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ABSTRACT

The properties (spatial orthogonality and temporal uncorrelatedness) of orthogonally rotated empirical modes depend
on the normalization of the modes, prior to rotation. It is shown here that these properties also depend on how the
empirical modes are formulated. The preferred convention is one that allows us to reconstruct the data from the
unrotated or rotated modes. When the empirical modes are normalized so that the spatial eigenvectors are unit length
(i.e. empirical orthogonal functions (EOFs)), the rotated modes preserve spatial orthogonality, but are no longer
temporally uncorrelated. Relaxing the temporal orthogonality in this way does not prejudice conclusions that can be
inferred regarding the temporal couplings of the rotated modes. Copyright © 2000 Royal Meteorological Society.
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1. INTRODUCTION

Empirical orthogonal function (EOF) analysis and principal component analysis (PCA) have become
standard statistical techniques in the geophysical sciences of meteorology and oceanography (e.g.
Preisendorfer, 1988; Emery and Thomson, 1997), particularly in the area of climate research (Peixoto and
Oort, 1992; von Storch and Zwiers, 1999). These eigentechniques allow us to represent the spatial and
temporal variability of climate variables, such as temperature, as a number of ‘empirical modes’. Because
most of the variance in the data can generally be captured by a small number of modes, the
decomposition may be useful in interpreting the variability in the data.

Each empirical mode is formed by a space pattern and a time series which are derived from the
eigenvalues and eigenvectors of the covariance (or correlation) matrix. These functions are defined to be
orthogonal in space and time. Because they are designed to describe the variance in the whole dataset
efficiently, they usually do not represent a large fraction of the variance in a given spatial and temporal
subdomain. Typically, as the space–time subdomain is expanded in comparison with the spatial and
temporal scales of the dominant physical processes within the subdomain, one or more of the leading
modes may capture significant features in different subdomains, but with less explained subdomain
variance. In these circumstances, the temporal variability of the mode will not be highly representative of
the dominant physical processes of such space–time subdomains, making those processes more difficult
to assess.

The tendency of the empirical modes to extract poorly representative commonality among subdomains
of large datasets can be remedied by grouping the variance through a rotation procedure. A variety of
such procedures are available (Richman, 1986); however, the rotation technique most commonly used to
group the variability in geophysical applications is the varimax orthogonal rotation. Rotations have been
widely used in meteorology where long records of global scale observations are common, but not yet in
oceanography.
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In general, a rotation is a linear transformation of the modes, that attempts to find a new location for
the coordinate axis, such that projections of the variable onto those axes simplify the spatial or temporal
structure of the modes. A detailed discussion of the advantages and disadvantages of rotated empirical
modes is given by Richman (1986) (see also Jolliffe, 1987 and Richman, 1987). In most applications, the
rotation is used to simplify the spatial structure by isolating regions with similar temporal variability (e.g.
Horel, 1981; Barnston and Livezey, 1987; Kawamura, 1994; Mestas-Nuñez and Enfield, 1999). The
resulting rotated space patterns are generally more robust (i.e. less sensitive to sampling errors) than their
unrotated counterparts (Cheng et al., 1995). Alternatively, the rotation can also be used to simplify the
temporal structure by isolating time periods with similar space patterns (e.g. Fernández Mills, 1995).

An aspect of rotation that has lead to some apparent confusion in the literature concerns the
orthogonality properties of orthogonally rotated empirical modes. This applies to varimax, as well as
other orthogonal rotations. Jolliffe (1995) showed that it is impossible to preserve both spatial orthogo-
nality and temporal uncorrelatedness of the modes after an orthogonal rotation–temporal uncorrelated-
ness is equivalent to temporal orthogonality when the temporal mean is removed from the data, which is
generally the case. He pointed out that which of these properties is preserved depends on the choice of the
normalization constraint imposed on the (unrotated) modes. Furthermore, he stated that the usual
normalization which multiplies the unit length eigenvectors by the square root of the eigenvalues (i.e.
PCA) leads to rotated modes that possess neither property. This seems to contradict the common concept
that when this normalization is used, orthogonal rotations lead to modes that are temporally uncorrelated
(orthogonal) (e.g. Horel, 1981; Walsh et al., 1982; Easterling, 1991).

The goal of this study is to clarify the apparent confusion found in the literature regarding the
orthogonality properties of the rotated empirical modes. It is shown that this confusion arises from not
realizing that the properties of the rotated modes depend not only on the normalization constraint
imposed on the unrotated modes, as noted by Jolliffe (1995), but also on the way in which the modes are
formulated.

Section 2 reviews the formalism and presents two common formulations of the empirical modal
decomposition. The normalized and orthogonally rotated versions of these two modal formulations are
introduced in Sections 3 and 4, respectively. In Section 5, we show the effect of three different
normalizations on the orthogonality properties of the rotated modes using the two modal formulations.
In Section 6, we give an example that illustrates the usefulness of rotation in relaxing the temporal
orthogonality constraint of the unrotated modes. The paper ends with a summary, and a discussion of
other applications in Section 7.

2. FORMALISM

The formalism of the empirical modes can be written using the singular value decomposition (SVD) of a
matrix (Rasmusson et al., 1981; Kelly, 1988). Let us consider a set of time series of length N at P different
locations, and with the temporal mean removed at every grid point. These time series can be combined
to form an N×P matrix of data X, whose number of rows N is the number of temporal points and the
number of columns P is the number of spatial points. The SVD of X (e.g. Lawson and Hanson, 1995;
Golub and Van Loan, 1996) is given by

X=USAT (1)

The matrices U and A are both orthonormal because they satisfy the following orthogonality properties
UTU=I and ATA=I, where I is the identity matrix. The diagonal matrix S is formed with the singular
values, which are the square root of the eigenvalues of the coupled eigenvalue problems XXTU=US2 and
XTXA=AS2. Thus, A and U are the eigenvectors of the scatter matrix XTX (Preisendorfer, 1988) and its
transpose XXT, respectively—the scatter matrix XTX is proportional to the covariance matrix C (i.e.
XTX=NC).

Equation (1) allows us to formulate the modal decomposition as (e.g. Jolliffe, 1995)
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Z=XA (analysis) (2)

or equivalently (e.g. Richman, 1986)

X=ZAT (synthesis) (3)

where A are the space patterns and Z=US are the time series. Equations (2) and (3) are, respectively, the
‘analysis’ and ‘synthesis’ formulas of Preisendorfer (1988).

The orthogonality properties of the unrotated modes in Equations (2) and (3) follow from the
properties of U and A. The modal space patterns (A) and time series (Z) are, respectively, orthogonal in
space and time because ATA (=I) and ZTZ (=S2) are both diagonal. Furthermore, the modes are also
temporally uncorrelated because they are orthogonal in time and have zero temporal mean. The modes
have zero temporal mean because the temporal mean of the data was removed before forming X (see
Section 2). The scatter (=N×variance) of the modes are given by the square singular values, which are
the eigenvalues of the scatter matrix (or its transpose) derived from Equation (1).

3. NORMALIZATION

It is clear from Equation (1) that there is not a unique way of constructing the space patterns and time
series of the empirical modes. In fact, there are an infinite number of possibilities depending on how S is
combined with U and A. In Equations (2) and (3), the singular values were grouped with the temporal
eigenvectors (i.e. US). However, one could have combined the singular values with the spatial eigenvec-
tors (i.e. SAT), or even with both spatial and temporal eigenvectors simultaneously (e.g. US1/2 and
S1/2AT). When U and/or A are multiplied by a diagonal matrix (e.g. S"I) the resulting matrix is no
longer orthonormal. Therefore, the different ways in which the orthogonal modes can be constructed
result in different normalizations, and in different orthogonality properties.

To investigate the effect of various normalizations on the properties of the rotated orthogonal modes,
a diagonal normalization matrix K is introduced. This allows us to write normalized versions of Equations
(2) and (3). The normalized analysis equation is constructed by right multiplying Equation (2) with the
diagonal matrix K to obtain

Z. =XA. (analysis) (4)

where Z. =ZK=USK and A. =AK. Right multiplying Z in Equation (3) with the identity matrix
I=K−1K gives the normalized synthesis equation

X=Z0 A0 T (synthesis) (5)

where Z0 =ZK−1=USK−1 and A0 =A. =AK. An advantage of Equation (5) is that allows us to recover
the data matrix by straightforward multiplication of the normalized modes.

4. ROTATION

The rotated modes are a linear transformation of the unrotated modes defined by an orthogonal, square
matrix T also referred to as the rotation matrix. Because T is orthogonal and square it satisfies

TTT=TTT=I

Using the rotation matrix T, one can write rotated versions of Equations (4) and (5). The rotated form
of Equation (4) is obtained by right multiplying it by T to get

Z. *=XA. * (analysis) (6)
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where A. *=A. T are the rotated spatial patterns and Z. *=Z. T are the rotated time series—note that
commonly T is applied only to a subset of the leading empirical modes.

Right multiplying Z0 in Equation (5) by the identity matrix I=TTT gives the rotated form of Equation
(5)

X=Z0 *A0 *T (synthesis) (7)

where Z0 *=Z0 T and A0 *=A0 T. Equation (7) shows that in this case, as in Equation (5), the data matrix
can also be reconstructed by simple matrix multiplication of the rotated modes.

5. ORTHOGONALITY

The orthogonality properties of the normalized modes in the analysis (Equation (4)) and synthesis
(Equation (5)) formulations (see Appendix for derivation) are A. TA. =K2, Z. TZ. =KS2K and A0 TA0 =
K2, Z0 TZ0 =K−1S2K−1, respectively. Similarly, the orthogonality properties of the rotated modes in both
formulations (Equations (6) and (7)) are A. *TA. *=TTK2T, Z. *TZ. *=TTKS2KT and A0 *TA0 *=
TTK2T, Z0 *TZ0 *=TTK−1S2K−1T , respectively.

The orthogonality properties of the unrotated and rotated modes for the normalized forms of the
analysis and synthesis formulations and three cases of the normalization matrix K (i.e. K=S, K=I and
K=S−1) are summarized in Table I. The cases K=S and K=I (columns 1 and 2) are the most common
choices for K in meteorology and oceanography (e.g. Preisendorfer, 1988). The case K=S−1 defines the
PCA model, which weights the eigenvectors with the singular values—in the PCA model the space
patterns represent covariances (correlations) between each variable and each empirical mode. Similarly,
the case K=I defines the EOF or unit length eigenvector model. Note that in this paper, the EOF and
PCA models arise through particular choices of the normalizations as in Jolliffe (1987). The more unusual
K=S−1 case (column 3), in which all the time series for the normalized form of Equation (2) (Z. ) have
unit scatter (see row 2), is included for comparison with the results of Jolliffe (1995).

Rows 1–4 show that the normalization (Equations (4) and (5)) of the analysis and synthesis
formulations (Equations (2) and (3)) do not alter the properties of the modes described in Section 2.
Therefore, the normalized modes are orthogonal in space and uncorrelated in time.

Rows 5 and 6 summarize the orthogonality properties of the rotated modes for the analysis formulation
given by Equation (2), and in normalized form by Equation (4), for the three choices of the normalization
matrix. These results correspond to the three cases discussed by Jolliffe (1995). Column 1 shows that for
K=S, which is the default option in some computer packages, neither spatial orthogonality nor temporal
uncorrelatedness are preserved by an orthogonal rotation. Columns 2 and 3 show that K can be chosen
so that an orthogonal rotation preserves orthogonality in space (K=I, column 3) or uncorrelatedness in
time (K=S−1, column 4), but not both simultaneously.

Table I. Orthogonality properties of unrotated and rotated empirical modes from the
analysis and synthesis formulations for three different values of the normalization

matrix K

K=S (PCA) K=I (EOF) K=S−1

A. TA. S−2IS2

Z. TZ. S4 S2 I

A0 TA0 S−2S2 I
S4Z0 TZ0 I S2

ITTS2T TTS−2TA. *TA. *
Z. *TZ. * ITTS4T TTS2T

TTS−2TA0 *TA0 * ITTS2T
TTS2TI TTS4TZ0 *TZ0 *
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The last two rows (7 and 8) show the orthogonality properties for the synthesis formulation given by
Equation (3), and in normalized form by Equation (5), for the three choices of the normalization matrix.
As noted in Sections 3 and 4, this convention is preferred because the data matrix can be reconstructed
directly from the unrotated or rotated modes (Equations (5) and (7)). With this convention, the most
common choices of the normalization matrix (K=S and K=I) preserve at least one of the properties of
the unrotated modes after an orthogonal rotation. The choice K=S (PCA) preserves orthogonality in
time, but not in space (column 1). The choice K=I (EOF analysis), which is the most common in
oceanography (e.g. Emery and Thomson, 1997), preserves orthogonality in space but not in time (column
2). Finally, the more unusual K=S−1 case does not preserve either property (column 3).

6. EXAMPLE

In the following example, we compare rotated PC (RPC) and rotated EOF (REOF) analyses, focusing on
the relaxation of the temporal orthogonality constraint of the unrotated modes. The dataset used is the
global monthly reconstruction of 1856–1991 sea surface temperature (SST) anomalies generated by
Kaplan et al. (1998) in a 5°×5° grid. Enfield and Mestas-Nuñez (1999) used this dataset to estimate and
remove a global El Niño–Southern Oscillation (ENSO) mode based on a complex EOF representation
which allowed for phase propagation. The variability of the non-ENSO residual data, with scales shorter
than 1.5 years and a linear trend removed at every grid point, was then studied using EOFs (Enfield and
Mestas-Nuñez, 1999) and REOFs (Mestas-Nuñez and Enfield, 1999). Here we compare some of the
Mestas-Nuñez and Enfield REOF results with the results of a RPC analysis applied to the same dataset.

We first calculated the empirical modes of the low-passed and detrended non-ENSO SST anomalies
using the synthesis formulation of the PC model. This was done by decomposing the data as in Equation
(5) using a SVD routine and a normalization matrix K=S. We then rotated the first ten normalized
spatial eigenvectors using a varimax orthogonal rotation. The space patterns and the time series of the
resulting RPCs will therefore satisfy Equation (7). The modal distribution of global (low-passed and
detrended) non-ENSO SST anomaly variance explained by the RPCs is shown in the right column of
Table II. For comparison, we also show the distribution of variance of the unrotated modes (left column)
and of the REOFs (centre column), as shown in Table I of Mestas-Nuñez and Enfield (1999). Table II
shows that the distributions of variance explained by the REOFs and RPCs, which is proportional to the
eigenvalues or square singular values, are very similar.

We found that every RPC mode has a corresponding REOF mode in the Mestas-Nuñez and Enfield
study, but their order (i.e. in terms of the global variance explained in Table II) is slightly different: RPC1
(see Figure 1) is the North Atlantic multidecadal mode (REOF1), RPC2 is the eastern North Pacific

Table II. Percentage of low-passed and detrended SST anomaly variance explained by
the first ten unrotated and rotated non-ENSO modes

Mode Unrotated REOFs RPCs

1 12.6 7.87.3
11.12 7.1 7.3

6.93 7.27.2
5.3 6.9 6.84

6.15 5.95.0
5.85.54.26

5.23.9 5.17
3.3 5.2 4.88

9 3.0 4.3 4.1
10 3.94.22.9

Total 58.6 58.6 58.6

Copyright © 2000 Royal Meteorological Society Int. J. Climatol. 20: 1509–1516 (2000)
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Figure 1. Comparison of the first mode of the rotated PC (RPC) and EOF (REOF) analyses of the non-ENSO residual data set,
describing the North Atlantic multidecadal mode. Upper: Spatial distribution of the response with respect to the RPC modal
reconstruction over the index region (rectangle): contour interval is 40, and a score of 100 is the average response over the index
region. Regions with scores greater than 40 are shaded. Middle: Difference between the RPC1 space pattern (upper) minus the
REOF1 space pattern (shown in Figure 1 of Mestas-Nuñez and Enfield, 1999); contour interval is 10 and negative contours are
dashed. Lower: The thick (thin) line indicates the temporal reconstruction of the RPC1 (REOF1) mode related variability averaged

over the index region

interdecadal mode (REOF2), RPC3 is the central tropical Pacific decadal mode (REOF4), RPC4 is the
eastern tropical Pacific decadal mode (REOF3), RPC5 is the North Pacific multidecadal mode (REOF5),
and RPC6 is the South Atlantic interannual mode (REOF6).

The spatial and temporal structures of REOF1 and RPC1, describing the North Atlantic multidecadal
mode, are compared in Figure 1. The bottom panel shows that the temporal SST anomaly reconstructions
in the index area (rectangular box) using RPC1 (thick) and REOFI (thin) are very similar—the
correlation coefficient between the two time series is 0.96. The spatial structure of RPC1 (Figure 1, upper)
is very similar to the space pattern of REOF1 of Mestas-Nuñez and Enfield (1999). The differences
between the RPC and REOF space patterns (Figure 1, middle) are generally smaller than 30% of the
average response in the index area. Similarly, we compared RPC and REOF modes 2–6 (not shown), and
found very close agreement between their spatial and temporal structures.

Because the temporal orthogonality of the PCs is preserved by an orthogonal rotation, the cross-
correlations between the RPC time series is zero. This suggests that the North Atlantic (RPC1) and South
Atlantic (RPC6) modes, and the North Pacific (RPC5) and central tropical Pacific (RPC3) modes are
temporally uncoupled. However, Table I shows that when the orthogonal rotation is applied to the EOFs
(instead of the PCs) the temporal orthogonality is relaxed and the time series are no longer constrained
to be uncorrelated. In fact, as shown in Table V of Mestas-Nuñez and Enfield (1999), the cross-
correlation between the North and South Atlantic REOFs is 0.02, and between the North and central
equatorial Pacific REOFs is −0.4. This led Mestas-Nuñez and Enfield (1999) to conclude that the North
and South Atlantic modes of non-ENSO variability may, indeed, be independent (see also Enfield et al.,
1999), but the North Pacific and central tropical Pacific modes may not.
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7. SUMMARY AND DISCUSSION

An apparent confusion found in the literature regarding the orthogonality properties of orthogonally
rotated empirical modes is clarified. It is shown that the confusion arises from using two (equivalent)
formulations of the modal decomposition defined by the analysis (Equation (2)) and synthesis (Equa-
tion (3)) equations. These two formulations lead to respective normalized forms of the analysis (Equa-
tion (4)) and synthesis (Equation (5)) equations. The normalized form of the analysis formulation
(Equation (4)) consists of multiplying both the space patterns and time series by the normalization
matrix K. The normalized form of the synthesis formulation (Equation (5)) consists of multiplying the
space patterns by K, and the time series by K−1. The synthesis formulation is preferred because it
allows us to recover the data matrix by direct multiplication of the unrotated or rotated modes. Along
with the two normalized forms of the modal decomposition, three possible choices of the normaliza-
tion matrix K were considered. These choices of K include two commonly used cases in oceanography
and meteorology (K=S which defines the PCA model and K=I which defines the EOF model) and
one more unusual case considered by Jolliffe (1995) (K=S−1).

Using the normalized form of the analysis formulation given by (Equation (4)) and the three choices
of K, the spatial orthogonality and temporal uncorrelatedness properties of the rotated modes pre-
sented by Jolliffe (1995) were reproduced. Briefly, K=S (PCA model, the default case in some
computer packages) preserves neither property, K=I (EOF model) preserves only spatial orthogonal-
ity, and K=S−1 preserves only temporal uncorrelatedness. In contrast, using the normalized form of
the synthesis formulation given by (Equation (5)) leads to different properties—except of course for
K=I. Briefly, K=S (PCA model) preserves only temporal uncorrelatedness and K=S−1 preserves
neither property.

As noted above, when an orthogonal rotation is applied to the synthesis formulation (Equation (5))
of the PCA model (K=S), the orthogonality is preserved in time, but relaxed in space. This choice is
useful to avoid getting predictable space patterns for the second and higher modes when the leading
space pattern is known. For example, when the leading space pattern has the same sign over all the
domain—as is the case of ENSO in the tropics—one generally expects that the second space pattern
will have a zero crossing near the maximum of the leading mode. Applications that used this ap-
proach to avoid getting predictable higher order patterns include Houghton and Tourre (1992) and
Kawamura (1994). Other applications of this approach can be found in the study of atmospheric
circulation patterns. These are based on the apparent property of atmospheric modes to be approxi-
mately uncorrelated in time, and not necessarily orthogonal in space (Horel, 1981; Barnston and
Livezey, 1987).

When an orthogonal rotation is applied to the EOF or unit eigenvector model (K=I), indepen-
dently of using the analysis or synthesis formulations, the spatial orthogonality is preserved but the
temporal uncorrelatedness is not. This is useful when using the rotated modes to define regional
temporal indexes because they are not constrained to be uncorrelated in time. This approach has the
effect of not prejudicing conclusions regarding the possibility of temporal couplings between the
rotated modes, especially those representing subregions of the same ocean basin. An application of the
rotated EOF approach (Mestas-Nuñez and Enfield, 1999; see also Enfield et al., 1999), and how it
compares to a rotated PCA approach, was illustrated with an example using a global SST anomaly
dataset (Section 6).
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APPENDIX A. DERIVATION OF THE ORTHOGONALITY PROPERTIES

The orthogonality properties of the normalized modes given by Equations (4) and (5) are

A. TA. =KATAK=K2,

Z. TZ. =KSUTUSK=KS2K

and

A0 TA0 =A. TA. =K2,

Z0 TZ0 =K−1SUTUSK−1=K−1S2K−1,

respectively.
Similarly, the orthogonality properties of the rotated modes given by Equations (6) and (7) are

A. *TA. *=TTA. TA. T=TTK2T,

Z. *TZ. *=TTZ. TZ. T=TTKS2KT

and

A0 *TA0 *=TTA0 TA0 T=TTK2T,

Z0 *TZ0 *=TTZ0 TZ0 T=TTK−1S2K−1T,

respectively.
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