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Abstract
Besides improving the understanding of the physics of the challenging problem of monsoon
prediction, it is necessary to evaluate the efficiency of the input parameters used in models.
Sea-surface temperature (SST) is the only oceanographic parameter applied in most of the
monsoon forecasting models, which many times do not represent the heat energy available to
the atmosphere. We studied the impacts of ocean mean temperature (OMT), representing the
heat energy of the upper ocean, and SST on the all India summer monsoon rainfall through a
statistical relation during 1993–2013 and found that OMT has a better link than SST.
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1. Introduction

Agricultural countries, such as India, have a great
demand for accurate, long range forecast (LRF) of mon-
soon rainfall, which has always been a challenging
problem. The India Meteorological Department (IMD)
has been issuing the forecasts for the Indian summer
monsoon rainfall (ISMR) for many years. Sadhuram
(1997) and Sadhuram and Murthy (2001) used SST
to predict monsoon rainfall. The variation of ISMR is
10% over its long-term (1941–1990) mean of 89 cm
(Rajeevan et al., 2006). Even this small variability (the
maximum year-to-year amplitude) has shown to have
devastating impacts on the agricultural sector in India.
Many dynamical and statistical models, including the
operational models of IMD, failed to predict the weak
summer monsoon of 2002 and 2004 (Rajeevan et al.,
2006; Kumar et al., 2012). However, an empirical statis-
tical model (Rajeevan et al., 2006) was able to provide
the correct hindcast for the 2002 and 2004 ISMR. This
model was developed using a new method of predic-
tor selection. One of these predictors is the sea-surface
temperature (SST) in the Indian Ocean spanning from
20–10∘S to 100–120∘E.

Three main types of approaches are currently used
for the LRF of ISMR: (1) the statistical approaches,
(2) the soft computing techniques and (3) the dynam-
ical methods. The statistical methods use the relation
between the ISMR and the atmospheric parameters
(e.g. Delsole and Shukla, 2002; Rajeevan et al., 2004,
2006; Pai and Rajeevan, 2006; and the references cited
there in). Secondly, soft computing techniques use, time
series of the past rainfall data without any predictors

(Goswami and Srividya, 1996; Kishtawal et al., 2003;
Iyengar and Raghukanth, 2004). Thirdly, analytical
methods use general circulation models of the atmo-
sphere and the ocean based on fluid dynamics. Probably,
due to the lack of perfect understanding of the physics
coupled with imperfect initialization, the dynamical
models have not shown at this moment the required skill
to accurately predict the ISMR and its inter-annual vari-
ability (Krishnamurti et al., 2000; Kang et al., 2002;
Gadgil et al., 2005; Krishna Kumar et al., 2005; Wang
et al., 2005).

Analyses of the forecast failures of 2002 and 2004
concluded that operational forecast skill by IMD based
on statistical methods has not improved despite the
continued changes in the operational models (Gadgil
et al., 2005). One possible approach using statistical
tools towards improving the forecasts is to introduce
new parameters into one of the schemes. Recent studies
suggest assessing the use of SST and upper ocean heat
content for cyclone intensity prediction in the north-
ern Indian Ocean (Ali et al., 2013a, 2013b). Charney
and Shukla (1981) hypothesize that tropical climate has
a potential for long-term prediction because a signifi-
cant part of its long-term variability is determined by
slowly varying climate parameters like SST rather than
by synoptic scale variability. However, the ability of
SST to predict the seasonal mean monsoon has not been
firmly established (Krishnamurthy and Kirtman, 2008).
It has been shown that more than 50% of the north
Indian Ocean tropical cyclone intensities have nega-
tive correlation with SST (Ali et al., 2013b). Namias
and Canyan (1981) concluded that patterns of lower
atmospheric anomalies are more consistent with the
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upper ocean thermal structure than with SST alone.
Sudden unexpected intensification of hurricane Opal,
with its core pressure dropping from 965 to 916 hPa
over a 14-h period (Shay et al., 2000), is a classical
example of the impact of upper ocean on an extreme
weather phenomenon. Subsequently, a number of stud-
ies demonstrated the importance of sea surface height
anomaly (SSHA) and oceanic eddies in cyclone inten-
sity and track predictions (Goni and Trinanes, 2003;
Ali et al., 2007a, 2007b; Goni et al., 2009; Lin et al.,
2009, 2012). As the atmosphere interacts with the ther-
mal energy available in the upper ocean, which should
be described in terms of the ocean heat content (OHC)
rather than with SST alone, this parameter would be,
in principle, a better predictor for long range mon-
soon forecasting. In these studies, it is hypothesized that
OHC, rather SST alone, may serve as a predictor for
cyclone studies because: (1) SSTs in the North Indian
Ocean have large diurnal cycles in response to low wind
speeds, low evaporation and strong insolation, and (2)
the longer-term atmosphere interactions are with the
upper layer of the ocean rather SST alone. Most of the
studies refer to the role played by the OHC on cyclone
intensities/tracks. However, no study has demonstrated,
to-date, the importance of the OHC over SST for ISMR
predictions. In this work, we introduce a new parame-
ter referred as ocean mean temperature (OMT) to rep-
resent the OHC. For this purpose, we used the tropi-
cal cyclone heat potential (TCHP), estimated from the
satellite altimeter-derived SSHA, as a proxy for OHC.
As OMT and SST have the same units the replacement
of the second parameter with the first in atmospheric
models is convenient.

The objective of this work is to statistically show
that OMT is a better link to ISMR than SST. Given
that ISMR is mainly influenced by atmospheric param-
eters we do expect that neither SST nor OMT will be
extremely well correlated with ISMR.

2. Data and methods

The ISMR is calculated as the area-weighted average
(Rajeevan et al., 2006) of the June–September rainfall
data of all the 36 meteorological subdivisions in India
during the time period 1993–2013. The ISMR time
series is constructed from a network of more than 2000
rain gauges of IMD spread over India, including the
hilly regions. Optimally interpolated monthly SST (fol-
lowing Reynolds, 1988) is obtained from the extended
reconstructed SST (www.apdrc.soest.hawaii.edu). The
TCHP data were estimated from altimeter-derived
SSHA and SST following already established proce-
dures (Goni et al., 1996; Shay et al., 2000). As the
altimetry-derived SSHA fields are correlated with
the available in situ hydrographic observations, syn-
thetic temperature profiles are obtained to estimate the
TCHP fields from satellite altimetry. TCHP and the
depth of 26 ∘C isotherm fields were made available
(www.aoml.noaa.gov) on weekly basis from 1993 to
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Figure 1. Annual mean depth of the 26 ∘C isotherm depth (cm).

2007 and on a daily basis since 2008, which was the
beginning of the high-resolution satellite altimetry
products, at a grid spacing of 0.25× 0.25 degree. Naga-
mani et al. (2012) compared these satellite-derived
TCHP fields with those estimated from in situ hydro-
graphic measurements and reported a root mean-square
difference of 20.95 kJ cm−2, with a coefficient of deter-
mination, R2, of 0.65 and a bias of 11.27 kJ cm−2. As
TCHP cannot be used in place of SST in the numerical
models, we converted TCHP to OMT using a few
assumptions. As TCHPsatellite and TCHPin situ corre-
late well (and have a regression slope near one, and
a y-intercept near zero), the Equation (1) is used to
compute OMT from TCHP.

TCHP = 𝜌Cp ∫
D

0
26 (T − 26) dz (1)

where, 𝜌 is the density of the sea water, Cp the specific
heat capacity at constant pressure, T the temperature
(∘C) of each layer of dz thickness, and D26 the depth
of 26 ∘C isotherm. This depth varies from 10 to 90 m
(Figure 1). The depth of 26 ∘C isotherm is maximum
(>90 m) near the eastern equatorial Indian Ocean. The
southern Indian Ocean has lower values and the depth
decreases to 10 m at around 30 N. The blank areas
indicate that the SST around this region is less than 26 ∘
C. If we assume a mean temperature of the layer (from
the surface to D26) as OMT, the above equation can be
simplified as:

TCHP = 𝜌Cp (OMT − 26)D26 (2)

From Equation (2), OMT can be estimated as

OMT =
(
TCHP∕𝜌Cp D26

)
+ 26 (3)

The daily OMT values thus computed at a grid spacing
of 0.25∘ have been averaged on monthly basis to a grid
spacing of 1∘ × 1∘ using Cressman’s (1959) technique
with weighting function (WF) given by

WF =
(
S2 − D2

)
∕
(
S2 + D2

)
(4)
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Figure 2. Pearson’s correlation coefficient, r, between Indian summer monsoon rainfall and ocean mean temperature for (a) January,
(b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August, and (i) September during 1993–2013.

where S is the search radius (1 degree in this case) and
D is the distance between the center of the grid and
the observation point. Then, the Pearson’s correlation,
r, was obtained from the ISMR and OMT time series
based on all the months during 1993–2013 over 30∘S
to 30∘N, and 30∘E to 120∘E. Similarly, r was computed
between SST and ISMR for all the 12 months.

3. Results and discussions

The spatial distribution of r between OMT and ISMR
from January to September during the study period
(1993–2013) are shown in Figure 2 and those between
SST and ISMR, in Figure 3. The correlations above
0.43 are significant at 98%. The OMT in the south
western Arabian Sea, spanning from 10∘S to 0∘S
and 50∘E to 70∘E (box A in Figure 2) has a better
correlation with ISMR from January to April. This
high correlation region has moved northward in May
(5–20∘N and 50–70∘E) with an r of more than 0.5. As
OMT represents the average temperature of the upper
layer down to 26 ∘C isotherm depth, our results are
in agreement with those of Dube et al. (1990), where,
through numerical simulations, they reported that the

interannual variability of the upper-layer thickness of
the central Arabian Sea has a good correlation with
ISMR. The entire Bay of Bengal has no significant
correlation between ISMR and OMT from January
to May indicating that the Arabian Sea may play a
more prominent role in the variability of ISMR rather
than Bay of Bengal. One reason for this could be
that the southwest monsoon enters India through the
Arabian Sea.

The r between SST and ISMR (Figure 3) is less than
that between OMT and ISMR (Figure 2). IMD uses SST
of February and March over the regions 20–10∘S and
100–120∘E (box B in Figure 3) for its current LRF of
ISMR (Rajeevan et al., 2006). From this figure, it is
clear that the SST of the region A has a better correlation
with ISMR than with that of region B. For further study,
we computed r between ISMR versus OMT and SST of
region A and that between ISMR and SST of region B
(Table 1).

Considering all the values in the entire box A, OMT
of January has a statistically significant correlation (at
98%) with ISMR (r = 0.44). However, there is a neg-
ative correlation of −0.45 between ISMR and SST in
September, which means that lower temperature in box
A is associated with greater rainfall explaining about
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Figure 3. Pearson’s correlation coefficient, r, between Indian summer monsoon rainfall and sea-surface temperature for (a) January,
(b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August, and (i) September during 1993–2013.

Table 1. Pearson’s correlation between ISMR and the predictors: OMT and SST in box A and SST alone in box B from January to
September during 1993–2013. Level of significance in % is shown in parenthesis, and if not shown it is below 75%.

Months

Parameters Jan Feb Mar Apr May Jun Jul Aug Sep

OMT (box A) 0.44 (98%) 0.32 (90%) 0.23 (80%) −0.03 0.00 0.28 (85%) 0.39 (90%) 0.27 (85%) 0.03
SST (box A) 0.28 (85%) 0.20 (80%) −0.13 −0.05 −0.08 0.18 0.36 (90%) 0.18 −0.45 (98%)
SST (box B) 0.01 0.14 −0.04 −0.14 0.08 0.27 (80%) 0.32 (90%) 0.10 0.33 (90%)

20% of the variance in rainfall with September SSTs in
box A region. However, the September correlation does
not have a predictive value as this is the last month of the
Indian summer monsoon season. That the correlation
is very likely an effect of the monsoon variability (e.g.
a shorter monsoon season), rather than related to a
cause (Anonyms Referee, 2014, pers. comm.). Only the
correlation between ISMR and OMT for January and
ISMR and SST for September are significant at 98%

confidence level, although other correlations are signif-
icant at 75, 80, 85 and 90% confidence levels. While
there are statistically significant correlations between
OMT and ISMR as well as SST and ISMR in box A,
the correlation and confidence levels are greater for
OMT than SST. The significant correlations between
SST and ISMR in box B starts only after June (after
the onset of the southwest monsoon). The correlations
between SST and ISMR of both boxes A and B are
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less than those between OMT and ISMR for January
through March, July and August. As OMT in box A in
January itself has a significant correlation with ISMR
this value can be used in place of SST of box B in the
statistical prediction model of ISMR. As SST in box
A is also significant, although less than that of OMT,
a combination of using OMT and SST of this region
is another possibility; however, these variables are not
independent, therefore they cannot be used together
without additional considerations. A question that could
arise from this study is, how can the Indian rainfall be
influenced by a region that is quite far and 6 months
in advance. Winds from the south of the equatorial
Indian Ocean pass through this region before reach-
ing the Indian coast. As OHC of this place is a useful
indicator of the long-term transfer of energy and mois-
ture to the atmosphere, it helps to understand the atmo-
spheric circulation pattern and perhaps the amount of
water vapour associated with the circulation of the mon-
soon.

4. Summary and conclusions

India, being an agricultural country, has a demand for
accurate long-range forecast of the monsoon rainfall.
Besides attempting to understand the physics of the
monsoon problem it is also valuable to assess new
parameters that can be used as predictor to improve
forecasts. The atmosphere interacts with the upper layer
of the ocean rather with the sea-surface skin represented
by SST alone. Although the atmosphere does respond to
SSTs, the evolution of SST patterns depends much on
OHC. Such an impact of the heat energy available in the
deeper layers of the ocean is shown for cyclone studies.
For the first time, we computed a new parameter called
OMT, which represents the heat available in the ocean
layer to the depth of the 26 ∘C isotherm. The OMT is
estimated from TCHP that was computed from satellite
altimeter observations. A suite of different regions and
months were selected to carry out this study and to
assess the impact of this parameter on ISMR. While
there are statistically significant correlations between
OMT and ISMR as well as SST and ISMR in box A, the
correlation and confidence levels are greater for OMT
than SST. The significant correlations between SST and
ISMR in box B start in June, after the onset of the
southwest monsoon. As the OMT in January has a better
significant correlation with ISMR with a predictive
value the capability to forecast ISMR in January itself
is another advantage of using OMT of box A.
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