A

B

Beardsley, R. C., R. Limeburner, and W. Brechner_Owens (2004), Drifter measurements of surface currents near Marguerite Bay on the western Antarctic

Booker, D. J., N. C. Wells, and I. P. Smith (2008), Modelling the trajectories of migrating Atlantic salmon (Salmo salar), Canadian Journal of Fisheries and Aquatic Sciences, 65(3), 352-361.

Dispersion in the Mediterranean Sub-Basins

Carniel, S., J. C. Warner, J. Chiggiato, and M. Sclavo (2009), Investigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm event, Ocean Modelling, 30(2-3), 225-239.

https://doi.org/10.1007/978-3-319-66493-4_3

Chaigneau, A., and O. Pizarro (2005), Surface circulation and fronts of the South Pacific Ocean, east of 120 degrees W, Geophysical Research Letters, 32(8).

Chaigneau, A., and O. Pizarro (2005), Mean surface circulation and mesoscale turbulent flow characteristics in the eastern South Pacific from satellite tracked drifters, Journal of Geophysical Research-Oceans, 110(C5).

Chiou, M. D., H. Chien, L. R. Centurioni, and C. C. Kao (2010), On the Simulation of Shallow Water Tides in the Vicinity of the Taiwan Banks, *Terrestrial Atmospheric and Oceanic Sciences*, 21(1), 45-69.

of Geophysical Research-Oceans, 111(C10).

Chiswell, S. M. (2009), Colonisation and connectivity by intertidal limpets among New Zealand, Chatham and Sub-Antarctic Islands. II. Oceanographic connections, Marine Ecology-Progress Series, 388, 121-135

Ciappa, A. C. (2009), Surface circulation patterns in the Sicily Channel and Ionian Sea as revealed by MODIS chlorophyll images from 2003 to 2007, Continental Shelf Research, 29(17), 2099-2109.

D

Damerau, M., Matschiner, M., Salzburger, W. et al., 2012: Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc, Antarctica. Polar Biol 35, 1073–1086, https://doi.org/10.1007/s00300-012-1155-x

Dong, C. M., E. Y. Idica, and J. C. McWilliams (2009), Circulation and multiple-scale variability in the Southern California Bight, Progress in Oceanography, 82(3), 168-190.

Downes, B. J., A. Bellgrove, and J. L. Street (2005), Drifting or walking? Colonisation routes used by different instars and species of lotic, macroinvertebrate filter feeders, Marine and Freshwater Research, 56(6), 815-824.

G

Garraffo, Z., S. L. Garzoli, W. Haxby, and D. Olson (1992), Analysis of a general-circulation model .2. Distribution of kinetic-energy in the south-atlantic and

H

Hansen, D. V. (1990), Surface current and temperature patterns in the Western Tropical Pacific Ocean.

Hare, J. A., and H. J. Walsh (2007), Planktonic linkages among marine protected areas on the south Florida and southeast United States continental shelves, *Canadian Journal of Fisheries and Aquatic Sciences*, 64(9), 1234-1247.

Hwang, C., H. C. Shih, J. Guo, and Y. S. Hsiao (2008), Zonal and meridional ocean currents at TOPEX/Poseidon and JASON-1 crossovers around Taiwan: Error analysis and limitation, *Terrestrial Atmospheric and Oceanic Sciences, 19*(1-2), 151-162.

Jan, S., C.-C. Chen, Y.-L. Tsai, Y. J. Yang, J. Wang, C.-S. Chern, G. Gawarkiewicz, R.-C. Lien, L. Centurioni, and J.-Y. Kuo (2011), Mean Structure and Variability of the Cold Dome Northeast of Taiwan, *Oceanography*, 24(4), 100-109 Keywords: oceanography of Taiwan ; cold dome ; upwelling ; Kuroshio ; East China Sea.

Johnson, D. R. (1995), Wind forced surface currents at the entrance to Chesapeake Bay: Their effect on blue crab larval dispersion and post-larval recruitment, Bulletin of Marine Science, 57(3), 726-738.

K

Kersalé, M., A. A. Petrenko, A. M. Doglioli, I. Dekeyser, and F. Nencioli, 2013: Physical characteristics and dynamics of the coastal Latex09 Eddy derived from

Klocker, Andreas; Ferrari, Raffaele; Lacasce, Joseph H.; Merrifield, Sophia T. (2012): Reconciling float-based and tracer-based estimates of lateral

Krahmann, G., et al. (2003), The Labrador Sea Deep Convection Experiment data collection, *Geochemistry Geophysics Geosystems, 4*.

Li, Y. and Toumi, R., (2017), A balanced Kalman Filter ocean data assimilation system with application to the South Australian Sea. Ocean Modeling,116, 159-172, http://dx.doi.org/10.1016/j.ocemod.2017.06.007.

Mailly, T., E. Blayo, and et al. (1997), Assessment of the ocean circulation in the Azores region as predicted by a numerical model assimilating altimeter data from Topex/Poseidon and ERS-1 satellites, *Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 15*(10), 1354-1368.

Martins, Sena M., and D. Stammer (2015) Pacific Ocean surface freshwater variability underneath the double ITCZ as seen by satellite sea surface salinity

Menna, M., P-M Poulain, G Zodiatis, and I Gertman, 2012: On the surface

https://www.researchgate.net/publication/343552696_Adjusting_for_Desert-Dust-Related_Biases_in_a_Climate_Data_Record_of_Sea_Surface_Temperature

doi: http://dx.doi.org/10.1175/JPO-D-13-064.1

Miller, A. J., et al. (1999), Observing and modeling the California current system: purposes, achievements and aspirations, Eos, 80, 533-539.

Molinos, J. G., Burrows, M. T., and Poloczanska, E. S. (2017), Ocean currents modify the coupling between climate change and biogeographical shifts, *Scientific Reports*, 7, 1332, doi:10.1038/s41598-017-01309-y

N

Niiler, P. P., N. A. Maximenko, and J. C. McWilliams (2003), Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations, Geophysical Research Letters, 30(22).

Ohlmann, J. C., and P. P. Niiler (2005), Circulation over the continental shelf in the northern Gulf of Mexico, Progress in Oceanography, 64(1), 45-81.

Olascoaga, M. J. (2010), Isolation on the West Florida Shelf with implications for red tides and pollutant dispersal in the Gulf of Mexico, Nonlinear Processes in Geophysics, 17(6), 685-696.

Ralph, E. A., K. N. Bi, P. P. Niiler, and Y. duPenhoat (1997), A Lagrangian description of the western equatorial Pacific response to the wind burst of

Richardson, D. E., J. K. Llopiz, K. D. Leaman, P. S. Vertes, F. E. Muller-Karger, and R. K. Cowen (2009), Sailfish (Istiophorus platypterus) spawning and larval

Semba, M., R. Lumpkin, I. A. Kimirei, Y. Shaghude, and N. Nyandwi, 2019: Seasonal and spatial variation of surface current in the Pemba Channel, Tanzania./PLOS One/ *14*(1), e0210303, https://doi.org/10.1371/journal.pone.0210303

Sombardier, M. L., and P. P. Niiler (1994), Global surface circulation measured by Lagrangian drifters - over 2,000 deployed in Atlantic and pacific, half-life to 400 days, positions via Argos satellite, manufactured in 6 countries to standard design, Sea Technology, 35(10), 21-24.

Sun, L. & Penny, S.G. (2019), Lagrangian Data Assimilation of Surface Drifters in a Double-Gyre Ocean Model Using the Local Ensemble Transform Kalman Filter, American Meteorological Society, 147(12), 4533-4551, https://doi.org/10.1175/MWR-D-18-0406.1

U

W

Wang, J. D. (1998), Subtidal flow patterns in western Florida Bay, Estuarine Coastal and Shelf Science, 46(6), 901-915.

River plume patterns and dynamics within the Southern California Bight, *Continental Shelf Research*, 27(19), 2427-2448.

Wilkin, J. L., and R. A. Morrow (1994), Eddy kinetic-energy and momentum flux in the southern-ocean - comparison of a global eddy-resolving model with

Willett, C. S. (1996), A study of anticyclonic eddies in the eastern tropical Pacific ocean with integrated satellite, in situ, and modeling data.

Y

Yanagi, T., A. Morimoto, and K. Ichikawa (1997), Seasonal variation in surface circulation of the East China Sea and the Yellow Sea derived from satellite altimetric data, Continental Shelf Research, 17(6), 655-664.

Yang, H. J., R. H. Weisberg, P. P. Niiler, W. Sturges, and W. Johnson (1999), Lagrangian circulation and forbidden zone on the West Florida Shelf, Continental Shelf Research, 19(9), 1221-1245.

Z

Zhang, X., Oke, P. R., Feng, M., Chamberlain, M. A., Church, J. A., Monselesan, D., Sun, C., Matear, R. J., Schiller, A., and Fiedler, R. (2016) A near-global eddy-resolving OGCM for climate studies, Geosci. Model Dev. Discuss., DOI: 10.5194/gmd-2016-17

