Motivation:
- Ocean heat content has been linked to intensification of hurricanes
- Over past 50 years, very few ocean heat content observations were available in Caribbean and Tropical North Atlantic

Goal: Collect ocean observations to help improve Atlantic Hurricane forecasts

Strategy: Deploy of a network of underwater gliders (A) in the Caribbean Sea and Tropical North Atlantic Ocean to collect targeted sustained ocean observations

Key Accomplishments:
- Gliders currently collecting approximately 10K ocean observations per hurricane season, including during hurricane conditions (B)
- Glider data helps reduce errors of simulated ocean conditions used to initialize the ocean-atmosphere forecast models (C)
- Ocean observations helped to significantly reduce the error of Hurricane Gonzalo (2014) intensity forecast (D)

What is an Underwater Glider?
- Underwater gliders are autonomous underwater vehicles that can be remotely operated
- Can be operated under hurricane wind conditions
- AOML conducts glider operations using four vehicles
- Each glider collects 10-20 profiles per day from the surface of the ocean to 1 km depth
- 4-5 months battery life spanning most of the Atlantic Hurricane Season
- Real-time transmission to data centers for use on operational ocean and hurricane forecasts

Hurricane Gonzalo (2014)

This project was originally funded by the Disaster Relief Appropriations Act known as Sandy Supplemental; currently funded by OAR, NOAA/AOML, NOAA/IOOS, UPRM and CariCOOS