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ABSTRACT

A simple dynamic model is proposed to illustrate the multidecadal oscillation of the Atlantic Ocean

thermohaline circulation. The proposed oscillation relies on alternating actions of positive and negative

feedbacks, which are operated by a slow adjustment of the ocean circulation and the associated time delay in

the advective flux response to a change in meridional density gradient. The key element of the oscillation is

the time delay, which is conceptually related to the basin-crossing time of long Rossby waves in the high-

latitude North Atlantic. For a sufficiently long time delay, the solution becomes unstable in some regions of

model parameter space and oscillates with a period of approximately 2 times the delay time.

1. Introduction

The objective of this note is to propose a simple dy-

namic model for the multidecadal oscillation of the

Atlantic Ocean thermohaline circulation (THC), which

is commonly manifested in general circulation model

simulations (e.g., Delworth et al. 1993; Dai et al. 2005;

Knight et al. 2005). By definition, a self-sustained os-

cillation requires alternating actions of positive and

negative feedbacks. Here, it is proposed that the re-

quired feedbacks for the multidecadal oscillation of the

THC are provided by a slow adjustment of the ocean

circulation and the associated time-delayed advective

flux in response to a change in meridional density gra-

dient. A four-box model is used to illustrate the pro-

posed oscillation.

2. The four-box model

The North Atlantic Ocean is simplified to four boxes

with two-layer structures in the high and low latitudes, as

shown in Fig. 1. The meridional density gradient is

always positive; thus the volume transport must be

northward in the upper layer and southward in the lower

layer. Conservation of mass dictates that the volume

transport at the middepth is downward in the high lati-

tudes and upward in the low latitudes. Therefore, vol-

ume integration of the density conservation equation for

each box yields
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where r1, r2, r3, and r4 are densities of the upper low-

latitude box, upper high-latitude box, lower high-latitude

box, and lower low-latitude box, respectively; V is the

volume transport (per unit volume) in response to the

meridional density gradient; q is density flux into the upper
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high-latitude box (or out of the upper low-latitude box);

r is a damping coefficient; ky is a vertical diffusion co-

efficient; H is the model ocean depth divided by 2; and

F1, F2, F3, and F4 represent other forcing terms such as

horizontal diffusion and convective mixing. Note that

a cubic form of dissipation is used instead of a linear

form to prevent infinite growth of linearly unstable so-

lutions and model drifts as in Suarez and Schopf (1988)

for the ENSO oscillator.

Now, a separate equation for V is required to solve

Eqs. (1)–(4). Using the geostrophic balance and hydro-

static relation, the zonal baroclinic (i.e., upper layer minus

lower layer) velocity in the midlatitude corresponding

to the north–south density gradient can be written as
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where g is the gravitational acceleration, ro is a reference

density, fo is the planetary vorticity in the midlatitudes,

Ly is the meridional length of the model domain divided

by 2, r14 5 (r1 1 r4)/2, and r23 5 (r2 1 r3)/2. As dis-

cussed in Killworth (1985), the baroclinic meridional

motions are established after the adjustment time, which

depends on the basin-crossing time of long baroclinic

Rossby waves. Therefore, in this study, the meridional

volume transport (per unit volume) is represented by

using Eq. (5) with a time delay:
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where a is a constant on the order of 1 and d is the time

delay, which is approximately the basin-crossing time of

long baroclinic Rossby waves.

Scaling time by 2f
o
L2

y /(ĝH), r by [ĝH/(2rf
o
L2

y)]1/2,

and q by fr�1[ĝH/(2f oL2
y)]3g1/2, the following nondimen-

sional equations can be derived:
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where ĝ 5 gDr/ro (Dr is the scale of north–south density

difference) and the nondimensional vertical diffusivity

ko 5 2k
y
f

o
L2

y/(ĝH3).

3. The one-equation model

To gain some insights into the behavior of the non-

linear system of Eqs. (7)–(10), a simplified one-equation

model is derived and evaluated here. Specifically, it

is assumed that r2, r3, and r4 are close enough to

each other to be represented as a single variable, r2* 5

(r2 1 r3 1 r4)/3. This is not an unreasonable assumption

because the convective process maintains r3 as close to

r2, and the advective flux from box 3 to box 4 also keeps

r4 close to r3 for a sufficiently small value of ko. Then,

the density budget equations [Eqs. (7)–(10)] can be sim-

plified to a single equation:
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where r̂ 5 r
2
*� r

1
, and the nonlinear dissipation term is

slightly modified from its original form. If d 5 0, then this

equation has a positive steady-state solution. By ne-

glecting the nonlinear dissipation term for the sake of

illustration, the positive steady solution r̂o is

FIG. 1. The North Atlantic Ocean is simplified with four boxes.

Since the meridional density gradient is always positive, the volume

transport (per unit volume) V is always northward in the upper

layer and southward in the lower layer. Here, r1, r2, r3 and r4 are

densities of the upper low-latitude box, upper high-latitude box,

lower high-latitude box, and lower low-latitude box, respectively;

q is density flux into the upper high-latitude box (or out of the

upper low-latitude box).
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The linear stability of r̂
o

in Eq. (11) can be studied by

replacing r̂(t) in Eq. (11) with the sum of the station-

ary solution r̂o and the perturbation r̂9(t). By retaining

only the linear terms, the perturbation equation can be

written as
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Seeking solutions of the form r̂9 } exp(st) with s 5

sr 1 isi, the following equations can be derived:
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If sr is positive, then the first term on the rhs of Eq. (14)

is always larger than the second term; thus Eq. (14)

cannot be satisfied. Therefore, sr is negative regardless

of si. This means that the simplified density budget

equation [Eq. (11)] is always stable around r̂o. However,

it is shown in section 4 that the nonlinear system of Eqs.

(7)–(10) is unstable for a sufficiently large value of d.

This suggests that the density budgets in the lower layers

(boxes 3 and 4) must be fully incorporated to resolve the

multidecadal THC oscillation.

4. Numerical solutions

The behavior of the nonlinear Eqs. (7)–(10) is ex-

plored numerically using a fourth-order Runge–Kutta

scheme. When the upper layer is heavier than the layer

below, the convective mixing is achieved by completely

mixing the two layers. Horizontal diffusion is turned off

for simplicity because its linear damping effect on the

meridional density gradient does not add much value.

Figure 2 shows three model solutions for d 5 0, 7, and 20,

when a, q, and ko are set to 2.0, 0.1, and 0.2, respectively.

The dashed lines are the statistical equilibrium values.

For small values of d, the solution achieves a stable state.

For a larger value of d, on the other hand, the solution

oscillates with a period of approximately two times the

delay time (hereinafter referred to as a delayed advec-

tive oscillator).

Obviously, at issue is why the solution oscillates when the

advective delay is sufficiently long. To answer this question,

the equation for the density gradient between the high-

latitude boxes and low-latitude boxes is diagnosed here:
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FIG. 2. Three model solutions, (r23 2 r14), for (a) d 5 0, (b) d 5 7,

and (c) d 5 20; a, q, and ko are set to 2.0, 0.1, and 0.2, respectively.

The dashed lines are the statistical equilibrium values.
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Figure 3 shows (r23 2 r14)(t) and (r23 2 r14)(t 2 d) in

the top part of the figure. The storage term on the lhs of

Eq. (16) and the advective density gradient flux, surface

density flux gradient, and dissipation terms on the rhs of

Eq. (16) are shown in the bottom part of the figure. In

this case, a, q, and ko are set to 2.0, 0.1, and 0.2, re-

spectively, and the time delay d is set to 20.

Table 1 summarizes the temporal evolutions of the

meridional density gradient, the advective density gra-

dient flux, and the sign of advective feedback during one

cycle of the oscillation between the five points labeled

(A), (B), (C), (D), and (E) as indicated in Fig. 3. As

illustrated in Table 1, the delayed advective oscillator

is maintained by alternating actions of amplification

(i.e., positive feedback) and stabilization (i.e., negative

feedback) through the delayed advective density gra-

dient flux. In one cycle of the oscillation, there are two

periods of amplification separated by two periods of

stabilization.

The first amplification occurs when the meridional

density gradient increases above the equilibrium point

because the advective density gradient flux is smaller

than the surface density flux gradient [(A)–(B)]. This is

followed by the first stabilization period, during which

the meridional density gradient swings back from its

maximum point toward the equilibrium point because

the advective density gradient flux is larger than the

surface density flux gradient [(B)–(C)]. Then, the second

amplification occurs, during which the meridional den-

sity gradient decreases below the equilibrium point be-

cause the advective density gradient flux is larger than

the surface density flux gradient [(C)–(D)]. During the

second stabilization period, the meridional density gra-

dient swings back from its minimum point toward the

equilibrium point because the advective density gradi-

ent flux is smaller than the surface density flux gradient

[(D)–(E)]. This cycle then repeats. In summary, the me-

ridional density gradient and the magnitude of advective

density gradient flux anomaly are negatively (positively)

correlated during the positive (negative) feedback pe-

riods as indicated in Table 1.

To have an idea about the actual time scale of the

delayed advective oscillator, let us consider typical pa-

rameter values for the North Atlantic: Lx 5 5 3 106 m,

Ly 5 2.0 3 106 m, ĝ 5 1022 m s21, fo 5 1024 s21, b 5 2 3

10211 m21 s21, and H 5 2000 m. According to previous

general circulation model simulations, the density fluc-

tuation associated with the multidecadal oscillation of

THC is mainly in the high-latitude North Atlantic around

408–658N (e.g., Delworth et al. 1993) and propagates

slowly to the west (e.g., Dijkstra et al. 2006). Therefore,

the long baroclinic Rossby wave speed c(5g9Hb/(2fo
2),

where g9 is the reduced gravity) is computed separately

based on typical parameter values for the high-latitude

North Atlantic around 508N: g9 5 5 3 1023 m s21 and

fo 5 1.1 3 1024 s21. Then, the basin-crossing time can be

estimate by Lx/c, which is approximately 20 yr in this case.

Assuming that the delay time is on the order of the basin-

crossing time, the period of the delayed advective oscil-

lator is about 40 yr, which is 2 times the delay time. Using

the time scale 2f oL2
y/(ĝH) 5 1.3 yr, the nondimensional

delay time d is approximately 15.

FIG. 3. The model solutions (r23 2 r14)(t) and (r23 2 r14)(t 2 d)

are shown in the top part of the figure. The storage term on the lhs

of Eq. (16) and the advective density gradient flux, surface flux

gradient, and dissipation terms on the rhs of Eq. (16) are shown in

the bottom part of the figure; d, a, q, and ko are set to 20, 2.0, 0.1,

and 0.2, respectively. The plus and minus signs represent the pe-

riods of positive and negative feedback, respectively. See the text

and Table 1 for the description of density budgets between the

points labeled (A), (B), (C), (D) and (E).
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5. Effects of external forcing

Now, the responses of delayed advective oscillator to

low-frequency external forcing patterns, such as fresh-

water flux into the high-latitude North Atlantic, and to

high-frequency external forcing patterns, such as weather

noise related to the North Atlantic Oscillation (NAO),

are explored here. Three low-frequency forcing experi-

ments are performed—that is, 1) density flux out of the

high-latitude North Atlantic (i.e., freshening or warm-

ing), 2) complete shut down of the THC, and 3) density

flux into the high-latitude North Atlantic (i.e., cooling or

net evaporation). For each experiment, the following

form of density flux is used only in the high latitudes (i.e.,

box 2):

q
2

5 q 1 q
o

exp
t*� 40

20

� �2

, (17)

where t* 5 t/d, and qo is set to 2q/2, 22q, and q/2 for

experiments 1, 2, and 3, respectively. Note that the

surface flux in the low latitude is kept constant in these

experiments.

Figure 4a shows that the THC may slow down as

a result of the density flux out of the high latitudes (i.e.,

freshening or warming), but it swings back to the equi-

librium solution once the external forcing is removed.

An interesting feature is that the amplitude of the de-

layed advective oscillator is reduced substantially, and

its recovery is extremely slow. As shown in Fig. 4b, the

THC completely shuts down as the surface flux in the

high-latitude box is reduced to match that in the low-

latitude box. The THC swings back to the equilibrium

solution after the external forcing is removed. However,

the delayed advective oscillator is completely disrupted.

Interestingly, the external density flux out of the high-

latitude North Atlantic (i.e., cooling or net evaporation)

has only a minor effect on the THC strength, as shown in

Fig. 4c. However, the delayed advective oscillation is

weakened (but not as much as in Fig. 4a) and slowly

recovers once the external forcing is removed.

Next, the effect of high-frequency forcing on the de-

layed advective oscillator is explored. It is widely believed

that the high-frequency portion of the NAO originates

from weather noise. Nevertheless, the NAO has a co-

herent spatial structure with a dipolelike meridional

pattern of the sea level pressure (Hurrell 1995). Because

FIG. 4. The responses of the delayed advective oscillator to the

external forcing of (a) density flux out of the high-latitude North

Atlantic (i.e., freshening or warming), (b) complete shutdown of

the THC, and (c) density flux into the high-latitude North Atlantic

(i.e., cooling or net evaporation). The amplitude of the external

forcing qo is set to 2q/2, 22q, and q/2 for (a),(b) and (c), re-

spectively; d, a, q and ko are set to 20, 2.0, 0.1, and 0.2, respectively.

TABLE 1. The meridional density gradient [(r23 2 r14)(t)], the

magnitude of advective density gradient flux, and the sign of ad-

vective feedback during the periods between the five points labeled

(A), (B), (C), (D) and (E), as indicated in Fig. 3. The symbols ‘‘[’’

and ‘‘Y’’ indicate that the value is above and below the equilibrium

solution, respectively. The second and third columns are negatively

correlated during (1) feedback periods and positively correlated

during (2) feedback periods.

Time (r23 2 r14)(t) jAdvectionj Feedback

(A)–(B) [ Y (1)

(B)–(C) [ [ (2)

(C)–(D) Y [ (1)

(D)–(E) Y Y (2)
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of this coherent spatial pattern, if the high-latitude is cooled

(warmed), then the midlatitude is warmed (cooled) dur-

ing a positive (negative) phase of the NAO. Therefore,

the high-frequency forcing of the NAO is represented

here as a random noise surface flux with antisymmetric

meridional pattern; that is, the sign of random forcing is

opposite in the two latitude boxes but with the same

amplitude. Note that the random noise forcing does not

produce a net surface flux into or out of the system. The

amplitude of the random forcing is set to q/2.

Figure 5 shows the model solutions with (Fig. 5a) and

without (Fig. 5b) the random forcing, and with both the

low- and high-frequency forcing (Fig. 5c) for a 5 1.2,

q 5 0.1, ko 5 0.2, and d 5 20. In the last case, the low-

frequency forcing is added only in the high latitude

(i.e., box 2) using Eq. (17) with qo 5 21.5q. As shown in

Fig. 5b, without the weather noise, the oscillation is

damped out for the given parameter values. Interestingly,

if the weather noise is introduced, the delayed advective

oscillator with the period of ;2d can sustain its amplitude

of up to about 35% of the mean. It is also interesting to

note that, under the weather noise forcing, the amplitude

of the oscillation fluctuates at a very low frequency, which

amounts to the multicentennial time scale using realistic

parameter values for the North Atlantic. Figure 5c shows

that, even when the external forcing is large enough to

nearly shut down the THC, the weather noise can in-

vigorate the delayed advective oscillator once the ex-

ternal forcing is removed.

In summary, the THC is remarkably stable because it

always swings back to its original state once external

forcing is removed [this conclusion may not be valid if

both the temperature and salinity are considered, as in

Stommel (1961)]. The delayed advective oscillator is, on

the other hand, very fragile. If external forcing is large

enough, then it can virtually wipe out the delayed ad-

vective oscillator. The recovery of the delayed advec-

tive oscillator is extremely sluggish, suggesting that the

growth rate of the delayed advective oscillator is very

small. However, these are characteristics of the delayed

advective oscillator in its pure form. If the NAO-like

weather noise forcing is added to the system, then the

behavior of the delayed advective oscillator is drastically

changed. In particular, relatively large amplitude of the

weather noise (50% of the mean is used in the experi-

ment) can sustain an active delayed advective oscillation

of an otherwise stable system. The THC can still shut

down if external forcing is large enough. However, the

weather noise can quickly invigorate the delayed ad-

vective oscillator once the external forcing is removed.

Finally, the weather noise can also produces a very low

frequency fluctuation of the delayed advective oscilla-

tion at the multicentennial time scale.

An important question is why the delayed advective

oscillator is excited by the NAO-like weather noise. The

simple stochastic climate model of Hasselmann (1976)

provides a plausible explanation for this question. It is

well known after Hasselmann (1976) that a random noise

atmospheric forcing produces a red-noise spectrum of

ocean temperature via ocean memory. If this theory is

applied to the four-box model, it means that a random

surface forcing can produce large amplitude signals in

the meridional density gradient field (r23 2 r14) at low

FIG. 5. The behavior of the delayed advective oscillator (a) with

and (b) without the random noise forcing and for (c) a case with

both the low- and high-frequency forcing. The amplitude of the

random forcing is set to q/2 for (a) and (c). For (c), qo 5 21.5q; d, a,

q, and ko are set to 20, 1.2, 0.1, and 0.2, respectively.
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frequencies, including at the frequency of delayed ad-

vective oscillator v ; 0.5d21. Therefore, the delayed ad-

vective oscillation can be excited and maintained by the

weather noise even if it is subject to a damped oscillation,

as shown in Fig. 5a.

6. Linear stability analysis

To better understand how the four parameters a, q,

ko, and d influence the delayed advective oscillator, a

linear stability analysis of the nonlinear system of Eqs. (7)–

(10) is performed. First, the stationary solutions with

d 5 0 are obtained by numerically integrating Eqs. (7)–

(10). Replacing the solutions with the sum of stationary

solution and perturbation and retaining only the linear

terms can derive the perturbation equations (not shown).

Seeking solutions of the form r9k 5 ck exp(st) with k 5 1,

2, 3, and 4 and s 5 sr 1 isi, a matrix equation, A �C 5 0,

can be derived. The determinant of the matrix A must

vanish for nontrivial eigenfunctions to exist; this yields

an equation for the calculation of the complex eigen-

value s for chosen values of a, d, ko, and q. Since the

matrix A contains the eigenvalue s and its exponential

form, exp(2sd), an iterative Muller’s method is used to

obtain the eigenvalue s.

Figure 6 shows the neutral curves on the a–d plane for

q 5 0.1 and ko 5 0.2 (Fig. 6a), on the ko–d plane for a 5

2.0 and q 5 0.1 (Fig. 6b), and on the q–d plane for a 5

2.0 and ko 5 0.2 (Fig. 6c). For a given value of d, increas-

ing a and decreasing ko destabilize the system. These re-

sults are not surprising because a is proportional to the

meridional volume transport, which provides the posi-

tive feedback required to maintain the delayed advec-

tive oscillator and thus serves as a growth rate, and ko

serves as a damping rate. However, it is important to note

that the neutral curve on the q–d plane is not monotonic.

For a given value of d, the system is unstable only when

q is within a certain range. This strongly supports an

idea that the delayed advective oscillator exists via a del-

icate balance of various terms and also nicely explains

why the delayed advective oscillator (in its pure form) is

so fragile under the effects of external forcing, as illus-

trated in Fig. 4.

7. Summary and discussion

Perhaps, the four-box model presented here is one of

the simplest dynamic models for the multidecadal os-

cillation of the THC, which is commonly manifested in

general circulation model simulations. Despite the overly

simplified nature of the model, this minimal complexity

model describes effectively the mechanism of the delayed

advective oscillator, which appears to be an important

stepping-stone toward our understanding of the THC and

its multidecadal oscillation.

The key element of the delayed advective oscillator is

the time delay in the advective flux response to a change

in meridional density gradient. This time delay, which is

conceptually related to the basin-crossing time of long

baroclinic Rossby waves at the high-latitude North At-

lantic, allows alternating actions of positive and negative

advective feedbacks and thus gives rise to a self-sustained

oscillation. An important signature (or indicator) of the

delayed advective oscillator is that the meridional den-

sity gradient anomaly and the magnitude of meridional

advective density gradient flux anomaly are negatively

FIG. 6. Neutral stability curves (a) on the a–d plane for q 5 0.1

and ko 5 0.2, (b) on the ko–d plane for a 5 2.0 and q 5 0.1, and

(c) on the q–d plane for a 5 2.0 and ko 5 0.2.
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(positively) correlated during the positive (negative)

feedback periods.

Related to the fundamental issue of decadal predict-

ability of the THC, an apparently important and prac-

tical question is whether the multidecadal oscillation of

the THC is self-sustained (e.g., Greatbatch and Zhang

1995) or damped, in which case the NAO-like weather

noise may sustain the oscillation (e.g., Capotondi and

Holland 1997; Eden and Greatbatch 2003). The linear

stability analysis of the delayed advective oscillator may

help us to better understand under what conditions

(or regions of the model parameter space for a, ko, q,

and d) the THC switches between an unstable state and

a damped regime.

The delayed advective oscillator can be compared

to the delayed action oscillator for ENSO (Suarez and

Schopf 1988) because the key element in both cases is

the oceanic Rossby wave transit effects. However, there

is an important distinction between the two oscillators.

In the delayed action oscillator, the equatorial oceanic

Rossby wave transit effects provide a negative delayed

feedback to an otherwise linearly amplifying system. In

the delayed advective oscillator, the advective density

gradient flux, which is delayed by the oceanic Rossby

wave transit effects, provides both the negative and pos-

itive feedbacks for the oscillation.

It is important to point out that, for a given positive

(negative) anomaly of meridional density gradient, if

there is no time delay then the meridional salt advection

has a destabilizing effect whereas the meridional heat

transport has a stabilizing effect. Griffies and Tziperman

(1995) showed that a phase lag between the salt and heat

advection could support a damped oscillation. This mech-

anism, which is obviously missing in our four-box model,

can be readily explored by expanding the density equations

[Eqs. (7)–(10)] to two sets of equations for salinity and

temperature equations.
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