Using models to understand ocean current variability and fisheries links

V. Kourafalou University of Miami / RSMAS

Contributions: C. Paris, A. Srinivasan, H. Kang, M. LeHennaff (UM/RSMAS) R. Atlas, G. Halliwell, G. Goni, F. Bringas (NOAA/AOML) P. Hogan, O.M. Smedstad (NRL-SSC)

http://coastalmodeling.rsmas.miami.edu

Chl-a: seasonal variability (MODIS climatology)

MODIS climatology – February (monthly mean)

Provided by Viva Benzon, RSMAS satellite group

MODIS climatology – August (monthly mean)

Provided by Viva Benzon, RSMAS satellite group

Salinity: seasonal variability (CARIB-HYCOM SSS climatology)

GoM-HYCOM: Model to data comparison: 20° isotherm at 175m

Good representation of the northward penetration of the Loop Current by the model
Analysis tool for OSSEs

> Analysis tool for OSSEs

Simulation of dramatic SSH and SST changes during extreme events: hurricane Katrina example

-20

-40

-60

pre-Katrina

SSH (m), EXP1 30[°] N 60 40 20 25[°] N 0 20[°] N 95[°] W 90[°] W 85[°] W 80[°] W 2005/08/25 0000

SST (C), EXP1

post-Katrina

SST (C), EXP1

Loop Current influence on offshore removal of Mississippi River waters

7/30/04

8/05/04

> Connectivity of remote ecosystems

Eddy activity and fronts in the Gulf of Mexico

Sea Surface Height May 18 2004 00Z GOMh0.04

Eddy evolution in the Straits of Florida

-50 -40 -30 -20 -10 0 10 20 30 40 50

Sea Surface Height Apr 29 2007 18Z Keyb0.01

Sea Surface Height May 06 2007 06Z Keyb0.01

Sea Surface Height May 24 2007 12Z Keyb0.01

60 70

80

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Eddy evolution in the Straits of Florida

79°W

Eddy prediction is crucial for biophysical connectivity studies

Alongshore current and larval counts during an eddy passage (2001 data)

BiOlogical Lagrangian Transport System (BOLTS) coupled with HYCOM

part of the Connectivity Modeling System (CMS) http://www.rsmas.miami.edu/personal/cparis/cms/description.htm Blue: early larvae Red: late larvae

BiOphysical Lagrangian Tracking System (BOLTS)

Transport and recruitment of Coral reef Larvae

Dry Tortugas - Release April 1, 2004 Daily position of particles during a 30-day passive transport in the Florida Current

Recruitment to coral reef = 2%

Photo: C Guigand

Dry Tortugas - Release April 1, 2004 30-day active transport with OVM (Ontogenetic Vertical Migration) observed from the bicolor damselfish larvae Recruitment to coral reef = 38%

population connectivity models need to include physical-biological interactions
 CMS efficiently performs sensitivity analyses on the influence of biophysical parameters

Coupled FKEYS-HYCOM and CSM/BOLTS with Ontogenetic Vertical Migration

Trajectory depth : red at 0-10 m to dark blue at 40-50 m

Transport of 100 individual particles integrated over 30 days released in the upper 5 m at a single location in the Dry Tortugas Ecological Reserve

Particle age from day 1 (blue) to day 30 (red)

Concentration of blue and cyan particles (early stage) indicates the spawning area while areas with red particles (late larvae) indicate larval retention and/or the end of the 30-day advection

Modeling lobster transport and recruitment

