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A B S T R A C T

This work updates the methods of Lumpkin and Johnson (2013) to obtain an improved near-surface velocity
climatology for the global ocean using observations from undrogued and 15-m drogued Global Drifter Program
(GDP) drifters. The proposed procedure includes the correction of the slip bias of undrogued drifters, thus
recovering about half of the GDP dataset; and a new approach for decomposing Lagrangian data into mean,
seasonal and eddy components, which reduces the smoothing of spatial gradients inherent in data binning
methods. The sensitivity of the results to method parameters, the method performance relative to other
techniques, and the associated estimation errors, are evaluated using statistics calculated for a test dataset
consisting of altimeter-derived geostrophic velocities subsampled at the drifter locations, and for the full
altimeter-derived geostrophic velocity fields.

It is demonstrated that (1) the correction of drifter slip bias produces statistically similar mean velocities for
both drogued and undrogued drifter datasets at most latitudes and reduces differences between their variance
estimates, (2) the proposed decomposition method produces pseudo-Eulerian mean fields with magnitudes and
horizontal scales closer to time-averaged Eulerian observations than other methods, and (3) standard errors
calculated for pseudo-Eulerian quantities underestimate the real errors by a factor of almost two. The improved
decomposition method and the inclusion of undrogued drifters in the analysis allows resolving details of the
time-mean circulation not well defined in the previous version of the climatology, such as the cross-stream
structure of western boundary currents, recirculation cells, and zonally-elongated mid-ocean striations.

1. Introduction

A global climatology of surface ocean currents is desirable for a
variety of applications. For example, the statistical moments of the
ocean velocity (mean, variance, and covariances) are used in the study
of linear geophysical instabilities, ocean energetics, and the turbulent
transport of tracers and heat. In a Lagrangian framework, the fluctua-
tions around the mean are used to infer eddy diffusivities and
decorrelation time scales. Besides the investigation of the underlying
ocean dynamics, the statistical description of the surface circulation is
also relevant for ship routing, search and rescue operations, and for
predicting the dispersion and transport pathways of biogeochemical
tracers and of pollutants such as oil, microplastic, and floating marine
debris.

The drifters of the Global Drifter Program (GDP) currently provide
the most accurate set of measurements of the near-surface ocean
velocities at global scales (Lumpkin and Pazos, 2007; Maximenko
et al., 2013). However, observations are scattered in space and time

and often autocorrelated in both dimensions, making their decomposi-
tion into mean and fluctuating components a non-trivial exercise. A
common approach involves ensemble-averaging data selected within
spatial bins (e.g. Niiler, 2001; Fratantoni, 2001; Jakobsen et al., 2003;
Reverdin et al., 2003; Maximenko et al., 2009; Zhurbas et al., 2014),
however, this method has a number of associated biases whose effects
are difficult to diagnose (Mariano and Ryan, 2007). A particularly
important source of uncertainty lies in the choice of bin size, whose
definition involves a trade-off between the statistical reliability of the
results and the resolution of the horizontal scales of the mean flow.
Specifically, larger bins select more data points, which leads to a higher
statistical significance of the estimates, however they smooth horizontal
variations of the mean at scales smaller than the bin. Conversely,
smaller bins better resolve spatial gradients, however the use of less
data points increase the estimation errors. The bin size choice, there-
fore, influences the estimation of the mean, consequently also affecting
the residuals and thus second moment statistical properties (Fratantoni,
2001; LaCasce, 2008; Koszalka and LaCasce, 2010).
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Furthermore, while most studies based on binning methods em-
ployed fixed-sized bins, a consequence of this practice is obtaining
pseudo-Eulerian estimates whose statistical reliability vary in space. To
avoid this issue, Koszalka and LaCasce (2010) proposed selecting data
in clusters covering unequal areas but with a similar number of
observations. Notably, the application of this technique to GDP data
in the Nordic seas resolved features of the time-mean circulation with
scales ≤10 km in well-sampled regions (Koszalka et al., 2011). How-
ever, the number of observations per cluster prescribed in that work
results in an average selection radius of 75 km (∼0.67° latitude and
∼1.3–1.8° longitude, in their study area), meaning that horizontal
velocity gradients at mesoscale ranges are smoothed out when con-
sidering typical ocean sampling densities.

Another source of uncertainty is due to the fact that drifters do not
perfectly track the horizontal flow. Differences between the measured
velocities and the actual current velocities, an effect known as slip, are
caused by wind drag on the drifters surface float and wave-induced
phenomena, such as Stokes drift and drifter self-propulsion by wave
surfing. GDP drifters include a drogue centered at 15-meter depth that
minimizes the wind and wave-induced bias, however that also intro-
duces another component to the slip via the vertical velocity shear
between the surface float and the subsurface drogue. Despite the
complex nature of the processes driving the slip motion, the drogued
design of GDP drifters is calibrated to yield a predominantly downwind
slip of less than ∼0.1% of the 10-m wind speed, for winds up to 10 m/s
(Niiler et al., 1995). An assessment of the GDP dataset by Lumpkin et al.
(2013) showed that more than 50% of the available data previously
believed to be from drogued drifters are actually from instruments that
had lost their drogues, a condition that changes the sampling level from
15-m to the surface, and renders their trajectories more sensitive to
wind and wave effects, increasing the slip to about 0.7–1.6% of the 10-
m wind speed (e.g. Pazan and Niiler, 2001; Poulain et al., 2009; Peng
et al., 2015b).

Nearly-global maps of the mean surface ocean circulation calculated
from drifter observations using bin-averaging were presented by Niiler
(2001) and Maximenko et al. (2009). Considering that these fields were
biased by undrogued drifter data, and seeking to reduce the smoothing
effect of data binning, Lumpkin and Johnson (2013) produced a global
climatology using drogued-only observations and a new binning
method that simultaneously models spatial and temporal variations.
However, since the exclusion of undrogued data significantly reduces
the observational density in many oceanic areas, Lumpkin and Johnson
(2013) selected data within relatively large bins (specifically within
ellipses oriented by the variance of the binned observations, with areas
equivalent to 2° radius circles) to obtain statistically significant
estimates homogeneously distributed throughout the oceans. Although
the use of large bins better resolves large-scale circulation patterns, it
has the potential to significantly smooth coherent structures at mesos-
cale ranges, such as the large cross-stream velocity gradient associated
with western boundary currents.

Based on these considerations, this study applies a first-order
correction to the slip of undrogued drifters by referencing their velocity
estimates to 15-m using a formulation proposed by Pazan and Niiler
(2001), and describes a new estimation method designed to further
reduce the smoothing effect of data binning, in order to generate a new
comprehensive velocity climatology at 15-m depth (hereafter referred
to as “near-surface”) of the global ocean. The mean fields obtained
using the proposed approach recover well-known large-scale circulation
features, and resolve coherent structures at mesoscale ranges whose
visualization was only possible by time-averaging surface velocities
indirectly inferred from satellite observations (e.g. Lagerloef et al.,
1999; Maximenko et al., 2009). A thorough description of the circula-
tion in light of the new results, including its seasonal variations and
kinetic energy distribution, will be the subject of an upcoming
publication. Here, focus is given to describing the proposed method
and to analyzing its associated uncertainties.

This work is organized as follows. Section 2 describes the datasets,
the correction of drifter slip bias, and the method proposed for the
decomposition of Lagrangian data into mean, seasonal and eddy
components. Section 3 presents the results of sensitivity tests to method
parameters and an error analysis, describes the improvements of the
new climatological fields relative to the results of Lumpkin and Johnson
(2013), and briefly describes prominent new features observed in the
obtained global maps. Finally, Section 4 summarizes this study and its
conclusions.

2. Methods

2.1. Data description

2.1.1. Position/velocity observations from surface ocean drifters
This analysis uses position and horizontal velocity data from both

undrogued and 15-m drogued drifters of the Global Drifter Program
(GDP). This dataset is archived and distributed by the Atlantic
Oceanographic and Meteorological Laboratory of the National
Oceanic and Atmospheric Administration (AOML/NOAA, http://
www.aoml.noaa.gov/phod/dac/index.php). Its generation involves
the quality control of the raw drifter position fixes, and their subse-
quent interpolation via kriging along their trajectories to regular 6 h
intervals, at which the u and v velocity components are calculated by
12 h centered differencing the kriged positions (Hansen and Poulain,
1996). The GDP dataset obtained for this study comprises more than 29
million, six hour position/velocity estimates scattered throughout the
worlds ocean, from February 1979 to June 2015. About 56% of the
available data points are from undrogued drifters.

Fig. 1 shows global distribution maps of the data obtained by
drogued, undrogued and both types of drifters (top, middle and bottom
panels, respectively), in observation days per square degree. The
density of data obtained by drogued drifters is usually higher close to
continental contours and to traditional deployment sites, such as the
western North Atlantic, the western and eastern North Pacific, the
tropical Pacific, Sea of Japan, and near the Antarctic Peninsula, while
the distribution of data from undrogued instruments marks time-
averaged convergence zones in the interior of the subtropical gyres,
notably highlighting garbage patches in the eastern South Pacific, and
within the subtropical gyres of the Atlantic ocean. These characteristics
arise because (a) the probability of drogue loss increases as a function of
drifter age, with about 30% (90%) of these instruments losing their
drogues within the first 3 months (1.5 years) of operation (Grodsky
et al., 2011); (b) a time scale of months to years is required for drifters
deployed near coastal areas to travel to the interior of the gyres,
meaning that instruments sampling these regions tend to be older and
thus more frequently undrogued; and (c) the drifters ultimately tend to
move away from time-averaged divergence areas, such as the equatorial
region, and to accumulate at convergence zones, such as the interior of
subtropical gyres. While Ekman convergence plays a role in this effect,
Beron-Vera et al. (2016) demonstrated that the main mechanism
driving the accumulation of undrogued drifters at large-scale conver-
gence zones is the combined action of wind and currents on finite-sized
floating objects.

2.1.2. Altimeter-derived geostrophic velocity fields
Altimeter-derived surface geostrophic velocity (GV) fields are

produced by the Segment Sol Multimissions d'Altimétrie, d'Orbitographie
et de Localisation Précise of the Data Unification and Altimeter
Combination (SSALTO/DUACS), and were obtained from the
Archiving, Validation and Interpretation of Satellite Ocean Data
(AVISO, http://www.aviso.altimetry.fr/duacs/). For its generation,
regularly-gridded sea-surface height (SSH) fields are initially obtained
by merging data from two altimetric satellites with different sampling
characteristics. One is from the TOPEX/Jason missions, with a 315 km
equatorial ground track separation and a 9.9156 days global sampling
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cycle, and the other is from the ERS/Envisat missions, with an 85 km
equatorial ground track separation and a 35 days sampling cycle. The
use of simultaneous observations from these two sampling strategies
allows the generation of SSH fields with higher spatial-temporal
resolution (Chelton et al., 2007), while using data from only two
satellites at a time ensures a homogeneous spatial-temporal error
distribution (Polito and Sato, 2015). Geostrophic velocities are then
calculated at the extratropics using the geostrophic relations, and
within a 5° band around the equator using a β-plane formulation of
the geostrophic equations (Lagerloef et al., 1999). The time series of GV
maps obtained for this study has a 0.25° × 0.25° × 1 day resolution,
covering the oceans between 67.5°S and 67.5°N from October 1992
until June 2015.

2.1.3. Reanalysis 10-m wind fields
10 meter height wind velocity fields are from the European Centre

for Medium-Range Weather Forecasts (ECMWF, http://www.ecmwf.
int) ERA-Interim reanalysis model (Dee et al., 2011). The obtained
time-series of maps have a 1° × 1°×6 hour resolution and spans the
entire temporal coverage of the GDP dataset. The use of reanalysis
winds is based on the assumption that, as this class of numerical models
continually assimilates real geophysical measurements to redefine their

initial conditions, their results constitute the best available representa-
tion of the surface wind field in the absence of actual observations.

2.2. Correction of drifter slip bias

Due to the significant slip of undrogued drifters, previous studies
recommended not using their data for calculating pseudo-Eulerian flow
statistics without first correcting for slip (e.g. Grodsky et al., 2011;
Lumpkin and Johnson, 2013). As shown by Fig. 1, this significantly
reduces the observational density in extensive oceanic regions, parti-
cularly in the Southern Ocean, the South Pacific, and the subtropical
gyres of all three major ocean basins. Methods for correcting the
downwind slip of undrogued drifters are available in the literature (e.g.
Pazan and Niiler, 2001; Poulain et al., 2009), whose application in the
equatorial Atlantic and in the Indian Ocean reduced differences
between pseudo-Eulerian statistical properties calculated using obser-
vations from each sampling regime (Perez et al., 2014; Peng et al.,
2015a). Based on these considerations, this Section extends the correc-
tion of the undrogued drifter slip velocities to the global ocean, and
evaluates the advantages and biases of this practice for calculating the
ocean velocities’ pseudo-Eulerian mean and variance.

First, the ECMWF 10-m wind fields are linearly interpolated to the

Fig. 1. Number of drifter observation days per square degree for the period between February 1979 and June 2015, considering data obtained from drogued, undrogued, and both
sampling regimes (top, middle and bottom panel, respectively).
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drifter locations. To account for the slip motion, a downwind velocity
modeled as α W× is subtracted from the drifter velocities, where W is
the 10-m wind speed, and α is the fraction of W converted to the slip.
For drogued instruments, α = 7 × 10d

−4 (Niiler et al., 1995). For
undrogued drifters, αu is calculated using a formulation proposed in
Pazan and Niiler (2001), given by

α U U
W

α= − + ,u
u d

d (1)

where the subscripts d and u respectively denote drogued and un-
drogued drifters, U is the downwind component of the drifter velocities,
and the brackets represent ensemble averages. Specifically, αu is
calculated using 6-h drogued and undrogued drifter observations
selected within 4°×4° spatial bins centered at the grid points of a
1°×1° global grid. Only bins with more than 300 data points were
considered, and where U U≠u d and W ≠ 0 within 95% con-
fidence margins, assuming for simplicity that the observations are
independent. Results for αu more than 3 standard deviations away from
the mean of the results of all bins were taken as outliers, and also
excluded. The latter operation was iterated 3 times to guarantee
convergence of the αu histogram distribution.

Fig. 2 shows the spatial and histogram distributions of the obtained
αu values (left and right panel, respectively). The global set of αu
retrievals have mean μ = 1.48 × 10−2 and standard deviation
σ = 0.49 × 10−2, where a Gaussian function fitted to the histogram
(red line) indicates that this quantity can be approximately described as
a normally-distributed random variable. The histogram encompasses αu
estimates of previous studies, including 0.97 × 10−2 for the Pacific and
North Atlantic oceans (Pazan and Niiler, 2001), 0.66 × 10−2 in the
eastern Mediterranean Sea (Poulain et al., 2009), and 1.64 × 10−2 in the
equatorial Atlantic and in the Indian Ocean (Perez et al., 2014; Peng
et al., 2015a). Conversely, the spatial distribution of αu shows contin-
uous large-scale patterns that would not be observed in the case of a
purely random quantity, and that are also qualitatively different from
the GDP data spatial distribution (Fig. 1). One possible explanation for
the observed patterns is that they reflect the geographical distribution
of drifters equipped with surface floats of different aerodynamic
characteristics, that would thus react differently to direct wind forcing.
However, estimates of αu as a function of the float surface area (not
shown) revealed a weak dependency between these two parameters,
suggesting that the distribution in Fig. 2 reflects different geophysical
conditions, and are not merely the result of random chance, hetero-
geneous data distribution, and/or instrument-specific properties.

It is possible that the geographical dependency of αu seen in Fig. 2
reflects the response of the drifter velocities to a spatially-varying

surface gravity wave field. This is suggested considering the fact that
the correction proposed by Eq. (1) is based on how the wind affects the
trajectories of drogued drifters, not accounting for the increased
sensitivity of undrogued instruments to wave-induced slip motion,
which preferentially aligns itself with the direction of the swell
propagation rather than with the 10-m winds. Testing this hypothesis
is beyond the objectives of this work, although a possible venue of
investigation involves using directional wave spectra, retrieved from
global ocean wave numerical models and/or from satellite-based
synthetic aperture radar observations, to estimate the surface Stokes
drift velocities.

The downwind slip correction applied here accounts for the spatial
variations of αu by linearly interpolating the values shown in Fig. 2 to
the drifter locations. To evaluate this approach, drifter data was
selected within 1° radius bins centered around the grid points of a
0.25° × 0.25° global grid, at which the velocity's mean and variance
were separately calculated for drogued and undrogued data before and
after the slip correction. Fig. 3 shows the results obtained for the zonal
velocity component, in terms of the longitudinal averages of the
pseudo-Eulerian mean (panels a and b) and variance (c, d). Panel (e)
highlights the undrogued/drogued variance ratio before and after the
correction.

Fig. 3a shows that the mean velocities estimated using uncorrected
data can differ by O[0.1 m/s] due to the increased slip of undrogued
drifters. This bias is visible across all latitudes, predominantly reflecting
the magnitude and direction of the mean 10-m zonal winds, and is
particularly intense in the Southern Ocean, where the undrogued drifter
mean velocities can be a factor of two bigger than those estimated from
drogued instruments. Accounting for the downwind slip virtually
eliminates these differences, leading to time and zonally-averaged
velocities for drogued and undrogued drifters that are statistically
identical within 95% confidence margins across most latitudes
(Fig. 3b).

For the variances, a visual comparison between Fig. 3c and d, and
between the orange and black lines in Fig. 3e, shows that the values
calculated using observations from undrogued drifters surpasses those
from drogued instruments at most latitudes both before and after the
slip correction, although the operation does significantly reduce their
differences. In terms of global averages, the correction reduces the
undrogued/drogued variance ratio from 1.88 to 1.36. Section 3.2
demonstrates that the remaining discrepancies can be largely attributed
to factors unrelated to slip motion, such as the reduced sampling
density of drogued drifters, methodological errors, and possible sam-
pling biases of drogued and undrogued instruments.

Fig. 2. Downwind slip coefficient for undrogued GDP drifters αu calculated via Eq. (1), using velocity observations from drogued and undrogued GDP drifters and 10-m wind data from
the ECMWF ERA-Interim reanalysis selected within 4°×4° bins, centered on the grid points of a 1°×1° global grid. Left: global map of the retrieved αu values. Right: histogram of this
parameter, where the red line is a Gaussian function fitted to the αu distribution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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2.3. Decomposition of Lagrangian data

2.3.1. Proposed method
Following Lumpkin and Johnson (2013), the slip-corrected 6-h

drifter velocities are preliminarily low-pass filtered along the trajec-
tories using a 5th degree Butterworth filter with a cutoff period at
1.5 times the local inertial period or five days, whichever is shorter, to
remove tidal and near-inertial variability, and then linearly interpo-
lated to daily values, considering the fact that 6-h measurements are not
independent within the Lagrangian integral time scale, estimated to be
between 2 and 3 days. Although a 1-day resolution is still within this
range, it reduces the amount of correlated data used in subsequent
operations without significantly impacting the data coverage in spar-
sely sampled areas of the ocean.

Data subsets of the zonal and meridional drifter velocities, u and v,
are then selected within circular spatial bins centered on the grid points
of a 0.25° × 0.25° global grid. The bins have a radius equivalent to 1°
longitude, meaning that they overlap each other by 0.75° in the zonal
direction and that their area decreases poleward. The use of over-

lapping bins on a fixed Eulerian grid and the latitudinal dependence of
their area seeks to increase the spatial resolution of the pseudo-Eulerian
maps, and to reflect the poleward reduction of the Rossby deformation
radius (Lumpkin and Johnson, 2013).

Within each bin, u and v observations are treated as data series
dependent on horizontal and temporal coordinates, V x y t( , , ), that can
be expanded as

V x y t V V x y V x y t V x y t( , , ) = + ( , ) + ( , , ) + ( , , ),s e (2)

where V is an ensemble average, V x y( , ) describes horizontal
variations of the mean structure, V x y t( , , )s models seasonal variations,
and V x y t( , , )e are residual (eddy) fluctuations.

To estimate V, previous studies fitted 2-D functions to the binned
data (e.g. Bauer et al., 1998; Johnson, 2001; Lumpkin and Johnson,
2013; Peng et al., 2015a). Although this improves the definition of
horizontal velocity gradients relative to bin-averaging (e.g. Fratantoni,
2001; Jakobsen et al., 2003; Reverdin et al., 2003; Zhurbas et al.,
2014), the retrieved pseudo-Eulerian mean velocity fields are still
visually smooth when compared against mean maps obtained from

Fig. 3. Longitudinal average of the pseudo-Eulerian mean (panels a and b) and variance (c and d) for the zonal ocean velocities, estimated from drifter observations. The blue, red and
gray lines are calculated using data from drogued, undrogued and both drifter types, respectively; shading around each line denotes 95% confidence intervals. The left panels (a, c) are
obtained without accounting for drifter slip bias, while the right (b, d) are based on drifter velocities corrected for downwind slip, following the methods described in the text. Panel (e)
shows the zonally-averaged undrogued/drogued variance ratio before and after correction (orange and black line, respectively). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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true Eulerian records, such as satellite products and numerical model
outputs. To further reduce the smoothing, this work uses 1-D functions
to model V.

The 1-D approach is based on the premise that horizontal variations
of the time-mean ocean velocity field are highly anisotropic, with larger
scales along the mean velocity isolines than across them (Huang et al.,
2007). Given that the sharpest horizontal gradients of the general ocean
circulation, those associated with western boundary currents, occur
along mesoscale ranges, then the mean velocity structure within
mesoscale bins can be approximately described as a function of the
distance across the time-mean velocity isolines. The advantage of 1-D
over 2-D functions lies in the fact that their fitting requires the
determination of a smaller number of coefficients, making it less prone
to estimation errors due to numerical instability, and at the same time
that allowing the use of more complex functions to model mean
horizontal gradients.

This work uses 1-D polynomials to retrieve V, and a linear
combination of harmonics to model Vs. Substituting these in Eq. (2)
and assuming a data subset with N observations, V x t( , )p  ,
p N= 1, 2, 3, …, , a system with N linear equations can be defined as

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∑ ∑V x t a x b θt

j
c θt

j
V x t( , ) = ( ) + sin + cos + ( , ).p

i

n

i
i

j

m

j j p
e

=0 =1

  
(3)

The first term on the right-hand side is the nth degree polynomial
function used to describe spatial gradients, with ai, i n= 0, 1, 2, …, , as
coefficients, where x denotes the coordinate system for the 1-D fitting.
The x axis is expressed as the distance in km to the data centroid (i.e.
the average position of all data points) normalized by the standard
deviation of all distances, and is found separately for u and v by rotating
the binned observations’ coordinates in angle increments of 4° about
the data centroid. At each angle, the 1-D polynomial is least-squares
fitted to the data sorted along the rotated x-axis and a fitting error is
calculated, with the axis x being defined at the angle with the smallest
error. This procedure is illustrated in Fig. 4, using v measurements
selected within a 0.5° radius bin in the Florida Current. The transition
from panel (a) to (b) shows that the variance relative to the fitted
function (red line) is minimized when the rotated x-axis aligns with the
axis of the current. The second term in the right-hand side of Eq. (3) is
the harmonical expansion used to model seasonal fluctuations, where m
is the number of harmonics; t is the temporal coordinate, in years; θ is
the frequency of the annual cycle; and bj and cj, j m= 1, 2, 3, …, , are
the coefficients of the sine and cosine components of each harmonic.

For the generation of the global climatology presented in this work, the
parameters n and m are set to 4 and 2, respectively, resulting in nine
coefficients to be estimated in Eq. (3).

The system defined by Eq. (3) can be written in matrix form as
V Az V= + e, where A is a N × 9 matrix containing the polynomial and
periodic functions; z is a column vector holding their 9 unknown
coefficients; and Ve is a column vector with N elements containing the
fitting error, which is a sum of eddy velocities, observational errors, and
model errors from assuming (3). Following Lumpkin (2003) and
Lumpkin and Johnson (2013), a best-fit solution for z is obtained via
Gauss-Markov estimation (GME) (Wunsch, 1996), an inverse curve
fitting method that accounts for the fact that Lagrangian observations
are correlated within the Lagrangian integral time scale, and therefore
do not correspond to independent realizations of the velocity field. The
variance-covariance matrix of the eddy residuals is defined prior to the
fitting operation (a priori) by assuming an idealized autocovariance
function, which corrects the number of degrees of freedom for the
fitting and thus reduces biases caused by the use of non-independent
data points (Lumpkin, 2003). The GME solution for z is

z R A AR A R V= ( + ) ,z z n
T T −1 (4)

where Rz and Rn are respectively variance-covariance matrices for the
system's coefficients and eddy fluctuations, both defined a priori; and
the superscript “T” denotes transposed matrices. Rz is an 9×9 matrix,
whose diagonal terms are assumed to be equal to the squared difference
between the maximum and minimum binned velocity values (i.e. the
square of the data range), while off-diagonal terms are set to zero. Rn

has N N× dimensions, and is built using the following autocovariance
function,

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎤
⎦
⎥⎥R σ πt

T
πt

T
= cos

2
exp −

2 2
,n V

d d

2

(5)

where σV2 is the data variance, and Td is a decorrelation time scale, set
to 6.33 days, corresponding to a Lagrangian integral time scale of 3
days (Lumpkin, 2003; Lumpkin and Johnson, 2013). Furthermore, off-
diagonal values of Rn are multiplied by 0.9, under the assumption that
10% of the eddy variance is due to white noise and thus uncorrelated
from one observation to the next. Finally, it is assumed that observa-
tions of different drifters are always independent, meaning that the
autocorrelated structure is only calculated along individual trajectories.
Once the mean structure and the seasonal fluctuations are estimated,
they are subtracted from the binned velocity observations to obtain the

Fig. 4. Schematic representation of the 1-D curve fitting to drifter velocity data organized along the rotated x-axis. The dots are meridional velocity measurements selected within 0.5° of
the coordinates 28°N, 79.75°W, region dominated by the northward flow of the Florida Current. The arrows labeled x y, show the orientation of the original Cartesian coordinate system,
while x y′, ′ are the rotated axes. In both diagrams, data is projected to the plane x v( ′, ), along which the 1-D function is fitted (red lines). The transition from panel (a) to (b) shows that the
data variance relative to the fitted function is minimized when x′ is aligned with the current's mean velocity structure. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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eddy residuals Ve.
Spurious pseudo-Eulerian estimates can arise due to low observa-

tional densities. Assuming a 3-day Lagrangian integral time scale, a
minimum of 60 drifter observation days (10 degrees of freedom) is
required to estimate the 9 coefficients of Eq. (3). To minimize sampling-
related errors, the coefficients of the periodic functions bj and cj are not
estimated in bins with 40–90 data points, and no calculations are made
in bins with less than 40 data points. However, even if such require-
ments are met, the fitting can be numerically unstable and produce
spurious results. Thus, solutions for z are considered valid if their
absolute values are smaller than the data's velocity range, and if more
than 70% of the eddy residuals lies within two standard deviations of
the data's ensemble mean. Failing these criteria, the fitting operation is
tentatively redone using progressively smaller polynomial degrees, to a
minimum of one (where only the ensemble mean V is calculated). If
valid estimates are still not obtained, the grid point is assigned a no data
flag.

For mapping purposes, the best-fit coefficients of the spatial and
seasonal functions are evaluated at the center of each bin, i.e., at the
grid points of the 0.25° × 0.25° grid. However, due to heterogeneous
data distribution and the use of overlapping bins, the bin center can lay
outside of the region covered by the selected data. With that in mind, an
elliptical area is defined for each bin, with major and minor axes
respectively equal to twice the length of the first and second eigenva-
lues of the data (x,y) coordinates, and rotated by the declination angle
of the first eigenvalue. If the bin center lies outside this ellipse, the grid
point is also assigned a no data flag.

Finally, to assess the statistical reliability of the modeled velocities,
an a posteriori error variance-covariance matrix Pz is obtained by

P R R A AR A R AR= − ( + ) ,z z z z n z
T T −1 (6)

where Pz is a 9×9 matrix, and the square root of its diagonal terms are
the standard errors of the best-fit coefficients ai, bj and cj. It is noted that
off-diagonal (covariance) terms in Pz are different from zero, meaning
that the coefficients have correlated errors. Pz can be used to obtain a
variance-covariance error matrix Pn for the modeled velocities via error
propagation

P AP A= .n z
T (7)

Here, Pn is N N× , and the square root of its diagonal terms
correspond to standard errors (ϵSE) for the velocity estimates. In this
study, the ϵSE of the mean and seasonal velocity estimates are analyzed
separately. Specifically, errors for the mean are evaluated at the bin
center, coinciding with the mapped mean velocities, using only
variance-covariance terms in Pz associated with the polynomial coeffi-
cients in Eq. (3), while errors for the seasonal fluctuations are evaluated
at the spatial-temporal positions of the binned observations using the
remaining variance-covariance terms in Pz, associated with the coeffi-
cients of the periodic functions in (3), and cross-terms between
coefficients of polynomial and periodic functions.

2.3.2. Decomposition evaluation
To evaluate the performance of the decomposition method de-

scribed in Section 2.3.1, altimeter-derived geostrophic velocities (GV)
from AVISO are linearly interpolated to the GDP drifter locations. The
proposed approach assumes that the statistical properties of the AVISO
GV fields are perfect Eulerian references for estimating the errors of
pseudo-Eulerian quantities calculated from the Lagrangian GV dataset.

This analysis is motivated by the fact that the decomposition
method requires choices for the bin size/mapping resolution, and for
the curve fitting parameters n, m, and Td, whose definition affects the
results. Furthermore, previous studies employed different decomposi-
tion methods and a wide range of bin sizes and grid resolutions, also
using different Lagrangian datasets and/or data processing steps,
implying that an objective comparison between methods should use

the same Lagrangian dataset and averaging resolution. Finally, standard
errors (ϵSE) obtained from Eq. (7) are scaled as σ N( / )2 1/2, where σ2 is the
data variance and N is the number of independent samples. This means
that ϵSE estimates ignore errors introduced by, for example, the spatial
smoothing effect of data binning, and to possible inadequacies of
physical model proposed by Eqs. (3) and (5), and therefore can differ
from the actual estimation errors.

It is noted that the pseudo-Eulerian statistical properties of the
Lagrangian GV data differ from those of actual drifter observations, due
to the following: (1) the GV estimates are subject to uncertainties of the
geoid and the global tidal models used to reference the altimetric SSH
measurements, which respectively introduce errors in the velocities’
magnitude and direction, and reduce the accuracy of the estimates in
regions shallower than 1000 m, due to regional tidal effects forced by
the local bathymetry and continental contours; (2) ageostrophic flows
are absent, and the geostrophic approximation may not properly
describe the circulation within coherent mesoscale eddies, which an
increasing body of literature suggests to be predominantly in cyclo-
geostrophic balance (e.g. Castelão and Johns, 2011; Maximenko et al.,
2013); and (3) the relatively large correlation length scales (O[102 km])
assumed for the generation of regularly-gridded SSH fields implies that
variability at smaller scales are underestimated (e.g. Ducet et al., 2000;
Poje et al., 2014). Despite these limitations, the altimeter-derived
geostrophic velocities have variance levels comparable to those esti-
mated from in situ data (Ducet and Le Traon, 2001), implying that
statistical quantities calculated from the Lagrangian GV dataset and
from actual drifter velocity measurements should have similar varia-
bility.

Specifically, the Eulerian time-series of the u and v components of
the AVISO geostrophic velocities at each grid point, V(t), are decom-
posed as

V t V V t V t( ) = + ( ) + ( ),s e (8)

where V is the long-term mean; Vs are seasonal fluctuations, estimated
by least-squares fitting m=5 harmonics to the residuals about the
mean; and Ve are eddy residuals. Variance estimates of Vs and Ve,
respectively σs2 and σe2, are computed conventionally.

Errors (ϵ) of pseudo-Eulerian estimates of V , Vs, σs2, and σe2, are
obtained by subtracting the correspondent Eulerian values at each grid
point. For simplicity, the ϵ of the u and v components are analyzed in
terms of its magnitude, ϵ = ϵ + ϵu vA

2 2 , hereafter referred to as absolute
errors. Due to the time dependence of Vs, its ϵA at each grid point is
defined as the root mean square (RMS) magnitude of the errors of the
seasonal velocities estimated for the binned drifter observations.
Standard errors are processed similarly, to allow the comparison
between ϵA and ϵSE.

To investigate the factors governing the horizontal distribution of ϵA
and ϵSE, the u and v components of the reference Eulerian parameters
are first used to calculate the magnitude of the mean velocity
(S u v= +2 2 , hereafter referred to as mean speed), and the kinetic
energy of seasonal and eddy fluctuations (SKE and EKE, defined as the
average of the respective zonal and meridional variance estimates). The
retrieved ϵA and ϵSE are then subsampled within intervals (i.e. classes)
of the correspondent Eulerian S , SKE, and EKE, and simultaneously
subsampled within intervals of the square roots of EKE and N. The error
estimates obtained within each class are used to calculate RMS values
(ϵA

RMS and ϵSE
RMS), allowing analyzing their variation as a function of the

considered parameters.
The choices for the adjustable parameters of the proposed decom-

position method were defined based on the results of this analysis,
which are presented and discussed in Section 3.1. Section 3.1.1
evaluates the amount of detail recovered by pseudo-Eulerian mean
velocity magnitude maps at different resolutions, while Section 3.1.2
analyze the sensitivity of the results to the fitting parameters. Section
3.1.3 shows the impact of the choice of bin size on pseudo-Eulerian
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estimates, and compares the performance of the proposed decomposi-
tion method with that of other techniques. Finally, Section 3.1.4 assess
the spatial distribution of errors, and compares the retrieved ϵA with ϵSE
estimates.

3. Results and discussion

3.1. Decomposition evaluation

3.1.1. Spatial resolution of pseudo-Eulerian fields
This work maps pseudo-Eulerian estimates to a 0.25°×0.25° global

grid. This resolution is adopted because it (a) corresponds to a lower
bound limit required to resolve mesoscale features, and (b) coincides
with the AVISO GV's native grid, allowing a comparison between
pseudo-Eulerian and Eulerian statistics. However, an important ques-
tion is whether the proposed decomposition method can recover
horizontal velocity gradients at the scales implied by this grid. To
evaluate the amount of detail recovered by pseudo-Eulerian estimates
subsampled at different resolutions, Fig. 5 shows the Eulerian time-
mean geostrophic speed for the Gulf of Mexico and Florida Current,
alongside pseudo-Eulerian estimates obtained using data selected with-
in 1° radius bins, and then mapped to 1°×1°, 0.5°×0.5° and
0.25°×0.25° grids.

Prominent features shown by the Eulerian field in Fig. 5 includes the
Loop and Florida Currents, with mean speeds of O[0.1–1 m/s], and
smaller-scale coherent flows with O[0.1 m/s] speeds, such as the
Antilles Current and recirculation cells on the eastern flanks of the
Florida and Antilles Currents. The 1°×1° field only resolves large-scale
features, such as the along-stream structure of Loop and Florida
Currents. At 0.5°×0.5°, the major currents are better defined and
O[0.1 m/s] features can be discerned, however the resolution is still
insufficient to resolve their cross-stream velocity profiles. Further

refining to 0.25°×0.25° results in circulation patterns with horizontal
scales and speed magnitudes visually compatible with the reference
Eulerian field, supporting the mapping resolution adopted in this work.
Independent of the resolution, notable discrepancies relative to the
Eulerian field are observed in the western portion of the Gulf of Mexico.
Such features are attributed to low data densities (<100 data points),
resulting in sparse realizations of the energetic eddy field.

3.1.2. Sensitivity to fitting parameters
The proposed decomposition technique requires a priori specifica-

tions for the parameters n and m in Eq. (3), respectively the polynomial
degree and number of seasonal harmonics, and of the decorrelation
time scale Td in Eq. (5). The choice for n affects the overall adjustment
of the fitted curve to the data. A low n distorts spatial features and/or
underestimate their magnitudes, also reducing the sensitivity of the
procedure illustrated in Fig. 4 to obtain an angle aligning with the
large-scale structure of the data. Conversely, a high n may result in
overfitting (i.e. the interpretation of eddy fluctuations as spatial
structure), and increases the chance of estimation errors due to
numerical instability.

For a quantitative evaluation, the left panel of Fig. 6 shows the ϵA
RMS

of the pseudo-Eulerian mean geostrophic speed calculated as a function
of the reference Eulerian values, for n=2, 3, 4 and 5 (red, green, black
and blue lines, respectively). The shading around each line are 95%
confidence margins, and the thin dashed line marks the 1:1 signal-to-
noise ratio limit. The ϵA

RMS of all estimates are statistically similar for
reference velocity magnitudes between 0 and 0.9 m/s, gradually rising
from ∼0.02 to 0.09 m/s within this interval. Above 0.9 m/s, the errors
for n=2 (n=3) increase faster than for higher n, reaching ∼0.32 (0.27)
m/s at Eulerian speeds of 1.4 m/s. Using 4th and 5th degree poly-
nomials, both show similar errors for speeds up to 1.2 m/s, where it
reaches values of ∼0.1 m/s. Past this limit, the ϵA

RMS for n=4 (n=5)

Fig. 5. Long-term average of the AVISO geostrophic speed for the Gulf of Mexico and Florida Current. The reference Eulerian field is illustrated alongside pseudo-Eulerian estimates,
mapped to 1.00°×1.00°, 0.50°×0.50°, and 0.25°×0.25° grids via the 1-D GME method.
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further increases to 0.16 (0.13) m/s at reference speeds of 1.4 m/s.
Despite the better performance of n=5 at higher velocities, the larger
number of coefficients make the estimates more prone to stability errors
and requires more data. To balance the definition of velocity gradients
with the stability of the fitting operation, the climatological fields
presented in this work were obtained using n=4.

Regarding the number of seasonal harmonics, many drifter-based
studies used m=2, therefore resolving only annual and semiannual
periods (e.g. Richardson and Walsh, 1986; Lumpkin, 2003; Lumpkin
and Johnson, 2013; Peng et al., 2015b). Including more harmonics can
improve the definition of the seasonal cycle, but also increases the
chance of errors due to overfitting or numerical instability. To verify the
sensitivity of the seasonal estimates to the choice of m, the right panel
in Fig. 6 shows the ϵA

RMS of SKE calculated as a function of the
correspondent Eulerian values, where the red, green, black and blue
lines respectively refers to m=2, 3, 4 and 5. The errors calculated using
m=2 increase from <1 × 10−3 to ~1.5×10−2 m2/s2 for reference
variances between 0 and 3.5 × 10 m /s−2 2 2. Within this range, adding
one harmonic progressively increases the errors by ~1×10−3 m2/s2

due to overfitting. For Eulerian SKE values above 3.5×10−2 m2/s2, the
ϵA

RMS estimates obtained for all tested m lies within each other's error
margins, varying between 1.5 and 2.5×10−2 m2/s2. Based on these
results, m=2 is considered the optimum choice for the decomposition.

Finally, Td is the time scale used to define independent data points
in the GME method. Here, values from 0 to 20.33 days were tested.
Statistically significant changes on the pseudo-Eulerian results to
different Td are not obvious in ϵA

RMS estimates as the presented in
Fig. 6. However, a visual inspection of the mean speed maps show that,
for T ≥d 6.33 days, the mean speed of features such as the Loop Current,
recirculation cells, branches of the Antarctic Circumpolar Current, and
the eastward extensions of the Kuroshio and Gulf Stream Currents,
increase byO[0.1 m/s] relative to results obtained for Td=0. The lower
speeds in T = 0d are caused by a sampling bias towards smaller speeds
intrinsic in data binning, arising from the fact that slower drifters tend
to spend more time within a limited area than faster ones (Lumpkin,
2003; Mariano and Ryan, 2007). By defining observations as indepen-
dent if they are more than 6 days apart, the relative weight of correlated
low speed measurements is reduced in the curve fitting, giving higher
mean speed estimates for the mentioned features (Lumpkin, 2003).

However, using T > 0d also increases the chance of errors due to
numerical instability. This is attributed to the fact that (a) larger Td's
reduces the number of degrees of freedom; and (b) by assuming an
autocorrelated structure in time, the relative weight of the observations
also change in space, which can cause estimation errors if the
distribution of independent data points is asymmetric along the spatial
domain. Specifically assuming Td=10.33 days (as in Lumpkin and
Johnson (2013)) and using the Lagrangian GV dataset, these effects
caused the exclusion of estimates in ∼1800 grid points (∼0.3% of the

total), increased tenfold when using actual drifter observations due to
their larger variances. To minimize such errors, a lower-bound value of
Td=6.33 days is adopted.

3.1.3. Sensitivity to bin size and comparison with other techniques
This section analyzes the sensitivity of pseudo-Eulerian estimates to

the choice of bin size. Furthermore, since the proposed decomposition
method is designed to reduce the smoothing effect of binning, its
performance is compared against that of other methods, including (a)
bin-averaging (e.g. Fratantoni, 2001; Jakobsen et al., 2003; Reverdin
et al., 2003; Zhurbas et al., 2014); (b) 2-D polynomial fitting via GME
(Lumpkin and Johnson, 2013; Lumpkin and Flament, 2013; Peng et al.,
2015a); (c) least-squares smoothing 2-D cubic splines (LSS) (Bauer
et al., 1998; Falco and Zambianchi, 2011); and (d) a 1-D version of the
LSS spline fitting.

Following Lumpkin and Johnson (2013), a 2nd degree polynomial is
used in the 2-D GME. In a brief description of the LSS method, this
technique requires a priori assumptions of the smoothness level of the
fitted curve, which allows more stable estimates than the traditional
least-squares fit (Inoue, 1986). The LSS uses cubic splines, which are
functions constituted by a set of piece-wise cubic polynomials with
continuous first and second derivatives at their connection points,
known as knots. The LSS fitting parameters include the number of
equispaced spline knots (k), and the spline roughness and tension (ρ and
τ, respectively). These were defined via sensitivity tests, resulting in
ρ τ, =1 for both 1-D and 2-D versions, and k=3 (k=2) for 1-D (2-D).

Fig. 7 shows pseudo-Eulerian mean geostrophic speed maps for the
Loop and Florida Currents. The left, middle and right panels are
calculated using circular bins with radius equivalent to 0.5°, 1° and
1.5° degrees longitude, respectively. From top to bottom, results are
respectively obtained via bin-averaging, 1-D and 2-D GME polynomial
fitting, and 1-D and 2-D LSS spline fitting. This region was chosen to
illustrate characteristics observed in the global fields because it
simultaneously includes an intense western boundary current, recircu-
lation cells, and coherent circulation structures in the basin interior,
features whose cross-stream velocity gradients are frequently smoothed
in pseudo-Eulerian estimates.

The bin-averaged fields in Fig. 7 demonstrate the smoothing of
spatial gradients due to the use of progressively larger bin areas.
Particularly for 0.5° radius bins, the Loop and Florida Currents have
cross-stream scales visually compatible with the Eulerian mean field
(Fig. 5), and maximum core speeds of ∼1 m/s, about 0.4 m/s smaller
than the Eulerian values. The Antilles Current and recirculation cells
can also be observed, with mean speeds of O[0.1 m/s]. Increasing the
bin size to 1° broadens the cross-stream structure of all currents and
attenuates their speeds by a factor of 2. Using 1.5° radius bins, only the
largest scales of the circulation are resolved, where features such as the

Fig. 6. Absolute errors of the pseudo-Eulerian mean geostrophic speed (left), and of the pseudo-Eulerian kinetic energy of the seasonal fluctuations (SKE) (right), calculated as a function
of the correspondent Eulerian values (ϵA

RMS). n and m denotes the polynomial degree and the number of harmonics used in the model proposed in Eq. (3), while the red, green, black and
blue curves correspond to values of 2, 3, 4 and 5 of each parameter. The shading around each line are 95% confidence margins, and the thin dashed line marks the 1:1 signal-to-noise ratio
limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Antilles Current, recirculation cells, and the cross-stream structure of
the Loop and Florida Currents, are either absent or significantly
smoothed. Contrasting with the bin-averaged maps, the fields calcu-
lated using curve fitting methods all show circulation patterns with

spatial scales and speed magnitudes visually closer to the Eulerian field.
Comparing maps in Fig. 7 calculated using 1-D and 2-D curve fitting

methods, both produces visually similar results for 0.5° radius bins.
However, increasing the bin radius to 1° (1.5°), the Florida Current

Fig. 7. Pseudo-Eulerian mean geostrophic speed estimates for the Loop and Florida Currents, obtained from data selected within circular bins with radii equivalent to 0.5° (left column),
1° (middle) and 1.5° (right) degrees longitude. From top to bottom, the mean fields were respectively calculated via bin-averaging (e.g. Fratantoni, 2001), 1-D and 2-D polynomial fitting
via Gauss-Markov estimation (GME) (e.g. Lumpkin and Johnson, 2013), and 1-D and 2-D least-squares smooth spline fitting (LSS) (e.g. Bauer et al., 1998).
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velocities are more strongly attenuated in the 2-D version, being
specifically ∼0.4 (0.5) m/s smaller in the LSS, and ∼0.1 (0.2) m/s in
the GME. Conversely, the fields calculated using 1-D functions have
gaps (blank grid points) not observed in their 2-D correspondents, that
are particularly evident in the maps obtained using 1.5° radius bins at
the Florida Straits and between the Florida peninsula and the Bahamas.
As described in Section 2.3.1, grid points in the proposed 1-D approach
are left blank when the bin center is outside the data coverage, criteria
that was not adopted when using 2-D functions.

As for differences between maps obtained via GME and LSS in Fig. 7,
the GME fields show mean Loop Current speeds closer to the Eulerian
values for all tested bin radii. Specifically, the reference Eulerian map in
Fig. 5 show speeds between 0.4 and 0.6 m/s for the Loop Current, in
contrast with the 0.2–0.4 m/s range obtained via LSS, which is similar
to the observed in the bin-averaged maps. The GME method also
produces larger speeds for the Antilles Current and recirculation cells,
surpassing the correspondent LSS values by ∼0.05 m/s. As described in
Section 3.1.2, data binning preferentially samples slower drifters,
introducing the observed low speed bias in the bin-averaged and LSS
results (Lumpkin, 2003). The GME method reduces this effect because it
redistributes degrees of freedom based on a prescribed decorrelation
time scale, which reduces the relative weight of autocorrelated low-
speed measurements. However, improvement is not observed in the
Florida Current, where the 1-D LSS actually produces higher speeds
than 1-D GME (∼0.1 m/s difference, using 1.5° radius bins). This is
attributed to the use of more complex functions in LSS (3-knot cubic
splines), which allow a better description of the intense Florida
current's cross-stream gradients than the 4th degree polynomials used
in the 1-D GME.

For a quantitative analysis, Fig. 8 shows the ϵA
RMS of the global

pseudo-Eulerian estimates of the mean geostrophic speed (left panels, a,
c and e), and EKE (right, b, d and f), calculated as a function of the
Eulerian mean speed for both parameters. The dependency of their
absolute errors to the mean Eulerian speed is assumed because, as data

binning attenuates horizontal velocity gradients, undiagnosed spatial
structure would be interpreted as eddy fluctuations, thus introducing
errors in the pseudo-Eulerian variances.

Considering first the results of bin-averaging, panel (a) of Fig. 8
shows that, using 0.5° radius bins, the ϵA

RMS of mean speed estimates of
all tested decomposition methods increase from 0.02 to 0.07 m/s for
Eulerian speeds between 0 and 0.7 m/s. Past this limit, the errors of the
bin-averaged estimates increase faster than that of other methods,
reaching 0.36 m/s at Eulerian speeds of 1.4 m/s. The ϵA

RMS values of the
correspondent EKE estimates (b) increase approximately linearly as a
function of the Eulerian values, varying from 0.002 to 0.04 m /s2 2,
becoming notably larger than the errors of other methods past 1.2 m/s.
Panels (c) to (f) show that the errors of bin-averaged estimates of both
quantities increases significantly at larger bin sizes. Particularly for 1°
(1.5°) radius bins, the ϵA

RMS of mean speed estimates (c, e) exceeds that
of other methods at Eulerian speeds of >0.4 (0.2) m/s, reaching
maximum values of 0.77 (1.00) m/s. The larger errors in the mean
are reflected in the correspondent EKE estimates (d, f), reaching
maximum values of 0.11 (0.13) m /s2 2 at Eulerian speeds of 1.4 m/s.

Although less pronounced, an increase of ϵA
RMS for larger bin sizes is

also observed in results of curve fitting methods, particularly for the 2-D
approach. Analyzing results from the 1-D and 2-D LSS, panels (a), (c),
and (e) of in Fig. 8 shows that estimates obtained by the 2-D version
have consistently larger errors than 1-D for Eulerian speeds >0.6 m/s,
for all bin radii. Specifically, mean speed obtained by the 2-D LSS show
ϵA

RMS values of 0.26, 0.47 and 0.52 m/s (respectively for 0.5°, 1° and 1.5°
radius bins) at Eulerian speed of 1.4 m/s, against 0.07, 0.10 and
0.13 m/s for the 1-D LSS. Panel (b) shows that the EKE errors for 1-D
and 2-D LSS are statistically similar to each other for 0.5° radius bins,
increasing from 0.002 to 0.035 m /s2 2 for up to 1.2 m/s reference speeds,
and decreasing to 0.002 m /s2 2 at 1.4 m/s. For 1° (1.5°) radius bins (d, f),
the ϵA

RMS of EKE estimates of both 1-D and 2-D versions are similar along
most of the Eulerian speed range, reaching maximum values of
∼0.04 m /s2 2 within the 0.8–1.2 m/s range. For reference speeds above

Fig. 8. Same as Fig. 6 for the pseudo-Eulerian mean geostrophic speed (left panels, a, c and e) and the eddy kinetic energy (EKE) (right, b, d and f), considering bin radii equivalent to 0.5°
(panels a and b), 1° (c and d) and 1.5° (e and f) degrees longitude. Here, the ϵA

RMS of both quantities is calculated as a function of the reference Eulerian mean speed. The red, black and
blue lines respectively refer to results obtained via bin-averaging (e.g. Fratantoni, 2001), polynomial fitting via Gauss-Markov estimation (GME) (e.g. Lumpkin and Johnson, 2013), and
least-squares smoothing splines (LSS) (e.g. Bauer et al., 1998). The solid and dashed lines denote 1-D and 2-D versions of each curve fitting method. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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1.3 m/s, the 2-D LSS show larger errors than its 1-D version, reaching
maximum values of ∼0.03 m /s2 2 at the 1.4 m/s limit for both 1° and
1.5° radius bins, versus ∼0.01 m /s2 2 for the 1-D LSS.

Comparing 1-D and 2-D GME methods, Fig. 8a shows that, using
0.5° radius bins, the ϵA

RMS of the mean speed estimates of both versions
are similar within 0.02 m/s, with maximum errors of 0.08 and 0.10 m/
s, respectively. However, for 1° (1.5°) radius bins (c, e), the errors of the
2-D estimates exceed that of 1-D for reference speeds> 1 (>0.8) m/s,
with maximum values of 0.31 (0.49) m/s for 2-D, and of 0.16 (0.29) m/
s for 1-D. As for the ϵA

RMS of EKE estimates (panels b, d and f), the
behavior is similar to that described for the LSS, except for the fact that
the GME's errors are ~0.01 m2/s2 smaller for reference velocities
between 0.5 and 1.2 m/s, and that, for 1.5° bin radius, the GME
estimates obtained by both 1-D and 2-D GME surpass their LSS
correspondents, reaching maximum values of 0.03 and 0.08 m /s2 2,
respectively.

Although the smoothing of mean spatial gradients caused by data
binning introduces errors in the residuals, estimates of the seasonal
cycle were not impacted by the increasing bin sizes. This is because the
functions describing spatial and temporal variations are fitted along
different dimensions, implying that errors in retrieving the velocity
spatial structure should not significantly affect estimates of the seasonal
velocities. However, estimation errors can occur in bins where the
sampling is unevenly distributed between the seasons, and/or where
seasonal variations have spatial scales smaller than the bin size. Binning
also smooths horizontal gradients of the seasonal and eddy variances,
albeit less pronounced than for the mean component since both
quantities vary over larger scales than the mean velocities.
Nevertheless, while this work uses curve fitting methods to model only
the spatial structure of the mean, a similar approach could be adopted
to describe horizontal gradients of the squared residuals.

In summary, the use of curve fitting methods significantly improves
the definition of spatial gradients relative to bin-averaging, where the
proposed 1-D approach is less sensitive to smoothing effects than 2-D
methods used in previous studies. Regarding differences between 1-D
GME and LSS, the LSS fields show smaller errors for larger bin areas. In
contrast, the GME fitting reduces biases caused by autocorrelated
Lagrangian observations, leading to a better representation of features
of the time-mean ocean circulation with speeds of O[0.1 m/s], such as
the Loop Current and recirculation cells, while presenting errors similar
to LSS for bin radii equal or smaller than 1°. Based on these results and
seeking to maximize the number of estimates in sparsely-sampled areas,
such as the Southern Ocean and near-equatorial regions, the climato-
logical fields presented here are generated using the 1-D GME method
and 1° radius bins.

3.1.4. Error analysis
This Section analyses the spatial distribution of the absolute errors

of pseudo-Eulerian estimates (ϵA), and investigates whether the stan-
dard errors (ϵSE) calculated via Eq. (7) can be used to estimate ϵA.

The left panels of Fig. 9 show global maps of ϵA for the pseudo-
Eulerian mean (a) and seasonal geostrophic speed (c). Both maps
exhibit noisy spatial distributions, suggesting random errors. Conver-
sely, large-scale patterns approximately coincident with the global EKE
distribution can be discerned, with larger values marking more
energetic regions. Specifically, (a) show errors for the mean speed
estimates of 0.02 m/s or smaller for quiescent areas, such as the interior
of the subtropical gyres, and of ∼0.04–0.09 m/s for energetic regions,
as near the equator and in the vicinity of strong current systems, such as
western boundary currents and their seaward extensions, the ACC, the
Agulhas Retroflection, and the Brazil-Malvinas Confluence. Values
above 0.1 m/s are observed in the Indonesian Sea, associated with
the low sampling densities in the region, and coinciding with the
position of intense time-mean currents. The errors of the seasonal
fluctuations in (c) are visibly larger than the errors in the mean,
increasing from a base value of ∼0.02 m/s at mid oceanic regions to

∼0.05–0.14 m/s or larger at energetic regions.
Panels (b) and (d) of Fig. 9 show diagrams of ϵA

RMS calculated as a
function of the square roots of the number of drifter observation days
(N) and of the Eulerian EKE, for the mean and seasonal speed estimates,
respectively. The diagrams are visually similar, and clearly reveal that
the obtained ϵA

RMS values increase for smaller N1/2 and for larger EKE 1/2,
characteristic compatible with theoretical standard errors, which are
scaled as function of the ratio σ N( / )2 1/2.

Fig. 10 compares absolute and standard errors, showing global maps
of the ratio ϵ /ϵA SE (left panels), and diagrams of the ratio ϵ /ϵA

RMS
SE
RMS

(right), for the pseudo-Eulerian mean (top) and seasonal speed (bot-
tom). Analyzing first the mean speed errors, the ϵ /ϵA SE values in panel
(a) have mean 1.61 and standard deviation 0.98. Ratios systematically
larger than 3 coincide with the position of intense midlatitude currents,
such as the Kuroshio and Gulf Stream Currents in the northern hemi-
sphere, and the Agulhas, Brazil and South Indian Ocean Currents in the
southern, a possible consequence of the smoothing of horizontal
gradients due to data binning. Conversely, values equal or smaller than
one are more frequently observed at near-equatorial regions. The
ϵ /ϵA

RMS
SE
RMS values in (b) reveal a more robust relationship between both

error metrics, with mean 1.83 and standard deviation 0.48. Near-one
ratios are more frequently associated with N1/2 between 9.5 and 15 (90-
225 drifter days), explaining the prevalence of such values near the
equator, a relatively poorly-sampled region (Fig. 1). The discontinuity
at N1/2=9.5 is associated with the sampling requirement defined for
estimating seasonal fluctuations, whose inclusion in the analysis
increases ϵSE, since more parameters are estimated during the fitting
operation.

Considering the errors of the seasonal speed estimates in Fig. 10, the
ϵ /ϵA SE values in (c) have mean 1.72 and standard deviation 0.49.
Coherent spatial features with ratios larger than 2.5 are observed near
southeast Asia, along the western coasts of North and South America,
the southwestern coast of Africa, and at the center of the North Atlantic
subtropical gyre. While the discrepancies near southeast Asia and in the
southern hemisphere could hypothetically be attributed to seasonal
sampling biases, in the northern hemisphere the observed patterns
coincide with some of the most densely sampled regions of the world's
oceans. The large ratios in these areas are attributed to the high
observational density itself, which acts to reduce the statistical errors
due to the increase of the available number of degrees of freedom,
combined with the locally low SKE values. The ϵ /ϵA

RMS
SE
RMS diagram (d)

shows suprisingly small variations as a function of EKE 1/2 and N1/2,
with mean 1.83 and standard deviation 0.27. The diagram also
demonstrates a gradual increase of the ratios as a function of the
sampling density for N > 351/2 and EKE < 0.21/2 m/s, reflecting the
enhanced ϵ /ϵA SE values at the center of the subtropical gyres observed
in (c).

If the ϵA values in Fig. 9 were purely random and normally-
distributed around the reference Eulerian estimates, then about
68.4%, 95.6% and 99.8% of the obtained values would respectively
lie within 1, 2 and 3 standard error margins. However, the ratios
between ϵA and ϵSE calculated globally (Fig. 10) reveals significantly
smaller percentual values (Table 1). Fractions similar to theoretical
expectations are only obtained when twice as large standard errors are
assumed, in agreement with the mean ϵ /ϵA

RMS
SE
RMS ratio of 1.83 obtained

for both the mean and seasonal speed estimates. This result suggests
that the ϵSE values calculated via Eq. (7) are underestimated by about a
factor of 2. This conclusion is valid for the set of optimum parameters
used for calculating pseudo-Eulerian quantities in this study, and can
vary if different choices are adopted.

For completeness, Fig. 11 shows the global maps of ϵA (left panels),
and of EKE1/2 vs. N1/2 diagrams of ϵA

RMS (right) for pseudo-Eulerian
estimates of SKE (top) and EKE (bottom). The spatial distribution of ϵA
in both maps coincide with the spatial patterns of the corresponding
parameters, with errors< 2.5×10−3 m2/s2 dominating the interior of
the basins, increasing to between 1.5 and 4.0×10−2 m2/s2 in energetic
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Fig. 9. Panels (a) and (c) respectively show global maps of the absolute errors (ϵA) of pseudo-Eulerian mean and seasonal geostrophic speed. The diagrams in (b) and (d) depict the root
mean square value of ϵA estimates (ϵA

RMS), subsampled as a function of the square roots of the number of drifter observation days (N) and of the reference Eulerian EKE from the fields in
(a) and (c), respectively. The black contours in (b) and (d) delineate the number of ϵA values used in the calculation of ϵA

RMS; gray shading masks regions where the number is smaller than
30.

Fig. 10. Similar to Fig. 9, but showing the ratio between absolute (ϵA) and standard errors (ϵSE).

L.C. Laurindo et al. Deep-Sea Research Part I 124 (2017) 73–92

85



regions. The ϵA
RMS diagrams reveal that the errors of both SKE and EKE

(b and d, respectively) vary as a function of EKE1/2 and N1/2, although
the errors of EKE estimates display a smaller dependency on N1/2 for
reference EKE1/2 values larger than ∼0.2 m/s.

3.2. Analysis of the variance bias of undrogued drifter velocity data

As described in Section 2.2, the pseudo-Eulerian variances calcu-
lated using slip-corrected velocity data from undrogued drifters sur-
passes those estimated for drogued instruments by, on average, 36%.
This positive bias can stem from factors such as (a) undiagnosed slip,
since the simple downwind slip model α W×u does not account for
wave-induced drifter motion; and (b) the fact that undrogued drifters
sample at the surface, implying that their velocity data should include a

stronger response to surface-intensified ocean processes, such as
Langmuir cells and Ekman currents (Zhurbas et al., 2014). However,
maps of the difference between the variances calculated from data of
drogued-only and both drogued and undrogued drifters shows spatial
patterns and magnitudes similar to the observed in Fig. 11, suggesting
that the observed discrepancies may be due to factors unrelated to the
water-tracking characteristics of undrogued drifters.

To test this hypothesis, Fig. 12 shows the horizontal and histogram
distributions of differences between SKE and EKE estimates calculated
using observations from drogued drifters, and using data from both
drogued and undrogued drifters. Specifically, panels (a), (b), (e), and (f)
are obtained using slip-corrected drifter velocities, while (c), (d), (g)
and (h) are from geostrophic velocities interpolated to the drifter
locations. Fig. 12 reveals spatial patterns of the SKE and EKE differences

Table 1
Summary of absolute and standard errors (ϵA and ϵSE, respectively) for pseudo-Eulerian mean and seasonal geostrophic velocity estimates, and of the ϵA values of the seasonal and eddy
variances. Here, ϵA

2 and ϵP
2 denotes the global root mean square value of each error metric. The percentages are fractions of the global set of ϵA values that are smaller than

ne=1, 2 and 3 times the corresponding ϵSE estimates, and twice as large ϵSE values.

nϵ < ( × ϵ )eA SE nϵ < [ × (2 × ϵ )]eA SE

ϵA
2 ϵSE

2 ne=1 ne=2 ne=3 ne=1 ne=2 ne=3

u 4.11 cm/s 2.95 cm/s 41.3% 70.6% 87.3% 70.6% 95.1% 99.3%
v 3.64 cm/s 3.13 cm/s 45.6% 76.4% 91.5% 76.4% 97.2% 99.6%

u v+2 2 5.49 cm/s 4.30 cm/s 29.3% 71.3% 91.6% 71.3% 97.7% 99.7%

us 4.61 cm/s 2.65 cm/s 10.4% 71.5% 94.5% 71.5% 97.4% 98.0%
vs 4.10 cm/s 2.45 cm/s 13.3% 76.5% 95.6% 76.5% 97.5% 98.0%

u v+s s2 2 6.17 cm/s 3.61 cm/s 5.5% 75.3% 96.0% 75.3% 97.6% 98.0%

us2 62.32 cm2/s2

vs2 56.99 cm2/s2

u v× ( + )s s1
2

2 2 47.52 cm2/s2

ue2 106.36 cm2/s2

ve2 110.35 cm2/s2

u v× ( + )e e1
2

2 2 93.30 cm2/s2

Fig. 11. Similar to Fig. 9, for (a) SKE and (b) EKE.
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visually similar for both Lagrangian datasets. Interestingly, the EKE
difference maps (panels e, g) show negative (positive) values at the
cyclonic (anticyclonic) regions of the seaward extensions of the
Kuroshio, Agulhas and Gulf Stream Currents, which can reflect a
preferential sampling of cyclonic (anticyclonic) eddies by drogued
(undrogued) drifters (c.f. Lumpkin, 2016). Histogram distributions of
the global SKE (EKE) differences are non-Gaussian, being skewed to
positive (negative) values and showing long tails. The SKE difference
histograms obtained for both Lagrangian datasets are strikingly similar

to each other (b, d). Regarding the EKE differences, the histogram for
slip-corrected drifter data is flatter and more skewed than that of the
AVISO velocities, although it is notably closer to it than the distribution
obtained for uncorrected drifter observations (f, h).

The Lagrangian geostrophic velocity dataset is, obviously, not
affected by slip biases and by the different sampling depths of drogued
and undrogued drifters, meaning that the SKE and EKE differences in
panels (c), (d), (g), and (h) of Fig. 12 should reflect effects such as
biased sampling, estimation errors conditioned by the smaller sampling

Fig. 12. Difference between the kinetic energy of seasonal fluctuations (SKE) and eddy residuals (EKE) estimated using data from drogued-only and from both drogued and undrogued
drifters. The left (right) panels show the spatial (histogram) distribution of the kinetic energy differences, where (a), (b), (e) and (f) are obtained using slip-corrected drifter velocity
observations, and (c), (d), (g) and (h) are based on AVISO geostrophic velocities subsampled at the drifter locations. The blue lines overlaid on the histograms are best-fit non-parametric
kernel functions, while the red lines correspond to results obtained for drifter velocities not corrected for downwind slip. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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density of drogued drifters, and errors of the decomposition method. An
estimate of the fraction of the variance of the errors in the drifter-based
KE estimates, introduced by factors unrelated to the sampling char-
acteristics of undrogued drifters, can be attempted by taking the ratio
between the sum of the squares of the SKE (EKE) differences calculated
using the Lagrangian geostrophic velocities and the actual drifter
measurements, which results in a value of 0.62 (0.57).

3.3. New climatological fields

Fig. 13 shows mean speed maps for the Gulf of Mexico and the
western North Atlantic (panels a and b) and for the Nordic Seas (c, d),
calculated using drifter observations. Panels (a, c) are the climatology
of Lumpkin and Johnson (2013) (version 2.08, generated using GDP
drifter observations from February 1979 to March 2016), which fitted
2-D, 2nd degree polynomials via GME to drogued drifter observations
selected within elliptical bins, with constant areas of π (2°)2, oriented by
the declination of the variance ellipse of the eddy fluctuations, and
centered at the grid points of a 0.5° × 0.5° global grid. Panels (b, d) are
obtained using the method described in Section 2.3.1.

Considering the western North Atlantic and Gulf of Mexico
(Fig. 13a, b), the map obtained using the proposed method (b) resolves
mean core speeds for the Florida Current and Gulf Stream above 1 m/s
between 25 and 37°N, with a maximum speed of 1.57 m/s between the
Florida peninsula and the Bahamas, values up to 50% larger than in (a).
Furthermore, (b) shows ∼0.1 m/s faster Antilles Current and recircula-
tion cells in the eastern flanks of the Antilles and Florida/Gulf Stream
Currents, and horizontal scales for all major features closer to those
observed in the time-mean Eulerian geostrophic speed map in Fig. 5.
The field in (b) also includes coherent circulation patterns not observed
in (a), particularly around the Caribbean islands and in the northern
flank of the Gulf Stream after the current separates from the coast,
north of 36°N.

In the Nordic Seas (Fig. 13c, d), prominent features includes the
Norwegian Current, flowing primarily north/northeast along the coast
of the Scandinavian peninsula; the clockwise circulation around Green-
land, composed of the East and West Greenland Currents; and the

southward-flowing Labrador Current, observed at the left edge of the
maps. The proposed method (d) produces speeds 0.1–0.2 m/s larger
than the climatological field in (c) for all major circulation components,
resulting in maximum values of 0.5–0.6 m/s for the East/West Green-
land and Labrador Currents, and of 0.35–0.45 m/s for the Norwegian
Current. Also, the cross-stream structure of the main features are better
defined in (d) and mesoscale details are recovered, such as the currents
around Iceland, and an anticyclonic eddy with ∼200 km diameter
centered at approximately 70°N, 4°W, also resolved in Koszalka et al.
(2011) by ensemble-averaging GDP drifter observations grouped within
clusters (Koszalka and LaCasce, 2010).

The improvements relative to the results of Lumpkin and Johnson
(2013) shown in Fig. 13, are due to (1) the use of smaller bins, which
reduces errors for mean velocity estimates caused by the smoothing of
the mean horizontal gradients (panel (a) shows horizontal scales and
speed magnitudes visually similar to the observed in the pseudo-
Eulerian mean geostrophic speed map calculated using the 2-D GME
method and 1.5° radii circular bins, presented in Fig. 7); (2) the use of
the proposed 1-D curve fitting and of higher-degree polynomials, which
reduces the sensitivity of the results to changes in bin size, leading to a
better representation of cross-stream velocity gradients; and (3) the
inclusion of slip-corrected velocity data from undrogued drifters, which
significantly increases the number of observations available for the
analysis, particularly in mid-oceanic regions. At basin scales, these
factors combined allow resolving mesoscale features of the general
circulation. This is illustrated by Fig. 14, which has global pseudo-
Eulerian maps obtained from drifter velocity observations and using the
proposed decomposition method.

Fig. 14 clearly resolves the major currents composing the gyre and
tropical circulation systems. Well-known features, such as the strong
equatorial divergence in the Pacific and Atlantic oceans and the
convergence in the interior of the subtropical gyres, can be observed
in both the meridional velocities (b) and the streamlines (c)
(Maximenko et al., 2009, 2012; Lumpkin and Johnson, 2013). Unlike
in previous studies, the streamlines are calculated using unsmoothed
pseudo-Eulerian mean velocities, indicating the spatial consistency of
the results even in regions where the speeds are low (<0.05 m/s).

Fig. 13. Pseudo-Eulerian mean speed maps for the Gulf of Mexico and the western North Atlantic (top, panels a and b), and for the Nordic seas (bottom, c and d), calculated from drifter
observations. The left panels (a, c) are estimated using the method described in Lumpkin and Johnson (2013), while in the right (b, d) they are obtained via the updated procedure
presented in this work.
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Fig. 14 provides a clearer picture of the Antarctic Circumpolar Current
(ACC) than in Lumpkin and Johnson (2013), particularly in the Indian
and Pacific sectors, due to the inclusion of undrogued drifter data in the
analysis (Fig. 1). Prominent features of the ACC absent in the previous
climatology includes the southern branch of the ACC in the Indian
Ocean between 10 and 80°E, which leads to a narrow “S”-shaped jet
crossing the Kerguelen Plateau (55°S, 80°E), downstream of which the
ACC merges with the South Indian Ocean Current. In the Pacific sector,
two parallel jets are observed between 160 and 120°W, delineating
fracture zones of the Antarctic-Pacific ridge. These jets display mean
core speeds of up to 0.8 m/s, the largest estimated in the Southern
Ocean.

The zonal velocities in Fig. 14a reveal zonally-elongated jet-like
features embedded in the large-scale circulation, such as the striation
pattern in the South Pacific between 20 and 50°S, which occupies most
of the basin's zonal domain. The existence of such features in the ocean
was first inferred in the numerical investigation of Treguier et al.
(2003). Galperin et al. (2004), based on the results of high-resolution
ocean simulations and on similarities of the wavenumber power spectra
of oceanic motions to those estimated for the atmospheres of giant
planets, argued that banded features should be ubiquitous in the ocean,
as a consequence of the tendency of two-dimensional geophysical
turbulence to form zonal jets. Observational evidence of their existence

in the ocean was first reported by Maximenko et al. (2005) in high-
passed altimeter-derived geostrophic velocity fields. Later, Maximenko
et al. (2009) used a high-resolution mean dynamic topography model to
improve geostrophic velocity estimates from altimeters, obtaining a
time-mean map that suggested the existence of quasi-stationary stria-
tions in many oceanic regions. Although previous studies also reported
the existence of such features in drifter-based mean maps (e.g.
Maximenko et al., 2008, 2009), the obtained climatological fields
now allow their visualization with a level of detail comparable with
that of satellite products.

In the North Atlantic, the eastward flow of the Azores Current can
be observed centered at 34°N (Fig. 14a), showing a predominantly
zonal flow from approximately 60–6°W. Narrow bands of negative
zonal velocities are seen flanking the Azores Current, where the
westward flow in its northern flank forms a continuous band of negative
velocities with the Gulf Stream's recirculation, seen in the southern limb
of the Gulf Stream between 80 and 40°W. West of 50°W, the striation is
characterized as elongated bands of alternating positive/negative
velocities between 70 and 50°W. This striation connects with the
Azores current in the east, and to a narrow band of positive velocities
in the northern flank of the Antilles current in the west, forming a
continuous pattern of positive zonal velocities from ∼76 to 6°W,
virtually crossing the North Atlantic basin. Similarly in the North

Fig. 14. Global maps of the pseudo-Eulerian mean zonal and meridional velocities (panels a and b, respectively), and of the mean speeds (c), calculated from GDP drifter observations
using the decomposition method proposed in this work. The curly vectors in (c) are streamlines calculated using the data depicted in (a) and (b), to indicate the general direction of the
large-scale circulation.
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Pacific, the eastward flow of the Hawaiian Lee Countercurrent (HLCC)
is seen centered at ∼19°N, extending from 156°W until approximately
the dateline (Lumpkin and Flament, 2013). However, another well-
resolved band of eastward velocities is observed further west at the
same latitude between 130 and 160°E, which can correspond to a
westward extension of the HLCC. A narrow band of negative zonal
velocities is observed in the northern flank of the HLCC, which is
alternated by another band with positive values. Although not well
resolved, a visual inspection suggests that the striation pattern con-
tinues further north, potentially connecting with the recirculation of the
Kuroshio Current's seaward extension. Alternating zonal jets are also
prominently observed off the west coast of North America between 22
and 45°N, extending up to 20° longitude towards the basin's interior.
These features were described by Centurioni et al. (2008), and are
associated with permanent meanders of the California Current. A
similar pattern is observed along the west coast of South America from
10 to 35°S. Maximenko et al. (2009) reported striations also off of the
west coast of southern Africa, however the low observational density in
the region results in a poor definition of the local circulation.

Other notable zonally-elongated features in Fig. 14a, not well
resolved in previous drifter-based estimates, includes the eastward
velocities off the east coast of South America between 15 and 30°S,
extending ∼20° longitude seaward within the large-scale, westward
flow of the southern branch of the South Equatorial Current (Stramma
and Schott, 1999), and possibly associated with recirculation cells of
the Brazil Current. Further south, the Zapiola Anticyclone can be
observed at 45°S, 42°W (de Miranda et al., 1999; Volkov and Fu,
2008). In the southern Indian Ocean, the eastward flow of the South
Indian Ocean Countercurrent (SICC) is seen centered between 24 and
28°S (Siedler et al., 2006; Schott et al., 2009), originating from a
recirculation of the Southeast Madagascar Current at ∼40°E and
observed as a jet until 100°E. The vectors in panel (c) suggests that
the SICC merges with the southward flow of the Leeuwin Current (LC)
offshore of western Australia at 30°S, 115°E; however the local
circulation is not well resolved and the observed branching reflects
relatively low observational densities combined with realizations of the
eddy field. Finally, Fig. 14 clearly shows the counter-clockwise flow of
the LC along the western and southern coasts of Australia (Feng et al.,
2009). South of Australia, panel (a) also shows a narrow band of
negative zonal velocities in the southern limb of the LC, associated with
the Flinders Current (Middleton and Cirano, 2002; Middleton and Bye,
2007).

4. Summary and conclusions

To obtain an improved, global near-surface velocity climatology
from GDP drifter observations, this work updates the methods de-
scribed in Lumpkin and Johnson (2013) by (a) correcting the down-
wind slip bias of undrogued drifters using a formulation proposed by
Pazan and Niiler (2001), an operation that recovers about half of the
GDP dataset; and (b) introducing a new method for decomposing drifter
data into mean, seasonal and eddy components, designed to minimize
the spatial smoothing and smearing effects of other data binning
methods. The proposed procedure accounts for spatial variations of
the mean within spatial bins by fitting a 1-D, 4th degree polynomial to
the binned observations, sorted along a coordinate axis defined at the
rotation angle that minimizes the fitting error (Fig. 4).

The correction of the drifter slip bias is done by subtracting a
downwind motion from the drifter velocities equal to a fraction α of the
ECMWF ERA-Interim 10-m winds. For 15-m drogued drifters,
α = 7 × 10d

−4 (Niiler et al., 1995). For undrogued drifters, αu is
calculated via Eq. (1) using data selected within 4° × 4° bins centered
at the grid points of a 1° × 1° global grid. Although the obtained αu
values are normally-distributed in probability space, suggesting random
fluctuations around the mean, its spatial distribution shows large-scale
patterns that are indicative of a geophysical forcing mechanism (Fig. 2).

Since (1) does not take into account the fact that undrogued drifters are
more sensitive to wave effects, one possibility is that the observed
spatial patterns reflect the response of undrogued drifters to a spatially-
varying surface gravity wave field.

The correction of the slip motion of undrogued drifters takes into
account the spatial variations of αu by linearly interpolating the
obtained values to the drifter locations, producing zonally-averaged,
pseudo-Eulerian mean estimates for both drogued and undrogued
drifters that are statistically similar across most latitudes (Fig. 3). This
also reduces the globally-averaged drogued/undrogued variance ratio
from 1.81 to 1.36, where most of the remaining differences can be
attributed to factors unrelated to the slip bias of undrogued drifters,
such as method errors, the smaller sampling density of drogued drifters,
and biased sampling (Fig. 12).

However, it is noted that the linear downwind slip correction for
drogued instruments was not validated for wind speeds >10 m/s nor in
high wave amplitudes (Niiler et al., 1995), meaning that the slip for
both drogued and undrogued drifters can be underestimated in regions
with strong winds and/or high wave energy, such as the Southern
Ocean. Furthermore, the correction of the slip of undrogued drifters
proposed by Eq. (1) operates by removing part of the difference
between the along-wind current velocity at 0-m and at 15-m that is
correlated with wind speed, which includes not only the wave and
wind-induced slip, but also the signature of wind-driven currents such
as Ekman flows. Due to the vertical shear of Ekman velocities between
the surface and 15-m (c.f. Rio et al., 2014), an undiagnosed cross-wind
velocity component associated with the Ekman dynamics can be
present in the slip-corrected undrogued drifter velocities, and thus
contribute to the differences between the pseudo-Eulerian variances
calculated using drogued and undrogued drifter data. Lastly, the αu
estimates have uncertainties of their own, whose origins and magnitude
were not accessed, implying that biases due to the use of observations
from undrogued drifters can still be significant. Nevertheless, the
improvements obtained by the simple correction used in this study
are encouraging. If the spatial patterns of αu truly reflect wave effects,
then a more accurate correction can possibly be achieved by first
removing the instantaneous Stokes drift from the drifter measurements,
estimated from numerical models or satellite/mooring/drifter observa-
tions, before calculating the downwind slip coefficient via (1).

The method proposed for the decomposition of Lagrangian data
requires definitions for parameters whose adjustment affects the results,
including (a) the bin size and mapping resolution; (b) the model used to
describe spatial and temporal variations, particularly the polynomial
degree n and number of seasonal harmonics m (Eq. (3)); and (c) the
decorrelation time scale Td (Eq. (5)). Those were defined via sensitivity
tests using altimeter-derived geostrophic velocity (GV) data from
AVISO subsampled at the drifter locations. Specifically, pseudo-Euler-
ian quantities were calculated from the Lagrangian GV dataset for
ranges of the adjustable parameters and compared against the corre-
sponding Eulerian values. This operation resulted in optimum values of
n=4, m=2 and Td=6.33 days, and showed that coherent mesoscale
features can be resolved by mapping estimates onto a 0.25° × 0.25° grid.

Regarding bin size, the proposed 1-D approach better resolves the
cross-stream velocity structure of narrow currents than other methods,
from the O[1 m/s] flow of western boundary currents, to O[0.1 m/s]
features such as recirculation cells (Fig. 7), and is less sensitive to
variations of this parameter (Fig. 8). The new global climatological
fields are generated using 1° radii circular bins, to balance the
smoothing effect of binning with the statistical reliability of the
estimates in poorly-sampled regions. Fig. 8 shows that this procedure
produces mean core speeds for western boundary currents up to 0.2 m/s
faster than the decomposition method of Lumpkin and Johnson (2013),
0.4 m/s faster than using 2-D smooth splines (e.g. Bauer et al., 1998;
Falco and Zambianchi, 2011), and 0.75 m/s faster than bin-averaging
(e.g. Fratantoni, 2001; Jakobsen et al., 2003; Maximenko et al., 2009).

Standard errors, calculated for the modeled velocities via (7), were
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compared against the root mean square (RMS) differences between
pseudo-Eulerian and Eulerian estimates (absolute errors). Using opti-
mum method parameters, standard errors are found to underestimate
absolute errors by about a factor of 2. Differences between both error
metrics arise because standard errors do not account for Eulerian
binning biases, such as the smoothing of time-mean spatial gradients,
and due to possible inadequacies of the model proposed by (3) and (5).
The relatively small standard errors can also reflect an underestimation
of the decorrelation time scale Td, which was fixed at all bins assuming
a Lagrangian integral time scale of 3 days, when this parameter can
actually range from less than one day to O[1 week].

The pseudo-Eulerian mean fields obtained using the presented
methods and real drifter observations (Fig. 13) resolves details of the
general ocean circulation absent in the climatology described by
Lumpkin and Johnson (2013). Core speeds for the Florida/Gulf Stream
Currents are up to 50% larger, and recirculation cells and other
relatively narrow circulation features are stronger and better-defined.
Notably, the global fields also show zonally-elongated striation features
in all major oceanic basins (Fig. 14), which previously could only be
resolved at such spatial resolution by time-averaging surface velocities
inferred from satellite observations (e.g. Maximenko et al., 2009).

These results support the consistency of the obtained mean fields.
Since the reliability of the results can be assessed using the standard
errors calculated from Eq. (7), this new climatology can be used to
validate satellite-derived surface velocity products and the output of
realistic numerical simulations. From a methodological standpoint,
Peng et al. (2015b) demonstrated that accounting for horizontal
velocity gradients improves the convergence of eddy diffusivity
estimates, implying that further improvements can possibly be
achieved by using the updated decomposition method presented in
this study. The better performance of the proposed decomposition
method in resolving spatial gradients can also improve estimates of
Reynolds stresses, and of the turbulent transport of heat, salt, and
tracers across large-scale oceanic fronts. Furthermore, the presented
method is general and can be applied to other Lagrangian datasets,
such as velocity observations from subsurface floats (e.g. SOFAR and
RAFOS), and temperature and salinity data from Argo profilers.
Considering that their historical observational density is smaller than
that of surface drifters, the better performance of the proposed 1-D
approach at larger bin sizes (Fig. 8) can improve the definition of
spatial structures for in situ-based climatologies of the subsurface
ocean.

Finally, Lumpkin and Johnson (2013) observed that interannual
variability correlated with the Southern Oscillation Index (SOI) ex-
plained a significant fraction of the near-surface velocity's variance in
the tropical Pacific and tropical Indian Oceans. Following that study,
the methods described here can be extended to account for forms of
interannual variability by including a long-term trend and/or climate
indexes as extra functions in the matrix A used in the GME estimation
(Eq. (4)). By itself, adding an extra function increases the sampling
requirement by one degree of freedom (6 drifter days, assuming a 3-day
Lagrangian integral time scale), also increasing the standard errors
calculated via Eqs. (6) and (7) due to the larger number of estimated
parameters. If the extra function is a climate index such as the SOI, then
its successful regression would require the sampling of multiple
positive/negative phases of the index, implying that the actual sam-
pling requirements can be significantly larger. For example, Lumpkin
and Johnson (2013) estimated the SOI's amplitude in bins with more
than 365 drifter days, and other constraints can possibly be further
adopted to restrict the estimation to bins where the drifter data is more
homogeneously distributed across the years. The expected increase in
sampling density promoted by the continued maintenance of the GDP
drifter array in the coming years, besides refining the obtained time-
mean and seasonal climatological fields, can potentially lead to a better
resolution of interannual current variability correlated not only with
the SOI, but also with the indexes of other low-frequency climate

phenomena, such as the Indian Ocean Dipole and the Atlantic Multi-
decadal Oscillation.

Acknowledgements

The authors acknowledge and thank Semyon Grodsky and
six anonymous reviewers for their very helpful comments. This
work was supported by grants from The Gulf of Mexico Research
Initiative, and from the National Science Foundation (OCE Grant
1434198). R. Lumpkin was supported by NOAA's Atlantic
Oceanographic and Meteorological Laboratory (AOML) and the
Climate Program Office. The global near-surface current climatology
described here is publicly available through the Gulf of Mexico
Research Initiative Information & Data Cooperative (GRIIDC) at
https://data.gulfresearchinitiative.org (doi: http://dx.doi.org/10.
7266/N7SJ1HN5), and through NOAA/AOML at http://www.aoml.
noaa.gov/phod/dac/dac_meanvel.php.

References

Bauer, S., Svenson, M.S., Griffa, A., Mariano, A.J., Owens, K., 1998. Eddy-mean flow
decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean: 1.
Methodology. J. Geophys. Res., 103, 30,855–30,871. http://dx.doi.org/10.1029/
1998JC900009.

Beron-Vera, F.J., Olascoaga, M.J., Lumpkin, R., 2016. Inertia-induced accumulation of
flotsam in the subtropical gyres. Geophys. Res. Lett. 43. http://dx.doi.org/10.1002/
2016GL071443.

Castelão, G.P., Johns, W.E., 2011. Sea surface structure of North Brazil Current rings
derived from shipboard and moored acoustic Doppler current profiler observations. J.
Geophys. Res. 116. http://dx.doi.org/10.1029/2010JC006575.

Centurioni, L.R., Ohlmann, J.C., Niiler, P.P., 2008. Permanent meanders in the California
Current System. J. Phys. Oceanogr., 38, 1690–1710. http://dx.doi.org/10.1175/
2008JPO3746.1.

Chelton, D.B., Schlax, M.G., Samelson, R.M., de Szoeke, R.A., 2007. Global observations
of large oceanic eddies. Geophys. Res. Lett. 34. http://dx.doi.org/10.1029/
2007GL030812.

de Miranda, A.P., Barnier, B., Dewar, W.K., 1999. On the dynamics of the Zapiola
Anticyclone. J. Geophys. Res., 104, 21,137–21,149. http://dx.doi.org/10.1029/
1999JC900042.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg,
L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J.,
Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park,
B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N., Vitart, F., 2011. The ERA-
Interim reanalysis: configuration and performance of the data assimilation system. Q.
J. R. Meteorol. Soc. 137, 553–597. http://dx.doi.org/10.1002/qj.828.

Ducet, N., Le Traon, P.Y., 2001. A comparison of surface eddy kinetic energy and
Reynolds stresses in the Gulf Stream and the Kuroshio Current systems from merged
TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106, 16,603–16,622.
http://dx.doi.org/10.1029/2000JC000205.

Ducet, N., Le Traon, P.Y., Reverdin, G., 2000. Global high-resolution mapping of ocean
circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19,
477–19,498. http://dx.doi.org/10.1029/2000JC900063.

Falco, P., Zambianchi, E., 2011. Near-surface structure of the Antarctic Circumpolar
Current derived from World Ocean Circulation Experiment drifter data. J. Geophys.
Res. 116. http://dx.doi.org/10.1029/2010JC006349.

Feng, M., Weller, E., Hill, K., 2009. The Leeuwin Current, in: Poloczanska, E., Hobday, A.,
Richardson, A. (Eds.), A Marine Climate Change Impacts and Adaptation Report Card
for Australia 2009. NCCARF Publication 05/09. ISBN 978-1-921609-03-9.

Fratantoni, D., 2001. North Atlantic surface circulation during the 1990's observed with
satellite-tracked drifters. J. Geophys. Res., 106, 2,2067–2,2093. http://dx.doi.org/
10.1029/2000JC000730.

Galperin, B., Nakano, H., Huang, H.P., Sukoriansky, S., 2004. The ubiquitous zonal jets in
the atmospheres of giant planets and Earth's oceans. Geophys. Res. Lett. 31, L13303.
http://dx.doi.org/10.1029/2004GL019691.

Grodsky, S.A., Lumpkin, R., Carton, J.A., 2011. Spurious trends in global surface drifter
currents. Geophys. Res. Lett. 38, L10606. http://dx.doi.org/10.1029/
2011GL047393.

Hansen, D., Poulain, P.M., 1996. Quality controland interpolations of WOCE-TOGA
drifter data. J. Atmos. Ocean. Technol., 900–909. (doi: http://dx.doi.org/10.1175/
1520-0426(1996)013<0900:QCAIOW>2.0.CO;2).

Huang, H.P., Kaplan, A., Curchitser, E.N., Maximenko, N.A., 2007. The degree of
anisotropy for mid-ocean currents from satellite observations and an eddy-permitting
model simulation. J. Geophys. Res. 112. http://dx.doi.org/10.1029/2007JC004105.

Inoue, H., 1986. A least-squares smooth fitting for irregularly spaced data: Finite‐element
approach using the cubic B-spline basis. Geophysics, 51, 2,051–2,066. http://dx.doi.
org/10.1190/1.1442060.

Jakobsen, P.K., Ribergaard, M.H., Quadfasel, D., Schmith, T., Hughes, C.W., 2003. Near-
surface circulation in the northern North Atlantic as inferred from Lagrangian

L.C. Laurindo et al. Deep-Sea Research Part I 124 (2017) 73–92

91

https://data.gulfresearchinitiative.org
http://dx.doi.org//10.7266/N7SJ1HN5
http://dx.doi.org//10.7266/N7SJ1HN5
http://www.aoml.noaa.gov/phod/dac/dac_meanvel.php
http://www.aoml.noaa.gov/phod/dac/dac_meanvel.php
http://dx.doi.org/10.1029/1998JC900009
http://dx.doi.org/10.1029/1998JC900009
http://dx.doi.org/10.1002/2016GL071443
http://dx.doi.org/10.1002/2016GL071443
http://dx.doi.org/10.1029/2010JC006575
http://dx.doi.org/10.1175/2008JPO3746.1
http://dx.doi.org/10.1175/2008JPO3746.1
http://dx.doi.org/10.1029/2007GL030812
http://dx.doi.org/10.1029/2007GL030812
http://dx.doi.org/10.1029/1999JC900042
http://dx.doi.org/10.1029/1999JC900042
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1029/2000JC000205
http://dx.doi.org/10.1029/2000JC900063
http://dx.doi.org/10.1029/2010JC006349
http://dx.doi.org/10.1029/2000JC000730
http://dx.doi.org/10.1029/2000JC000730
http://dx.doi.org/10.1029/2004GL019691
http://dx.doi.org/10.1029/2011GL047393
http://dx.doi.org/10.1029/2011GL047393
http://dx.doi.org/10.1029/2007JC004105
http://dx.doi.org/10.1190/1.1442060
http://dx.doi.org/10.1190/1.1442060


drifters. J. Geophys. Res. 108. http://dx.doi.org/10.1029/2002JC001554.
Johnson, G.C., 2001. The Pacific ocean subtropical cell surface limb. Geophys. Res. Lett.,

28, 1771–1774. http://dx.doi.org/10.1029/2000GL012723.
Koszalka, I., LaCasce, J.H., 2010. Lagrangian analysis by clustering. Ocean Dyn. 60,

957–972. http://dx.doi.org/10.1007/s10236-010-0306-2.
Koszalka, I., LaCasce, J.H., Andersson, M., Orvik, K.A., Mauritzen, C., 2011. Surface

circulation in the Nordic Seas from clustered drifters. Deep-Sea Res. I 58, 468–485.
http://dx.doi.org/10.1016/j.dsr.2011.01.007.

LaCasce, J.H., 2008. Statistics from Lagrangian observations. Progress. Oceanogr. 77,
1–29. http://dx.doi.org/10.1016/j.pocean.2008.02.002.

Lagerloef, G.S.E., Mitchum, G.T., Lukas, R.B., Niiler, P.P., 1999. Tropical Pacific near-
surface currents estimated from altimeter, wind and drifter data. J. Geophys. Res.,
104, 23,313–23,326. http://dx.doi.org/10.1029/1999JC900197.

Lumpkin, R., 2003. Decomposition of surface drifter observations in the tropical Atlantic
Ocean. Geophys. Res. Lett. 14, 1,753. http://dx.doi.org/10.1029/2003GL017519.

Lumpkin, R., Flament, P.J., 2013. Extent and energetics of the Hawaiian Lee
Countercurrent. Oceanography 26, 58–65. http://dx.doi.org/10.5670/oceanog.
2013.05.

Lumpkin, R., Grodsky, S.A., Centurioni, L., Rio, M.H., Carton, J.A., Lee, D., 2013.
Removing spurious low-frequency variability in drifter velocities. J. Atmos. Ocean.
Technol. 30, 353–360. http://dx.doi.org/10.1175/JTECH-D-12-00139.1.

Lumpkin, R., 2016. Global trajectories of coherent vortices from surface drifter
trajectories. J. Geophys. Res.: Oceans, 121, 1,306–1,321. http://dx.doi.org/10.1002/
2015JC011435.

Lumpkin, R., Johnson, G., 2013. Global ocean surface velocities from drifters: mean,
variance, ENSO response, and seasonal cycle. J. Geophys. Res., 118, 2,992–3,006.
http://dx.doi.org/10.1002/jgrc.20210.

Lumpkin, R., Pazos, M., 2007. Measuring surface currents with Surface Velocity Program
drifters: the instrument, its data and some recent results. In: Griffa, A., Kirwan, A.,
Mariano, A., Özgökmen, T., Rossby, T. (Eds.), Lagrangian Analysis and Prediction of
Coastal and Ocean Dynamics, Cambridge University Press. Chapter 2, pp. 39–67.

Mariano, A.J., Ryan, E.H., 2007. Lagrangian analysis and prediction of coastal and ocean
dynamics (LAPCOD review). In: Griffa, A., Kirwan, A.D., Mariano, A.J., Özgökmen,
T., Rossby, T. (Eds.), Lagrangian Analysis and Prediction of Coastal and Ocean
Dynamics, Cambridge University Press. Chapter 13, pp. 423–479.

Maximenko, N.A., Bang, B., Sasaki, H., 2005. Observational evidence of alternating jets in
the world ocean. Geophys. Res. Lett. 32. http://dx.doi.org/10.1029/2005GL022728.

Maximenko, N.A., Hafner, J., Niiler, P.P., 2012. Pathways of marine debris derived from
trajectories of Lagrangian drifters. Mar. Pollut. Bull. 65, 51–62. http://dx.doi.org/10.
1016/j.marpolbul.2011.04.016.

Maximenko, N.A., Melnichenko, O.V., Niiler, P.P., Sasaki, H., 2008. Stationary mesoscale
jet-like features in the ocean. Geophys. Res. Lett. 35. http://dx.doi.org/10.1029/
2008GL033267.

Maximenko, N.A., Centurioni, L.R., Lumpkin, R., 2013. Ocean surface circulation. In:
Ocean Circulation and Climate: A 21st Century Perspective, volume 103. Chapter 12,
pp. 283–304.

Maximenko, N.A., Niiler, P.P., Rio, M., Melnichenko, O., Centurioni, L., Chambers, D.,
Zlotnicki, V., Galperin, B., 2009. Mean dynamic topography of the ocean derived
from satellite and drifting buoy data using three different techniques. J. Atmos.
Ocean. Technol., 26, 1,910–1,918. http://dx.doi.org/10.1175/2009JTECHO672.1.

Middleton, J.F., Cirano, M., 2002. A northern boundary current along Australia's southern
shelves: the Flinders Current. J. Geophys. Res. 107, 3129. http://dx.doi.org/10.
1029/2000JC000701.

Middleton, J.F., Bye, J.A.T., 2007. A review of the shelf-slope circulation along Australia's
southern shelves: Cape Leeuwin to Portland. Progress. Oceanogr. 75, 1–41. http://dx.
doi.org/10.1016/j.pocean.2007.07.001.

Niiler, P.P., 2001. The world ocean surface circulation. In: Siedler, G., Church, J., Gould,
J. (Eds.), Ocean Circulation and Climate, Academic Press, San Diego, California.

volume 77 of International Geophysical Series, pp. 193–204.
Niiler, P.P., Sybrandy, A.S., Kenong, B., Poulain, P.M., Bitterman, D., 1995.

Measurements of the water-following capability of holey-sock and tristar drifters.
Deep-Sea Res. I, 42, 1,961-1,964. http://dx.doi.org/10.1016/0967-0637(95)
00076-3.

Pazan, S.E., Niiler, P.P., 2001. Recovery of near-surface velocity from undrogued drifters.
J. Atmos. Ocean. Technol., 18, 476–489. (http://dx.doi.org/10.1175/1520-
0426(2001)018<0476:RONSVF>2.0.CO;2).

Peng, S., Qian, Y.K., Lumpkin, R., Du, Y., Wang, D., Li, P., 2015a. Characteristics of the
near-surface currents in the Indian Ocean as deduced from satellite-tracked surface
drifters. Part I: pseudo-Eulerian statistics. J. Phys. Oceanogr. 45, 441–458. http://dx.
doi.org/10.1175/JPO-D-14-0050.1.

Peng, S., Qian, Y.K., Lumpkin, R., Li, P., Wang, D., Du, Y., 2015b. Characteristics of the
near-surface currents in the Indian Ocean as deduced from satellite-tracked surface
drifters. Part II: Lagrangian statistics. J. Phys. Oceanogr. 45, 459–477. http://dx.doi.
org/10.1175/JPO-D-14-0049.1.

Perez, R.C., Hormann, V., Lumpkin, R., Brandt, P., Johns, W.E., Hernandez, F., Schmid,
C., Bourlès, B., 2014. Mean meridional currents in the central and eastern equatorial
Atlantic. Ocean Dyn., 43, 2,943–2,962. http://dx.doi.org/10.1007/s00382-013-
1968-5.

Poje, A.C., Özgökmen, T.M., Lipphard, B.L., Haus, B.K., Ryan, E.H., Haza, A.C., Jacobs, G.
A., Reniers, A.J.H.M., Olascoaga, M.J., Novelli, G., Griffa, A., Beron-Vera, F.J., Chen,
S.S., Coelho, E., Hogan, P.J., Kirwan, A.D., Huntley, H.S., Mariano, A.J., 2014.
Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl.
Acad. Sci. USA, 111, 12,693–12,698. http://dx.doi.org/10.1073/pnas.1402452111.

Polito, P.S., Sato, O.T., 2015. Do eddies ride on Rossby waves? J. Geophys. Res. Oceans,
120, 5,417–5,435. http://dx.doi.org/10.1002/2015JC010737.

Poulain, P.M., Gerin, R., Maurin, E., Pennel, R., 2009. Wind effects on drogued and
undrogued drifters in the eastern Mediterranean. J. Atmos. Ocean. Technol., 26, 1,
144–1,156. http://dx.doi.org/10.1175/2008JTECHO618.1.

Reverdin, G., Niiler, P.P., Valdimarsson, H., 2003. North Atlantic Ocean surface currents.
J. Geophys. Res. 108. http://dx.doi.org/10.1029/2001JC001020.

Richardson, P.L., Walsh, D., 1986. Mapping climatological seasonal variations of surface
currents in the tropical Atlantic using ship drifts. J. Geophys. Res., 91, 10,537–10,
550. http://dx.doi.org/10.1029/JC091iC09p10537.

Rio, M.H., Mulet, S., Picot, N., 2014. Beyond GOCE for the ocean circulation estimate:
synergetic use of altimetry, gravimetry, and in situ data provides new insight into
geostrophic and Ekman currents. Geophys. Res. Lett. 41, 8,918–8,925. http://dx.doi.
org/10.1002/2014GL061773.

Schott, F.A., Xie, S., McCreary Jr., J.P., 2009. Indian Ocean circulation and climate
variability. Rev. Geophys. 47. http://dx.doi.org/10.1029/2007RG000245.

Siedler, G., Rouault, M., Lutjeharms, J.R.E., 2006. Structure and origin of the subtropical
South Indian Ocean Countercurrent. Geophys. Res. Lett. 33. http://dx.doi.org/10.
1029/2006GL027399.

Stramma, L., Schott, F., 1999. The mean flow field of the tropical Atlantic. Deep-Sea Res.
II 46, 279–303. http://dx.doi.org/10.1016/S0967-0645(98)00109-X.

Treguier, A.M., Hogg, N.G., Maltrud, M., Speer, K., Thierry, V., 2003. The origin of deep
zonal flows in the Brazil Basin. J. Phys. Oceanogr., 33, 580–599. (http://dx.doi.org/
10.1175/1520-0485(2003)033<0580:TOODZF>2.0.CO;2).

Volkov, D.L., Fu, L.L., 2008. The role of vorticity fluxes in the dynamics of the Zapiola
Anticyclone. J. Geophys. Res. 113. http://dx.doi.org/10.1029/2008JC004841.

Wunsch, C., 1996. The Ocean Circulation Inverse Problem. Cambridge Univ. Press, New
York, pp. 442.

Zhurbas, V., Lyzhkov, D., Kuzmina, N., 2014. Drifter-derived estimates of lateral eddy
diffusivity in the World Ocean with emphasis on the Indian Ocean and problems of
parameterisation. Deep-Sea Res. I 83, 1–11. http://dx.doi.org/10.1016/j.dsr.2013.
09.001.

L.C. Laurindo et al. Deep-Sea Research Part I 124 (2017) 73–92

92

http://dx.doi.org/10.1029/2002JC001554
http://dx.doi.org/10.1029/2000GL012723
http://dx.doi.org/10.1007/s10236-010-0306-2
http://dx.doi.org/10.1016/j.dsr.2011.01.007
http://dx.doi.org/10.1016/j.pocean.2008.02.002
http://dx.doi.org/10.1029/1999JC900197
http://dx.doi.org/10.1029/2003GL017519
http://dx.doi.org/10.5670/oceanog.2013.05
http://dx.doi.org/10.5670/oceanog.2013.05
http://dx.doi.org/10.1175/JTECH-D-12-00139.1
http://dx.doi.org/10.1002/2015JC011435
http://dx.doi.org/10.1002/2015JC011435
http://dx.doi.org/10.1002/jgrc.20210
http://dx.doi.org/10.1029/2005GL022728
http://dx.doi.org/10.1016/j.marpolbul.2011.04.016
http://dx.doi.org/10.1016/j.marpolbul.2011.04.016
http://dx.doi.org/10.1029/2008GL033267
http://dx.doi.org/10.1029/2008GL033267
http://dx.doi.org/10.1175/2009JTECHO672.1
http://dx.doi.org/10.1029/2000JC000701
http://dx.doi.org/10.1029/2000JC000701
http://dx.doi.org/10.1016/j.pocean.2007.07.001
http://dx.doi.org/10.1016/j.pocean.2007.07.001
http://dx.doi.org//10.1016/0967-0637(95)00076-3
http://dx.doi.org//10.1016/0967-0637(95)00076-3
http://dx.doi.org/10.1175/JPO-D-14-0050.1
http://dx.doi.org/10.1175/JPO-D-14-0050.1
http://dx.doi.org/10.1175/JPO-D-14-0049.1
http://dx.doi.org/10.1175/JPO-D-14-0049.1
http://dx.doi.org/10.1007/s00382-013-1968-5
http://dx.doi.org/10.1007/s00382-013-1968-5
http://dx.doi.org/10.1073/pnas.1402452111
http://dx.doi.org/10.1002/2015JC010737
http://dx.doi.org/10.1175/2008JTECHO618.1
http://dx.doi.org/10.1029/2001JC001020
http://dx.doi.org/10.1029/JC091iC09p10537
http://dx.doi.org/10.1002/2014GL061773
http://dx.doi.org/10.1002/2014GL061773
http://dx.doi.org/10.1029/2007RG000245
http://dx.doi.org/10.1029/2006GL027399
http://dx.doi.org/10.1029/2006GL027399
http://dx.doi.org/10.1016/S0967-0645(98)00109-X
http://dx.doi.org/10.1029/2008JC004841
http://refhub.elsevier.com/S0967-0637(16)30285-0/sbref30
http://refhub.elsevier.com/S0967-0637(16)30285-0/sbref30
http://dx.doi.org/10.1016/j.dsr.2013.09.001
http://dx.doi.org/10.1016/j.dsr.2013.09.001

	An improved near-surface velocity climatology for the global ocean from drifter observations
	Introduction
	Methods
	Data description
	Position/velocity observations from surface ocean drifters
	Altimeter-derived geostrophic velocity fields
	Reanalysis 10-m wind fields

	Correction of drifter slip bias
	Decomposition of Lagrangian data
	Proposed method
	Decomposition evaluation


	Results and discussion
	Decomposition evaluation
	Spatial resolution of pseudo-Eulerian fields
	Sensitivity to fitting parameters
	Sensitivity to bin size and comparison with other techniques
	Error analysis

	Analysis of the variance bias of undrogued drifter velocity data
	New climatological fields

	Summary and conclusions
	Acknowledgements
	References




