velocity; 0 – 800m EAC transport -23 Sv V_{max} and transport similar to Mata et al., 2000

EAC "overshoot" near Sydney, PX34

w/Argo ref. velocity; EAC -16 Sv; recirculation 8 Sv

CSIRO is the lead partner for HRX PX30 and PX34

Argo Steric Height, 0/2000 dbar

Agulhas Current near Durban, IX21

w/Argo ref. velocity; 0 – 800m Agulhas transport -26 Sv (to 33.4°E)

The Agulhas appears weaker here than in a moored array, Bryden et al. (2005). Needs a closer look. Lack of Argo data close to coast?

PX30/37 PX34 PX37 PX38

60°E

PX09 USA-SIO PX10 USA-SIO

120°E

1 AUS/USA-SIO AUS/NZ/USA-SIO USA-SIO USA-SIO

PX40 JAPAN T PX44 USA-SIC

120°W

X22 USA-SIO X15/21 USA-SIØ/AUS/SAF X28 AUS/FR/USA-SIO PX05 USA-SIO

IX28

Argo Steric Height 0/2000

Antarctic Circumpolar Current south of Tasmania, IX28

w/Argo reference velocity; CSIRO is lead partner

ACC in Drake Passage, AX22

w/Argo reference velocity; Fig by J. Sprintall

IX28 Transport integrals (Sv)

Red: Argo 0-2000 m, 147°E Blue: Argo 0-800 m, 147°E Black: XBT 0-800 m with Argo reference velocity Rintoul et al (2002): 0-2500 m, 106 Sv from SR3

"Upstream" California Current System near San Francisco, PX37

"Downstream" CCS near Los Angeles, PX37S

The "real" boundary current is the northward California Undercurrent, not the southward California Current.

Argo Steric Height 0/2000

Integrating the ocean observing system: HRX, Argo, CalCOFI

Transports are about 2.5 Sv for the California Undercurrent and -5 Sv for the CC out to 127°W. Comparisons with glider transects along CalCOFI lines 90 and 80 are promising.

Leeuwin Current near Fremantle, IX15

Transport, 0-800 m, 113.9°E to coast: 4 Sv

Feng et al., 2003

Argo: mapped at high resolution along 32°S V-mean relative to 800 m (colors), T (contours)

Because of the granularity of the mean ocean, along-current and across-current gradients can cause apparent differences.

PX05 crosses the EAC, Solomon Sea, and the Kuroshio as well as the tropical current systems.

Passing close to New Ireland at 5°S, net transport to that latitude (-20 Sv) is similar to estimates of the combined transport through Vitiaz Strait and St Georges Channel (e.g. Sokolov and Rintoul, 2000). Argo will provide a reference velocity for the 800 m XBT data. Glider transects are also measuring transport.

Outline

- Part I: The High Resolution XBT (HRX) Network samples the world's boundary currents - the subtropical WBCs and EBCs, low latitude WBCs, and the ACC.
 - Global in scope (i.e. all 5 subtropical WBCs)
 - Enhanced BC sampling is highest priority, OO'09.
 - Argo provides absolute and/or deep relative reference level velocities.
 - The HRX Network integrates the BCs and interior.
- Part II: Closing the mass and heat budgets of large ocean regions the North Pacific example.
 - Mean budgets close, with a shallow overturning circulation of 13 Sv and 0.75 pW of heat transport into the region north of PX37/10/44.
 - Time-varying budgets remain a challenge, but significant interannual variability is seen during the well-measured Argo era: ~3 Sv in volume transport and ~.2 pW.

Upstream Kuroshio near Taiwan

HRX Line PX37/10/44

Closing the mean and time-varying mass and heat budgets on regional to ocean scale: North Pacific Ocean

- Geostrophic transport
 - HRX transects provide shear 0-800 m
 - *Argo provides a deep reference velocity (800/2000) and a trajectory-based estimate of $\rm V_{800}$
 - Altimetry is used to estimate and correct temporal aliasing of quarterly HRX cruises
- * Ekman transport from wind stress (Quikscat climatology and reanalyses).
- * Heat storage from Argo.
- * Time-varying vertical advection from Argo.
- Air-Sea heat flux from observations, reanalyses, or as a residual? This is the most poorly known term in the balance.

* Indicates quantities that are much better measured now than in 2001

Large-scale context: Mean circulation in the thermocline

HRX Line PX37/10/44 (Red, Taiwan and H.K. tracks) in relation to the acceleration potential (contours) and potential vorticity (colors) on σ_{θ} = 25.5. Winter outcropping regions are shown without contours.

Roemmich et al., 2001

Previous work focused on PX37/10/44

- Gilson, J, D. Roemmich, B. Cornuelle and L.-L. Fu, 1998. Relationship of TOPEX/Poseidon altimetric height to the steric height and circulation in the North Pacific. *Journal of Geophysical Research, 103,* 27947-27965.
- Hautala, S. and D. Roemmich, 1998. Subtropical Mode Water in the Northeast Pacific Basin. *Journal of Geophysical Research*, *103*, 13055-13066.
- Roemmich, D. and J. Gilson, 2001. Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability. *Journal of Physical Oceanography, 31,* 675-687.
- Roemmich, D., J. Gilson, B. Cornuelle and R. Weller, 2001. The mean and time-varying meridional heat transport at the tropical/subtropical boundary of the North Pacific Ocean. *Journal of Geophysical Research, 106,* 8957-8970. (Mean: 0.83 pW)
- Gilson, J. and D. Roemmich, 2002. Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993-2001). *Journal of Oceanography, 58,* 183-195.
- Douglass, E., D. Roemmich, and D. Stammer, 2006. Interannual variability in northeast Pacific circulation, *Journal of Geophysical Research*, *111*, C04001, doi:10.1029/2005JC003015.
- Uehara, H., S. Kizu, K. Hanawa, Y. Yoshikawa, and D. Roemmich, 2008. Estimation of heat and freshwater transports in the North Pacific using high-resolution expendable bathythermograph data. *Journal of Geophysical Research*, *113*, C02014, doi:10.1029/2007JC004165.
- Douglass, E.M., D. Roemmich and D. Stammer, 2010. Interannual variability in North Pacific heat and freshwater budgets. *Deep-Sea Research II 57*, 1127-1140. (Mean: 0.74 pW)
- Auad, G., D. Roemmich and J. Gilson, 2011. The California Current System in relation to the northeast Pacific Ocean circulation. Submitted to *Progress in Oceanography*.

The mean across-track velocity (cm/s), 1993 – 2010, is filamented, even after 75 transects.

Geostrophic volume transport

Argo era: 29 cruises; mean -12.9 Sv; σ = 3.66 Sv; Std error = 0.7 Sv

Differences between PX37 and Argo:

- At high spatial resolution Argo has larger errors in the temporal mean
- Argo misses the northward EBC

The time-mean MOC

HRX Line

Bering Strait

Notes:

- a. Based on Quikscat (Risien and Chelton, 2008) with Large and Pond drag coefficient and with (14.7 Sv) or without (12.8 Sv) COARE boost (1.15)
- b. Standard error based on sampling uncertainty, 2004-2011.
- c. Error in transport due to 800 m velocity based on comparison of Argo relative and trajectory velocity
- d. Standard error based on 29-cruise sampling uncertainty
- e. Roach et al. (1995)

Systematic errors were not considered in the earlier work.

The time-mean heat transport

Maximum southward transport is STMW (17°C) Coldest significant southward transport is NPIW For the 13 Sv MOC, HT= 0.75 pW.

Uncertainty in the MOC is ~10%, 0.075 pW. Further 0.03 pW uncertainty due to horizontal recirculation (difference between Argo relative and trajectory estimates).

Net heat storage 2004-2010, is .03 pW (Argo T_{av} of the region, 0-800 m, increases by .06°C)

Therefore the air-sea heat loss by the ocean is 0.72 pW \pm 0.1 (21 W/m² \pm 3)

Heat transport from air-sea fluxes: Mean value for the Argo era

NCEP, 2004-2010, Mean-7.8 W m²

The time-varying volume transport:

Anomalies in Ekman transport, geostrophic transport, and vertical advection^a

^aVertical advection is estimated from the time derivative of T'/(dT/dz)

Heat Transport

Differences due to closing the transport residual (Ekman+geostrophic): Blue: barotropic ($T_{residual} = 3.6^{\circ}$) Green: baroclinic ($T_{residual} = 13.9^{\circ}$) Red: assume error in Ekman ($T_{residual} = 25.6^{\circ}$)

Next steps: Include vertical advection? Use altimetry for time-varying V_{ref} and to correct aliasing

Heat Storage

The region north of PX37/10/44 was gaining heat in 2007 and losing heat in late 2009. These may be ENSO-related.

Black: Based on T_{av} above 800 m mean density surface, 12 month running mean Red: Based on T_{av} 0-800 (no adjustment for vertical displacement)

Heat Balance #1

Heat Balance #2

Heat Balance #3

Conclusions:

Variability not large in the Argo era (so far)

Remaining uncertainty in the anomalies > 0.1 pW

Further improvements coming (e.g. HRX/Argo/altimetry synthesis) for better understanding of the time-varying mass budget.

All A-S flux estimates have mean adjusted

Value^a of the HRX Network

• Ocean circulation:

- The HRX Network samples the boundary currents *and* the ocean interiors at high spatial resolution for transport estimation.
- It provides a tool for integrating the observing system.
- The combination of HRX, Argo, and altimetry mitigates the limitations of the individual datasets.
- Mass, heat, and freshwater budgets:
 - Estimates of reference velocities, heat storage, vertical advection, and Ekman transport are all much improved in the past decade.
 - Time mean balances have good confidence.
 - Time varying balances remain a challenge, but progress is being made.

