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Abstract The surface drifting buoys, or drifters, of the Global Drifter Program (GDP) are predominantly
tracked by the Argos positioning system, providing drifter locations with O(100 m) errors at nonuniform
temporal intervals, with an average interval of 1.2 h since January 2005. This data set is thus a rich and
global source of information on high-frequency and small-scale oceanic processes, yet is still relatively
understudied because of the challenges associated with its large size and sampling characteristics. A meth-
odology is described to produce a new high-resolution global data set since 2005, consisting of drifter loca-
tions and velocities estimated at hourly intervals, along with their respective errors. Locations and velocities
are obtained by modeling locally in time trajectories as a first-order polynomial with coefficients obtained
by maximizing a likelihood function. This function is derived by modeling the Argos location errors with t
location-scale probability distribution functions. The methodology is motivated by analyzing 82 drifters
tracked contemporaneously by Argos and by the Global Positioning System, where the latter is assumed to
provide true locations. A global spectral analysis of the velocity variance from the new data set reveals a
sharply defined ridge of energy closely following the inertial frequency as a function of latitude, distinct
energy peaks near diurnal and semidiurnal frequencies, as well as higher-frequency peaks located near tidal
harmonics as well as near replicates of the inertial frequency. Compared to the spectra that can be obtained
using the standard 6-hourly GDP product, the new data set contains up to 100% more spectral energy at
some latitudes.

1. Introduction

The Global Drifter Program (GDP) maintains a global array of more than 1000 satellite-tracked surface drift-
ing buoys, hereafter referred to as drifters (http://www.aoml.noaa.gov/phod/dac/index.php). The GDP is
part of NOAA’s Global Ocean Observing System and is a scientific project of the international Data Buoy
Cooperation Panel (DBCP, http://www.jcommops.org/dbcp/). Drifters not only provide information on oce-
anic drift at 15 m, the nominal depth of their drogue, but also measure sea surface temperature and, for a
subset of the drifters, sea level pressure, sea surface salinity, and surface winds [Lumpkin and Pazos, 2007].
The GDP has been instrumental in describing and advancing the dynamical understanding of large-scale
and regional oceanic variability on monthly to climate time scales [Maximenko et al., 2013; Lumpkin and
Johnson, 2013]. Drifter data are routinely utilized to improve global and regional weather forecasts
(L. Centurioni et al., Global observing system for measuring sea level atmospheric pressure: Effects and impacts
on numerical weather prediction, submitted to Bulletin of the American Meteorological Society, 2016).

Drifters have historically been tracked by the Argos positioning system [CLS, 2011], but in recent years, the
GDP has been gradually implementing a tracking of drifters by the Global Positioning System (GPS), which
provides drifter locations with meter-scale accuracy and precision at best, at hourly time scales or shorter,
relayed almost instantly via Iridium satellites. The growing data set from GPS-tracked drifters should
become a very valuable tool for global and regional studies of small-scale processes in the ocean [e.g.,
Centurioni et al., 2015]. However, drifters tracked by Argos, which provides drifter locations with much less
accuracy and precision than GPS [e.g., Lopez et al., 2014], have already allowed many investigators to study
oceanic processes characterized by high-frequencies and small spatial scales such as inertial oscillations,
tides, and submesoscale vortices [e.g., Elipot and Lumpkin, 2008; Elipot et al., 2010; Chaigneau et al., 2008;
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Lumpkin and Elipot, 2010; Poulain and Centurioni, 2015]. Yet the Argos sampling is temporally nonuniform,
and to facilitate analyses, the aforementioned studies required ad hoc processing of the drifter trajectories
in order to obtain at regular temporal intervals not only drifter locations but also drifter velocities. In gen-
eral, the global data set can constitute a challenge for global and regional analyses, especially when the
focus of investigations is directed toward short temporal and spatial scales.

From the onset of the GDP, drifter battery power has often been conserved by sampling location for 1 day
followed by 2 days of nonsampling [Hansen and Herman, 1989]. Thus, the Data Assembly Center (DAC) of
the GDP is routinely processing and interpolating the Argos fixes to produce drifter locations continuously
along trajectories at 6 h intervals, using an objective interpolation method commonly called Kriging [Hansen
and Poulain, 1996], tuned to the original sampling scheme [Hansen and Herman, 1989]. Since 2000, the 1
day on, 2 day off sampling scheme has been abandoned thanks to increased battery lives and other techno-
logical advancements [Lumpkin and Pazos, 2007]. In parallel, the number of operational satellites of the
Argos constellation has continuously increased (up to six to date), so that the typical time interval between
two consecutive Argos fixes has dramatically reduced to between 1 and 2 h [Elipot and Lumpkin, 2008].
Despite this increased sampling frequency, the readily available drifter trajectory and velocity product gen-
erated by the DAC are still provided with a 6 h sampling period, which is generally inadequate for the study
of high-frequency processes in the ocean, as will be demonstrated in this paper.

Thus, the first goal of this study is to justify and present the methods we have selected to produce a new
global data set of hourly geographical locations and horizontal velocities along drifter trajectories, derived
from the temporally nonuniform data set of locations from Argos, and from GPS. The second goal is to pro-
vide a few examples of how this new global data set can be utilized to study oceanic velocity variance at
high frequencies. For Argos drifters, our global interpolation method was determined after testing four
interpolation methods (including an update on the Kriging method currently used by the DAC) using the
trajectories of 82 drifters tracked contemporaneously by both Argos and by GPS in the North Atlantic
Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) [Centurioni et al., 2015].
For GPS drifters, we have chosen to apply a smoothing and linear interpolating method.

This paper is organized as follows. Section 2 presents an assessment of the accuracy of Argos locations by
comparing them to GPS locations. This first step is found to be a prerequisite for assessing and selecting a
method of interpolation. Section 3 presents the four methods of interpolations. The performances of the
methods are compared in section 4. Section 5 presents the implementation of the chosen interpolation
methods on the global Argos data set, and highlights new global observations of high-frequency drifter
motions. Concluding statements are given in section 6.

2. Assessment of Argos Locations Using the SPURS Drifter Data

In this section, we assess the errors of Argos locations by comparing them to GPS locations. We first
describe the quality controls applied to Argos locations, then describe the quality controls and processing
applied to GPS locations, and finally compare the two to quantify the Argos errors. We note here that GPS
location accuracy is expected to be on the order of a few meters, and thus GPS errors are considered negli-
gible compared to Argos errors [NSTB/WAAS T&E Team, 2014].

2.1. Quality Control of Argos Locations

To devise an interpolation method, we use 82 drifters deployed for SPURS, tracked by both GPS and Argos
between 21 August 2012 and 1 October 2013 (Figure 1). These data are available through the SPURS data
repository of the NASA PODAAC website (https://podaac.jpl.nasa.gov/SPURS). Argos locations were trans-
mitted to the DAC at the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) in Miami,
FL. The standard data quality control procedures described in Hansen and Poulain [1996] and Lumpkin and
Pazos [2007] are applied to the Argos data set to remove spurious data, and the status of the drogue (which
when attached keeps the drifter following the 15 m currents) is assessed as described in Lumpkin et al.
[2013]. The final quality-controlled (QC) Argos locations total 202,404 data points, 79% with drogue on,
amounting to 17,667 drifter days with trajectory lengths ranging between 29 and 405 days. Location data
with or without drogue attached will be all considered here as the two types of data do not lead to signifi-
cant differences in our analyses, unless specifically stated.
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Figure 1. Trajectories of 82 drifters from Argos tracking deployed as part of the tiples of 30 min (not shown). Outside
SPURS experiment from 21 August 2012 to 1 October 2013. Inverted triangles of a few exceptions, the At values near
indicate the deployment locations.
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zero correspond to consecutive loca-
tions which are not distinguishable
within the longitudinal and latitudinal precision of the data archived at the DAC (1/1000 of a degree or
about 111 m in the meridional direction). Thus, we eliminate such redundant locations by discarding the
second point of each pair when At < 20 min or when the separation distance is less than 50 m, or both.
Note that angular separation is calculated using the haversine formula, and converted to separation dis-
tance using an Earth’s radius of 6371 km.

The GPS locations still include occasional extreme outliers, with unphysically large and apparently random
changes of longitude and latitude. All GPS locations are accompanied by a quality index which we do not
find useful for our purpose, as it does not appear to accurately flag such outliers. To detect these, we
devised a multiple-step procedure now applied routinely by the DAC to all GPS data entering the GDP data-
base. As a first step, for each GPS location, we look for the temporally closest Argos location of quality index
2 or 3 (we will explain Argos classes in the next section) and calculate the absolute speed required to go
between the GPS location and this Argos location. If the resulting speed is larger than 3 m s~ ', these GPS
locations are discarded. The second step consists of comparing the time series of longitude and latitude to
filtered versions of these time series, obtained by applying a one-dimensional five-point median filter, with
the time series mirrored at either end. Original values are flagged and removed if they are more than five
standard deviations from the five-point median. This operation is repeated five times. The remaining fixes
constitute what we call the QC GPS fixes (Figure 2).

Location data from GPS are taken as truth for evaluating Argos locations (next subsection) and for assessing
the four interpolation methods applied to Argos locations (section 4). We assess the interpolation methods
based on estimated locations and also on estimated horizontal drifter velocities, since both quantities are
estimated at the same time by the methods (except Kriging). Thus, it is necessary to derive velocities from
GPS locations as well for comparisons. A straightforward method to calculate GPS velocities is to first line-
arly interpolate longitude and latitude coordinates to hourly time steps, and second to compute velocity by
a central difference scheme, which is the average of arriving and departing velocities at each step. Instead,
we choose to implement another method which consists of estimating both locations and horizontal veloc-
ities at the nonuniform times by modeling locally in time the GPS trajectory using a first-order polynomial.
For this, we apply a robust regression method called the Locally Weighted Scatterplot Smoother, or LOWESS
[Cleveland, 1979], described in Appendix A. This choice of method is motivated by the impact of the central
difference scheme on the velocity variability at high frequencies. Figure 3 is a comparison between rotary
spectra calculated for velocity time series from the LOWESS method (after subsequently linearly interpolat-
ing these velocities onto uniform hourly times), and rotary spectra calculated for velocity time series
obtained by directly linearly interpolating the nonuniform QC GPS locations onto uniform hourly times and
then using a central differencing scheme. The central difference scheme overattenuates power at high fre-
quencies, while the LOWESS velocities renders an approximately constant spectral slope in the same
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SPURS data processing flowchart
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Figure 2. Processing chart of the SPURS data set for this study. The green labels reference sections of this article. The blue labels indicate
the final products of this study. Raw GPS and raw Argos longitude (¢) and latitude (0) data are recorded at different nonuniform time steps
t. Interpolated GPS and Argos ¢, 0, and horizontal velocity components (u, v) are estimated on common hourly GMT time steps.

frequency range. The resulting smoothed GPS data (Figure 2) consist of 676,201 smooth estimates of GPS
locations and velocities, amounting to 17,826 drifters days, with trajectory lengths ranging between 29 and
405 days.

2.3. Assessment of Argos Location
Errors

1 : . . L : In this section, we assess the quality of
Argos locations, which are determined
using the Doppler shift on the transmis-
r sion frequency between Argos plat-
forms and an Argos satellite flying
above [CLS, 2011]. The localization algo-
rithm selected from Argos by the DAC
has historically been a least squares
analysis, producing location as well as
an associated location error. Since
March 2011, a multimodel Kalman filter
solution has been made available by
Argos, and has been selected by the
DAC. Argos location errors are not hori-
L zontally uniform, and are represented

by an ellipse with semimajor axis a and

semiminor axis b [CLS, 2011]. However,
- by specification, the GDP is provided
with a location error characterized by a
class, associated with an equivalent
radius error v/ab, assumed to be repre-

Figure 3. Rotary velocity spectra estimates for GPS velocities obtained from a sentative of one standard deviation of
LOWESS filter or by central differences of linearly interpolated GPS locations. The the errors. The error classes are labeled
negative, anticyclonic, spectra are offset vertically by two decades for legibility. . .
The thin vertical gray lines correspond to astronomical tidal frequencies. The hori- 0 to 3, each associated with a range of
zontal bar marked by f indicates the range of inertial frequencies for these data. values for the radius error. The nominal
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error values are less than 250 m for
o class 3, 250-500 m for class 2, 500~

Zonal Error Meridional Error
(Std, m) (Std, m) 1500 m for class 1, and greater than
1500 m for class 0. Two worse location

Table 1. Previous Studies Assessing Argos Location Errors for Drifters

Hansen and Herman [1989]: 277 173
45 grounded drifters classes are possible, classes A and B,
Lumpkin and Pazos [2007]: 630 270 but these are not transmitted to the

one grounded drifter

Lopez et al. [2014]; DAC. Lopez et al. [2014] concluded that
44 moving drifters the Kalman filter positioning was signif-
Peastieqiatesialgorithi 22 ol icantly better than the least squares

Kalman filter 516 433

only for locations classes A and B.

The statistical description of Argos
location errors is crucial for analyses of Argos location data [e.g., Jonsen et al., 2005; Boyd and Brightsmith,
2013], yet previous assessments of Argos location errors for drifters are few. A common result of previous
studies is that the error in the zonal direction is generally larger than in the meridional direction (Table 1).
We estimate and describe the location errors for the SPURS drifters by comparing GPS and Argos locations.
This result will later be used for the interpolation methods tested in section 3. To compute errors, we line-
arly interpolate the smooth GPS locations at the QC Argos nonuniform times (Figure 2). We define Argos
location errors as the signed longitude differences (A¢), signed latitude differences (A6), and positive angu-
lar separations (A1) between interpolated GPS locations and Argos locations. In order to minimize the
impact on errors of the linear interpolation itself, we consider the errors calculated only when a GPS loca-
tion is available both within an hour before and an hour after Argos sampling times. This results in consider-
ing 92% of the nonuniform QC Argos positions (186,892 Argos data points). The SPURS data set does not
contain any location class 0, and therefore this class cannot be assessed here.

We estimate the error distributions using kernels [e.g., Fan and Gijbels, 1996, p. 47] at 10~3 degrees resolu-
tion, for all Argos location classes and for each of the classes. We also fit the A¢ and A6 values (not the
kernel estimate curves) to two types of probability distribution functions (PDFs) (Figure 4): the normal, or
Gaussian, PDF, and the t location-scale PDF, also called nonstandardized Student’s t PDF [e.g., Jackman,
2009, p. 507], hereafter simply called t PDF. Both PDFs are symmetric around a location parameter u (corre-
sponding to the mean for the normal PDF) which indicates the value with maximum probability. The PDF
curves both decrease from this maximum at a rate characterized by a scale parameter ¢ (corresponding to
the standard deviation for the normal distribution). The t PDF is characterized by an additional parameter, v,
which is called the shape parameter. This last parameter permits heavier tails and a narrower central peak
compared to a normal PDF with the same parameter ¢. The t PDF tends to a normal PDF as v tends to infin-
ity. The analytical expressions for the normal and t location-scale PDFs, respectively, are

OOl
p(z|u, o) 6\/2-7;‘? ) Q)
_ T [ e
p(z|ﬂao7‘)_0_\/ﬁl—~(%) |:1+;(T) :l ) (2)

where I'(a)=[;* t°'exp (—t) dt is the Gamma function. We also fit the angular separation error values to
the exponential PDF, p(z|o)=e~%/? /a. This last PDF may not be the best model but its simplicity allows us
to obtain qualitative assessments of the distributions. We compute maximum likelihood estimates (MLE) of
the parameters of the PDF models using routines from the statistical toolbox of MATLAB. See Tables 2, 3,
and 5 for the parameter values and Figure 4 for the corresponding curves. Note that the sample mean and
biased sample standard deviation statistics are the MLE of y and g, respectively, for the normal PDF, so that
these values are both statistics of the data and parameter estimates. In the same way, for the exponential
PDF, the sample mean is the MLE of ¢. Finally, we also compute a 2-D histogram of the longitude and lati-
tude errors, in bins of 1073 degrees, to investigate a possible dependence between the two types of errors
(Figure 6).

The longitude errors are nearly centered, with mean errors of 10 m or less in magnitude, but the latitude
errors exhibit positive biases larger than 60 m for classes 2 and 3 (Table 2). The standard deviations of errors
are commensurable in magnitude with previous findings (Table 1), are larger in the zonal direction than in
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A ¢ A6

All Classes
Log PDF
Moo N A

1
N

Class 2
Log PDF

Class 3
Log PDF

3-2-1 012 38 3210123 0 1 2 3
1/60 of Degree 1/60 of Degree 1/60 of Degree

Figure 4. (left column) Longitude error (A¢), (middle column) latitude error (A0), and (right column) angular separation error (A4) distribu-
tions for all Argos location classes, and location classes 1, 2, and 3 (from top to bottom). In each plot, the thin solid curve is a kernel esti-
mate. For longitude and latitude errors, the dotted heavy curve is a fit to a normal PDF, and the dashed heavy curve is a fit to a t location-
scale PDF. In the top plots, the kernel estimate of the distribution of all errors (including “nonverifiable” ones) is shown as a thin solid gray
line.

the meridional direction, and decrease with increasing class, as expected. We compute the observed proba-
bilities that A¢ and A fall within the intervals defined by *1 and *=1.96 standard deviations from their
means. These intervals would, respectively, comprise 68% and 95% of the distributions if the errors were
normally distributed (Table 2). For all classes and for each class, the probability of falling within one stand-
ard deviation of the mean is higher (>73%) than the expectation for a normal PDF. The observed probabil-
ities of falling within 1.96 standard deviations of their means are sometimes higher and sometimes lower,
depending on the coordinate and the class, yet close (94.1-97.1%) to the normal expectation. Thus, the nor-
mal PDF model does not appears to be a good representation of the error distributions for geographical
coordinates. Indeed, the kernel curves clearly exhibit heavier tails and narrower central peaks compared to
the normal distributions fitted to the data (Figure 4). To investigate further such nonnormal character, we
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Table 2. Results of Fits of Argos Longitude and Latitude Errors to Normal PDFs for Each of the Location Classes, and for All Classes®

All Classes Class 1 Class 2 Class 3
Lon. Err. A¢p
102><yq,k (sample mean) 0.003° (—3 m) 0.010° (10 m) —0.009° (—9 m) —0.005° (—6 m)
102X g, (sample std) 0.445° (450 m) 0.641° (648 m) 0.390° (394 m) 0.294° (297 m)
Prob. within Ha, X0, (68%) 77.3% 77.0% 74.2% 75.2%
Prob. within g, +1.960¢, (95%) 94.5% 94.8% 94.1% 97.1%
Lat. Err. AO
10%X g, (sample mean) 0.045° (50 m) 0.006° (6 m) 0.055° (62 m) 0.062° (69 m)
10? Xaog, (sample std) 0.364° (405 m) 0.473° (526 m) 0.340° (379 m) 0.280° (312 m)
Freq. within ug, *oe, (68%) 73.6% 74.2% 73.3% 74.1%
Freq. within ug, +1.960¢, (95%) 92.8% 93.8% 94.3% 96.2%

“Longitude parameters are converted to distance using the 24.7°N median latitude of the data. The observed probability of the errors
to fall within =1 and *1.96, the standard deviation from the mean are also listed, which should be 68% and 95%, respectively, for a nor-
mal PDF.

conduct the one-sample Kolmogorov-Smirnov (KS) test [Massey, 1951] for the null hypotheses that coordi-
nate errors are normally distributed with the location and scale parameters fitted to the data (Table 4). This
test fails for all cases.

The previous results motivate us to consider instead t PDFs. We find that the fits to these PDFs are closer to
the kernel estimates (Figure 4), and capture the narrowing of the distributions with a scale parameter ¢ that
decreases with increasing class, and also capture the decreasing tendency for heavy distribution tails with a
shape parameter v that increases with increasing class (Table 3). We conduct the KS test for the t PDFs and
we find that the test does not reject the null hypothesis at the 5% level for longitude errors for Argos classes
1-3. However, the test does reject the null hypothesis of t PDFs for latitude errors, yet the p value of the test
statistics is more favorable than for the null hypothesis of normal PDF (Table 4). The p value is the probabil-
ity of observing a KS test statistic as large as, or larger than, the observed value under the null hypothesis. A
preference for the t PDF model over the normal PDF model is also demonstrated by scatterplots between
observed quantile values and theoretical quantile values for either normal or t PDFs with the fitted parame-
ters (Figure 5). In these plots, the scatter points for the t PDFs are closer to the regression-one curve, com-
pared to the points for normal PDFs. Only toward extremes values does the t PDF model appear not to
represent the data correctly. Finally, we also calculate the Aikake Information Criterion statistics [Akaike,
1974]. This statistics assess whether there is statistical justification for using more parameters when choos-
ing between models that are nested. We can use this to assess whether there is significant evidence to
reject normal PDFs in favor of t PDFs. We can do this as the normal PDF is functionally (although not for-
mally) nested with a t PDF when v=oc. The calculated statistics (not listed) indicate that the t PDF is better
suited than the normal PDF to represent the A¢ and A0 distributions.

Table 3. Results of Fits of Argos Longitude and Latitude Errors to t Location-Scale PDFs for Each of the Location Classes, and for All
Classes®

All Classes Class 1 Class 2 Class 3

Lon. Err. A¢
102 X ey, —0.004° (—4 m) 0.009° (9 m) —0.009° (—9 m) —0.005° (—5 m)
102X ag, 0.294° (297 m) 0.448° (453 m) 0.297° (300 m) 0.236° (238 m)
Va, 3.38 3.75 4.7 5.55
Prob(¢ < Ady—pq, < ¢)=0.68

102 X 0.342° (346 m) 0.513° (519 m) 0.330° (334 m) 0.257° (260 m)
Prob(¢ < Adx—pge, < ¢)=0.95

102 X 0.879° (888 m) 1.278° (1291 m) 0.779° (787 m) 0.589° (595 m)
Lat. Err. AO
102 X, 0.048° (54 m) 0.014° (16 m) 0.054° (60 m) 0.060° (67 m)
10?Xge, 0.266° (296 m) 0.357° (397 m) 0.268° (299 m) 0.221° (246 m)
Ve, 4.08 4.44 5.12 5.11
Prob(0 < A®y—u,, < 0)=0.68

102X 0 0.301° (335 m) 0.400° (445 m) 0.296° (329 m) 0.243° (270 m)
Prob(0 < A®k—p, < 0)=0.95

102X 0 0.733° (815 m) 0.954° (1061 m) 0.685° (762 m) 0.564° (627 m)

2Longitude parameters are converted to distance using the 24.7°N median latitude of the data. Also listed are the calculated error
values around the mean that define 68% and 95% of the fitted t location-scale PDFs.
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Table 4. Results of One-Sample Kolmogorov-Smirnov Tests for the Null Hypoth-
eses That the Longitude and Latitude Errors Are Distributed Like Normal or t
Location-Scale PDFs?

Since t PDFs are a better match, we
use the analytical expression of the t
PDF (2) with the fitted parameters for

All Classes Class 1 Class 2 Class 3 each class in order to compute the val-
Lon. Err. Adp ues of A¢ and A0 that define 68% and
Weriizl v g g g 95% of the distributions around their
t location scale 0.0444 0.4274 0.2405 0.7279 X .
Lat. Err. AG location parameters (Table 3). In partic-
Normal 0 0 0 0 ular, the 68% values can be compared
t location scale 0.0002 0.0044 0.0020 0.0180

to the Argos equivalent radius for each
For each type of errors and for each class, the table lists the p value of the class. Class 3 is supposed to be repre-

hypothesis test. p < 0.05 indicates that the test rejects the null hypothesis at

the 5% level, thus bold values indicate acceptance of the test at the 5% level.

sentative of a 250 m radius: this is an
underestimation of the 68% value for
A¢ (260 m) and for A0 (270 m). Class 2
is supposed to be representative of a 250-500 m radius, which is appropriate for both longitude and lati-
tude errors 68% values (334 and 329 m, respectively). Finally, class 1 is supposed to be representative of a
500-1500 m radius range, which is appropriate for the 68% value for A¢ (519 m) but is an overestimation
for the 68% value for A0 (445 m). Alternatively, one can ask if the class equivalent radii are representative of
the 68th percentile of the A/ distribution (Table 5): 250 m is an underestimation for class 3, 250-500 m is an
underestimation for class 2, and 500-1500 m is appropriate for class 1.

An implication for the interpolation problem is that if the assumption of normality of the data is made, as is
the case in standard least squares estimation methods, then outliers in the data may be given unrealistic
weights, as we have shown that the normal model is not a suitable description of the observed distribu-
tions. In addition, formal confidence intervals based on normal distributions may inaccurately represent the
true errors due to the original distributions of the data. We will demonstrate in the rest of the paper that
the method of interpolation of the Argos data that we favor does not assume that the errors are normally
distributed, but rather distributed as t PDFs.

3. Methods of Interpolation

In this section, we introduce four interpolation methods tested on the SPURS data set to motivate the
choice of the one ultimately chosen for the global data set. The first method, Kriging, is presented because
it is the method currently used by the DAC to produce the 6-hourly GDP product. Here we present an adap-
tation of this method for hourly time steps, and the results should constitute a benchmark for other meth-
ods. The second method is a refinement of the simple linear interpolation in order to take into account the
sphericity of the Earth, hence it is called “spherical linear interpolation.” Linear interpolation is considered
and discussed because it straightforward and widely used, and any other more sophisticated method would
be expected to perform better. The third and fourth methods are called “weighted maximum likelihood
estimates,” and consist of modeling locally drifter coordinates as linear functions of time, which is conceptu-
ally one step forward compared to linear interpolation. The model parameters are obtained simultaneously
for both coordinates by maximizing a likelihood function, either assuming a normal PDF of the data for the
third method (making this method equivalent to a least squares fit, and this is why it is considered here) or
assuming a t PDF for the fourth method. This fourth method is eventually selected to be applied to the
global Argos drifter data set.

Table 5. Statistics of Angular Separation A/ Argos Errors®

Angular Separation A4 All Classes Class 1 Class 2 Class 3

10? mode 0.210° (234 m) 0.340° (378 m) 0.220° (245 m) 0.210° (234 m)
102 50th percentile 0.351° (390 m) 0.496° (552 m) 0.345° (384 m) 0.280° (312 m)
102 68th percentile 0.485° (539 m) 0.684° (761 m) 0.469° (521 m) 0.376° (418 m)
10? 95th percentile 1.044° (1161 m) 1.423° (1582 m) 0.933° (1037 m) 0.738° (820 m)
Exp. Fit: 102X ¢ (sample mean) 0.432° (480 m) 0.602° (669 m) 0.406° (452 m) 0.326° (362 m)

*The sample mean is also the result of the fit of the scale parameter ¢ of an exponential PDF model.

ELIPOT ET AL.

GLOBAL HOURLY DRIFTERS 8



@AGU Journal of Geophysical Research: Oceans 10.1002/2016JC011716

A ¢ A 3.1. Editing of Argos Locations

a - After experimentation, we found it benefi-
o= 4 ul 4 4

= 4 ./ cial to further edit the QC Argos locations

n s 2 2

% g 0 . 0 before interpolating (Figure 2). An Argos

O =l 5 " > . drifter fix is determined during the 10-20

z 8 :4 oy :4 e : min duration of a satellite’s pass [CLS,

§ Tl 2011; Lopez et al., 2014]. Because there

4202 4 4202 4 ére several A.rgos operatior.1al sa?tellites, it

is often possible that a drifter is located

a / pe within more than one satellite’s view at a

% 4 Iy 4 L o time, and thus several location estimates

; g 2 . 2 may exist within overlapping pass dura-

% o 0 0 : tions. Averaging such locations within

©] g -2 -2 . fixed windows should reduce the location

§ 41 A | error, yet it is not obvious what location

class or error value should be associated

42024 420024 . vare S o '

with such averages. One option would be

n 3 3 to keep all available observations, but

%J 2 o 2 b 4 when fitting a trajectory model with a

ﬁ G 1 - 1 fixed number of observations, as we do

@ 0 0 when we estimate hourly positions, insta-

oo -1 . -1 * bilities in finding numerical solutions to

8 -2 241 our interpolations may arise if divergent

= -3 -3 fixes are too closely spaced together.

3-2-10123 3-2-10123 Thus, before interpolation, we choose to

@ 3 3 process the Argos locations as follows.
2 5 s P b . .
= s i/ Starting from the first location of each tra-
c;: cg 1 1 jectory, we look for observations within a
8T 0 . 0 20 min temporal window in the future.
o % -1 ot -1 “ Normal These observations are ranked by their
§ 'g 4 'g o/cation-scaie Argos classes and only the ones with the
B . best location class are kept. The selected
3210123 3210123 . P .
; i locations are then reduced to a single
Data quantiles Data quantiles locati h this b | d with
(1/60 of Degree) (1/60 of Degree) ocation with this best class, and wit
averaged dates, longitudes, and latitudes.
Figure 5. Quantile-quantile plots for (left column) longitude errors (A¢) and Most Often’ this  selection algorithm
(right column) latitude errors (A9) for all Argos location classes and location amounts to selecting the best location
classes 1, 2, and 3 (from top to bottom). Each plot shows the quantile values between only two locations with different

of the observations on the x axis and the theoretical quantile values on the y . . .
axis for normal (blue) and t location-scale (red) PDFs with the parameters classes within a 20 min window. A some-
listed in Tables 2 and 3. times second and necessary step is to

detect the rare consecutive two observa-
tions that lead to a null displacement. In this case, the lesser quality location, or the first of two locations
with the same class, is discarded. These two selection algorithms amount to discarding 13.1% of the QC
Argos locations for the SPURS data set.

3.2. Revisiting the Kriging Method

3.2.1. Kriging Equations and the Variogram

Kriging is a general term in geostatistics which designates methods of prediction of an unknown field vari-
able which is function of one or more coordinates. Given a set of observations, and possibly their associated
observation errors, these methods utilize knowledge of some statistics of the field variable, such as the
cross-covariance function, or the variogram function which is the variance of the difference of the field vari-
able along its coordinates. In oceanic and atmospheric sciences, methods of interpolation, or of mapping,
based on modeled covariance functions are traditionally called objective or optimal analyses [Bretherton
et al, 1976]. Under the condition of second-order stationarity, covariance and variogram functions are
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linearly related so that using one function or the other are equivalent. Yet it is clear that the covariance of
drifter displacements displays both geographic and spatial variability, indicating an underlying nonstation-
ary process. Therefore, the use of the variogram for interpolating trajectories is advocated. One-dimensional
Kriging of drifter coordinates along trajectories with a model of the variogram was first implemented by
Hansen and Herman [1989], and later refined by Hansen and Poulain [1996] to incorporate observational
errors in the method. Thus, in order to implement Kriging, one needs to specify the autocovariances of the
location errors, as well as to define, or model and fit to data, the variogram function. Details of the method
can be found in the aforementioned papers.

3.2.2. Implementations at 6 h Intervals by the GDP/DAC

The DAC applies Kriging with a number of settings inherited from Hansen and Herman [1989] and Hansen
and Poulain [1996]. Drifter locations are interpolated at 6 h intervals at times t,=00:00, 06:00, 12:00, and
18:00 GMT, using 10 data points, the total of the five nearest points in time both before and after t,, regard-
less of the nature of the data (GPS or Argos). For the error covariances, the values used for all observations
are 02,=6.7x10~° for longitude and 2 =2.9x10"® for latitude, corresponding approximately to the stand-
ard deviation squared of location errors for fixed drifters observed by Hansen and Herman [1989]. Hansen
and Poulain [1996] used a model of the structure function which is simply half the variogram function,

S(t)=alt|f, 3)

where 7 is the time difference between location observations. Numerical values for the parameters o and f8
are obtained by fitting this model to empirical estimates of the structure function obtained from the QC
nonuniform observations at intervals T = 3 and 6 days (see Hansen and Poulain [1996] for details). Thus, it is
expected that the model is representative of oceanic processes at those time scales. In addition, because
the results of Kriging were found to be relatively insensitive to o, its value is adjusted to make the Kriging
variance error converge to an observed mean squared interpolation error which is obtained by a cross-
validation procedure. For the current DAC implementation, the values of 5 have been calculated for six oce-
anic regions (North and South Atlantic, North and South Pacific, and Indian Ocean) and are kept constant
with time, while the values of « are repetitively calculated for the same regions and in 6 month intervals
(January to June and July to December).

The resulting product consists of 6-hourly longitude and latitude values along drifter trajectories, together
with uncertainties taken as the square root of their respective Kriging variances. Drifter horizontal velocities
are also provided, calculated at 6 h intervals by central differences. These data are available at http://www.
aoml.noaa.gov/phod/dac/dacdata.php.

3.2.3. Revisiting Kriging for SPURS Data Set

We revisit Kriging based on the structure function to apply it to the edited QC Argos nonuniform locations
in order to obtain hourly locations along the trajectories. We choose to use four data points for each inter-
polation time, the sum of two preceding and two following observations. Experimentation showed that
using more observations for Kriging led to slightly better error statistics but to the detriment of velocity var-
iance (discussed in the next section). For each of the observations used, we specify the longitude and lati-
tude error variances as the squared standard deviations estimated from comparing Argos and GPS
locations as a function of class (listed in Table 2). Finally, we use our own estimates of the parameters of
model (3) by fitting the model to estimates of the structure function from the SPURS data for time differen-
ces shorter than 3 days, aiming to optimize Kriging for shorter time scales compared to the DAC implemen-
tation (see Appendix B).

3.3. Spherical Linear Interpolation

A relatively simple interpolation method is linear interpolation in time of both longitude and latitude coor-
dinates. For this method, the underlying drifter trajectory model is a polynomial of order 1, with unknown
intercept and slope which are determined using two data points located before and after the interpolating
time. An immediate problem with interpolating longitude and latitude linearly, and separately, in time is
that the resulting horizontal speed of the drifter is not constant, and therefore the kinetic energy of the par-
ticle is not conserved.

A more appropriate trajectory connecting two points in space is the path of the free, unforced particle—a
geodesic. In 2-D or 3-D Euclidean space, this is simply a constant speed straight line, on the sphere, this is a
constant speed great circle, and on the rotating earth, this is a constant speed inertial circle [see Early, 2012].

ELIPOT ET AL.

GLOBAL HOURLY DRIFTERS 10


http://www.aoml.noaa.gov/phod/dac/dacdata.php
http://www.aoml.noaa.gov/phod/dac/dacdata.php

@AGU Journal of Geophysical Research: Oceans 10.1002/2016JC011716

While the inertial circle may be the most appropriate trajectory for modeling ocean drifters, the great
circle trajectory is more physically intuitive, easier to implement, and is nearly the same on the
time scales considered here. Thus, we implement the constant speed great circle trajectory using a
method which we call “spherical linear interpolation” that ensures that the interpolating path between
two observations is along a great circle parameterized with constant angular speed, and therefore the
horizontal speed of the drifters remains constant along the path. The method is due to Shoemake
[1985] and involves the use of quaternions, which are hypercomplex numbers. Despite the unfamiliar
aspect of quaternions, their simplicity of use for our current interpolating problem makes them
attractive.

We quantify the differences between conducting linear interpolation along great circles with the quater-
nion method, and conducting the linear interpolation independently for longitude and latitude. For the
SPURS drifter data set, the maximum difference between the two methods is 74 m, yet 96% of the differ-
ences are less than 1T m. We still prefer to conduct the linear interpolation on the sphere in order to
ensure that the interpolated trajectory lies on a great circle, which can be important in the case of large
interpolating gaps.

We next would like to obtain the variance of the longitude and latitude estimates for the spherical linear
interpolation. For simplicity, we approximate this variance by the variance obtained by simply propagating
errors using the formula for linear interpolation, and using the Argos class variances (Table 2). This variance
is minimum at the exact mid-temporal distance pair points. Variance estimates are used to assess uncertain-
ties for the interpolation method, arising from the observation errors.

3.4. Weighted Maximum Likelihood Estimation of Linear Trajectory Model With Prescribed Error PDF

Finally, we extend the linear interpolation by locally modeling the drifter trajectory as a linear function of
time, but here we do not limit ourselves to using just one observation before and one observation after the
interpolation time. The model around the interpolation time t, is a linear expansion

o (t; B?) =B+ B} (t—to), (4)
0(t; B*)=PBo+ B (t—to), (5)

for which we seek that the set of parameters ff= [W, ﬂo] = [/ﬁ’g’, ﬁ‘f’, [fg, /3?] maximizes a weighted probability
of the observed data, or weighted likelihood,

N
LB)=]] {p[®x, O, d(ti; B*), 0(ti; B)] } ™, (6)
k=1

where p is the PDF describing whether a location observation (@4, ®,) will yield the true location
(é(tx), 0(tg)). This function is raised to a power wy to achieve a temporal weighting as shown below. The
method of maximum likelihood is used to obtain values of model parameters that define PDFs that are
most likely to have resulted in the observed data.

Maximizing the likelihood function (6) is equivalent to maximizing its natural logarithm, leading to a
weighted log likelihood function:

N
I(B)=>_ wiln p[®, O, ¢ (ti; B), 0(tx; B7)] (7)

k=1

The weighted maximum likelihood estimate (WMLE) ﬁ is such that

N
I(B)= max > _ widnp[@%, O, & (t; B°). 0(t; B) ], ®)
k=1

which means that ﬁ is the set of parameter values that maximizes (7).
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Figure 6. Two-dimensional histogram of Argos longitude errors (A¢) and Argos latitude errors (A0) for all Argos location classes, and for
each Argos class, in 1073 degree bins. Absence of data is indicated by white shading. Note the different scales for each color bar.

From the assessment of Argos location errors using GPS data (section 2.3), we know that the probability dis-
tribution of Argos longitudes and latitudes can be described in term of the longitude differences 6=y —
$(t; B2) and latitude differences 50=0;—0(ty; p’) between observations and true locations, which are
here modeled using the linear expansion (4) about the interpolation time t,. In addition, we see that the
errors in longitude and latitude are independent (Figure 6), which implies that the joint distribution of longi-
tude and latitude is the product of their marginal distributions, i.e.,

p[®k, Ok, ¢ (te; B?), 0(te; B”) | =p[Dr. ¢ (t; B?) [P [Ok, 0(te; B)]. 9)

If the observations are normally distributed, we can substitute expression (1) into (7) with z=d¢ and z=40,
and with (9), one obtains

l(ﬁ)=2{—wkln (0, V21)—wiIn (a@k\/ﬂ)}
k=1

(10)
+i{ oWk (D= (t; Iﬂ))*ﬂcbk}z_ Wi [Ok—0(ty; 56)#@]2}

2 2
k=1 2 O 2 Tox
where the g, , 1o, and og,, de, are the means and standard deviations of the normal PDFs of longitude or
latitude observations with index k. Equation (10) is, in this case, the expression to maximize with respect to
B. While the first term of the right side is a constant, the second term can be maximized by varying B, or
equivalently, its negative can be minimized. Thus, it is apparent that the WMLE of f for normally distributed

errors is a weighted least squares solution for f8.

As seen earlier, a better model than the normal PDF can be used for the Argos observations. In particular,
observation outliers are more likely to occur than would be expected based on a normal PDF, and these
data would then be given inadequate weights during the estimation [Press et al., 1988, Chapter 17.1].
Instead of the normal PDF, we can use the t PDF model (2), for which the log likelihood becomes
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where pg, , Ug,, Oa,, To,, and v, , ve, are the location, scale, and shape parameters of the t PDF of longitude
or latitude observations with index k. As before, the first summation of (11) is a constant, but the second
summation can be maximized with respect to .

We proceed to find the WMLE of B for model (4) at hourly time steps in order to interpolate the Argos longitude
and latitude observations. We implement two versions of such a WMLE method, one assuming normal PDFs of
the observations and one assuming t PDFs. Thus, finding the WMLE for the log likelihoods (10) and (11) consists
in each case, and at each time step, of solving a set of four equations [6I(ﬁ)/8ﬂ;’"9:0,j:0, 1], or alternatively, of
using a numerical algorithm of optimization to find a minimum of the negative of (10) or (11), a choice we make
here because no analytical solution appears to exist for the t PDF case. We use an unconstrained minimization
algorithm—the trust-region algorithm (as implemented by the function fminunc of the optimization toolbox of
MATLAB)—for which we provide the analytical expression of the gradients of (10) or (11). As initial values for the
algorithm, we use the nonweighted least squares solution of fitting the N data points to the linear model (4).

For the choice of the number of observations used to form the log likelihood functions, experimentation leads us
to choose two location data points before and two after the hourly times (i.e,, N = 4), permitting also a fair com-
parison with Kriging, which uses the same number of observations. For each estimation, the values of the parame-
ters of the PDFs of the observations are dictated by their classes, and we use the values from our Argos class
analyses (section 2.3 and Tables 2 and 3). Regarding the choice of temporal weights w;, experimentation reveals
that for a uniform weighting scheme, the WMLE is nearly constant for a given set of N observations. Thus, in order
for the solution to gradually evolve with hourly times, we make the weights wy a function of absolute temporal
distance |t —to| from the interpolating time t,. For this, we choose an inverse distance weighting scheme as

C

PREEEE (12)
too+ |tk —to]

Wk:W(|tk—t0D:
where ty, is a fixed parameter and C is a normalizing constant so that Zﬁ:1 wx=N. This normalization
recovers a nonweighted version of the log likelihood (7) in the case wyx = 1 for all k. The constant ty, is set
equal to 20 min to prevent the weights from reaching infinite value as t, approaches t,. This time interval is
consistent with the Argos data selection algorithm described in section 3.1.

To obtain confidence intervals for the WMLE, we could use asymptotic theory, which tells us that as the
number of observation data points N becomes large, the difference between the true parameters and the
WMLE ([?j—[fj, j=1,2) is normally distributed with a variance that can be computed from the curvature of
the log likelihood function at its maximum [Dzhaparidze and Kotz, 1986]. Yet we have at our disposal few
observations (i.e., N = 4) to obtain our estimates, so we rely instead on a bootstrapping method [Efron and
Gong, 1983]. We reestimate f at each hourly time step by using three observations out of four, which leads
to four alternative WMLEs from which we compute the variances sj=Var[/?j]. As we will show, we find that
/7/_/5/
5/VN
dent’s t PDF with N — 1 degrees of freedom. We therefore derive 95% confidence intervals, at each hourly
time step for locations and velocities, as

the bootstrap method performs well, and thus the resulting t value t;= should be distributed as a Stu-

S
VN’

where t(0.025, N—1)=3.1824 is the value for the 2.5th percentile of the Student’s t cumulative distribution
function with N - 1 degrees of freedom.

B t(0.025,N—1) (13)
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4. Assessment of Methods

4.1. Locations

In this section, we present an overall comparison of the four different interpolation methods: updated Krig-
ing (section 3.2), spherical linear interpolation (section 3.3), the WMLE method with normal PDF, and the
WMLE method with t PDF (section 3.4). For all methods, we define interpolation errors as the difference
between the smoothed GPS locations interpolated linearly to hourly time steps, our ground truth, and the
interpolated positions (Figure 2). We consider only 82% of the calculated errors (347,583 data points),
hereafter called “verifiable,” for which a smoothed GPS location is available within an hour before, and
within an hour after, the interpolating time.

Kernel estimates of the distribution of the longitude differences (A¢), latitude differences (Af), and angular
separation (AZ) are shown in Figure 7. Also shown are the curves corresponding to fitting these distribution
to PDF models, and the fitting parameters are listed in Tables 6-8. These results allow us to answer the fol-
lowing two questions. How do the interpolation errors compare to the Argos errors (for noninterpolated
locations)? Which method returns the smallest errors?

4.1.1. How do the Interpolation Errors Compare to the Argos Errors (for Noninterpolated Locations)?
All methods return a mode value for A4 which is smaller than for Argos errors for all classes (by 23 or 33 m)
(Tables 5 and 6), which suggests that interpolation reduce errors by incorporating information from multiple
observations. The 50th and 68th percentiles are also smaller after interpolation, except the 68th percentile
for the spherical linear interpolation. In contrast, the 95th percentile is dramatically increased (by hundreds
of meters) after interpolation. The fitted scales of exponential PDFs are also significantly larger after
interpolation.

For the mean coordinates errors (u, Table 7), interpolating does not qualitatively change what was found
for nonuniform Argos locations for all classes (uq, and pg, in Table 2): the mean longitude errors are less
than 10 m, but the latitude errors are comparatively larger. All methods, however, increase the standard
deviations of longitude and latitude errors by more than 100 m (Tables 2 and 6). For each method, the prob-
ability that the errors will fall within one standard deviation of the mean error are also increased compared
to Argos (all classes), and therefore interpolating exacerbates the nonnormal character of the error distribu-
tions. This is further confirmed by alternatively examining the t PDF descriptions of the errors (Tables 3 and 8).
We find that all interpolation methods increase the importance of the tails of the error distributions, and nar-
row the central peaks; the shape parameter v estimates are all significantly smaller, and the scale parameter
estimates are also all significantly smaller, compared to the corresponding parameters for the nonuniform
Argos errors. The only exception is for the spherical linear interpolation method for the scale parameter for
longitude errors, but the value fitted (equivalent to 304 m) is within a few meters of the corresponding Argos
all classes value (297 m for all classes). The overall impact of the changing of the shapes of the distribution
can be measured for each method by evaluating the error values that comprise 68% of the errors based on
the t PDF models. Compared to the same value for Argos (all classes), Kriging reduces these values for both
coordinates errors (equivalent 329 and 294 m for longitude and latitude, respectively, compared to 346 and
335 m before interpolation) which is not surprising since Kriging is a smoother and thus should reduce errors
by averaging. All other methods increase this value for longitude errors but decrease this value for latitude
errors, albeit by moderate amounts (no more than 35 m).

4.1.2. Which Method Returns the Smallest Errors?

The two WMLE methods exhibit the smallest mode value for A/, 201 m (Table 6). The Kriging and spherical
linear methods have a mode value for A/ of 211 m. We can reduce further this value to 201 m by increasing
the number of observations used for each hourly interpolation, but doing so is to the detriment of the high-
frequency variance, so it is not favored (see section 3.2.2). Yet we find that Kriging returns the smallest val-
ues for typical percentiles (listed in Table 6). For the 50th and 68th percentiles, the WMLE method with t
location-scale PDF comes second best, followed by the WMLE method with normal PDF, and the spherical
linear method comes last. The sample means of the A4, which are also estimates of the scale parameter of
an exponential PDF model, place Kriging first with a distance equivalence of 490 m, the spherical linear and
WMLE with t PDF second with 545 m, and the WMLE with normal PDF last with 552 m. These values are stat-
istically different according to the 95% confidence intervals of the ML estimates (not listed).

ELIPOT ET AL.

GLOBAL HOURLY DRIFTERS 14



@AGU Journal of Geophysical Research: Oceans 10.1002/2016JC011716

A ¢ Ny A

N © N A

Kriging
Log PDF

|
»

\v’lw | ’“ MW‘ \

DO N A

Linear
Log PDF

A

-6 | "IM it f\""”.' : ll' l‘l | |'

CEE=T SRS

Log PDF

WMLE Normal
A

|
D

WMLE t
Log PDF
NN © N A

o ‘Nn’ i if Ty

-5 0 5 10 -10 -5 0 5 10 4 -3 -2 A1
1/60 of Degree 1/60 of Degree Log10 Degree

o

-1

Figure 7. (left column) Longitude error (A¢), (middle column) latitude error (A0), and (right column) angular separation (A4) error distribu-
tions for each of the methods of interpolation, from top to bottom: Kriging, spherical linear, WMLE with Normal PDF and WMLE with t
location-scale PDF. In each plot, the thin solid curve is a kernel estimate. For longitude and latitude errors, the dotted heavy curve is a fit to
a normal PDF, and the dashed heavy curve is a fit to a t location-scale PDF. For the A4 distributions, the dotted lines are fit to exponential
PDFs. The parameters of the fits are listed in Tables 7 and 8.

We now consider the distributions of the longitude errors (A¢) and latitude errors (A6), and their statistics
corresponding to a normal PDF model (Figure 7 and Table 7). In terms of returning the smallest standard
deviation values for both coordinate’s errors, Kriging comes first, the spherical linear method comes second,
and the WMLE method with t PDF and with normal PDF come third and fourth, respectively. We compute
next the observed probabilities of A¢ and A6 to fall within =1 and *=1.96 standard deviations from their
means. All methods return similar probabilities, larger than 84%, much more than for normally distributed
data (68%). However, all methods return similar probabilities of falling within =1.96 standard deviation,
close to the expectation for normally distributed data (95.8-96.6% compared to 95%). Thus, the errors after
interpolation are still nonnormal, and we alternatively describe and compare them by fitting them to t PDF
models (Figure 7 and Table 8). It is not straightforward to compare these next results because we have now
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Table 6. Angular Separation Errors A/ Statistics for Each of the Four Interpolation Methods

AL Kriging Spherical Linear WMLE With Normal PDF WMLE With t PDF
102 mode 0.190° (211 m) 0.190° (211 m) 0.181° (201 m) 0.181° (201 m)
10? 50th percentile 0.303° (337 m) 0.343° (381 m) 0.325° (362 m) 0.322° (358 m)
102 68th percentile 0.441° (490 m) 0.499° (555 m) 0.483° (537 m) 0.479° (533 m)
102 95th percentile 1.233° (1371 m) 1.340° (1490 m) 1.416° (1575 m) 1.397° (1553 m)
Exp. Fit: 102X g (sample mean) 0.440° (490 m) 0.490° (545 m) 0.497° (552 m) 0.490° (545 m)

Table 7. Results of Fits of Longitude and Latitude Errors of Each of the Four Interpolation Methods to Normal PDFs?

Kriging Spherical Linear WMLE With Normal PDF WMLE With t PDF
Lon. Err. Ag
10% X u (sample mean) —0.003° (=3 m) —0.003° (—4 m) —0.006° (—6 m) —0.005° (—5 m)
102 X g (sample std) 0.543° (549 m) 0.618° (624 m) 0.670° (677 m) 0.663° (670 m)
Prob. within u*o (68%) 84.2% 84.1% 87.0% 86.7%
Prob. within u=*1.960 (95%) 95.8% 96.0% 96.5% 96.4%
Lat. Err. AO
102 Xt (sample mean) 0.003° (4 m) 0.004° (5 m) 0.050° (55 m) 0.051° (56 m)
10%X ¢ (sample std) 0.479° (532 m) 0.528° (587 m) 0.596° (662 m) 0.587° (653 m)
Prob. within u=*o (68%) 85.4% 86.1% 87.5% 88.1%
Prob. within u*1.964 (95%) 95.8% 96.3% 96.3% 96.6%

“Longitude parameters are converted to distance using the 24.7°N median latitude of the data. The observed probability of the errors
to fall within £1 and =1.96 the standard deviation from the mean are also listed, which should be 68% and 95%, respectively, for a
normal PDF.

two parameters (g and v) to compare between four methods. Thus, we calculate from the analytical expres-
sion of the t PDF the error values (¢ and 60 in Table 8) for each method that would comprise 68% and
95% of the distributions. For the 68% interval for A¢, Kriging comes first by exhibiting the smallest value,
the WMLE with normal PDF comes second, the WMLE with t PDF comes third, and the spherical linear
method comes last. The order differs for the 68% interval for A0: Kriging comes first again but the WMLE
with t PDF comes second, the spherical linear comes third, and the WMLE with normal PDF comes last.

In summary, we assess that Kriging performs the best in terms of location errors, and that the WMLE meth-
ods generally perform second best.

4.2. Velocity

In this section, we assess velocities obtained from each of the four interpolation methods. The spherical lin-
ear and WMLE methods return direct estimates of velocities. In contrast, Kriging estimates locations only,
hence we calculate velocities by central differences of the kriged locations. We compare the hourly

Table 8. Results of Fits of Longitude and Latitude Errors of Each of the Four Interpolation Methods to t Location-Scale PDFs®

Kriging Spherical Linear WMLE With Normal PDF WMLE With t PDF

Lon. Err. A¢
102><,u 0.000° (0 m) —0.002° (—2 m) —0.005° (=5 m) —0.005° (=5 m)
10%Xa 0.257° (259 m) 0.301° (304 m) 0.268° (270 m) 0.270° (273 m)
v 232 244 211 2.11
Prob (¢ < A¢p—p < d¢p)=0.68

102 Xo¢p 0.3260° (329 m) 0.370° (381 m) 0.3480° (352 m) 0.3510° (355 m)
Prob (¢ < Ap—p < d¢)=0.95

102><5q[) 0.976° (986 m) 1.098° (1109 m) 1.099° (1110 m) 1.1060° (1117 m)
Lat. Err. AO
102><,u —0.015° (=17 m) —0.013° (—14 m) 0.035° (39 m) 0.035° (39 m)
10% X0 0.202° (224 m) 0.219° (243 m) 0.215° (239 m) 0.207° (230 m)
v 2.08 2.1 1.90 1.91
Prob (60 < AO—pu < 60)=0.68

102X60 0.264° (294 m) 0.285° (317 m) 0.289° (321 m) 0.278° (309 m)
Prob (60 < AO—pu < 60)=0.95

102X50 0.839° (933 m) 0.901° (1002 m) 0.9730° (1082 m) 0.936° (1041 m)

?Longitude parameters are converted to distance using the 24.7°N median latitude of the data. Also listed are the calculated error val-
ues around the mean that define 68% and 95% of the fitted t location-scale PDFs.
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Figure 8. Two-dimensional histograms (real versus imaginary parts) of complex regression coefficient estimates between GPS-derived
drifter velocities and drifter velocities, derived by each of the four interpolation methods: Kriging, spherical linear, WMLE with normal and
with t location-scale distribution.

velocities from the interpolation methods to the GPS-derived velocities after linearly interpolating them
onto hourly times (Figure 2).

4.2.1. Vector Cross Covariance

We consider the complex-valued time series z; (t)=u;(t)+iv;(t) where u;(t) and v;(t) are the zonal and
meridional components of the GPS-derived velocities, respectively, and the velocity time series derived
from any of the interpolation methods, hereafter z,(t)=u,(t)+iv,(t), where u,(t) and v,(t) are the zonal
and meridional components. Let 2 (t) be the result of the complex linear regression of z;(t) onto z; (t),

m :R12(0) _ |R12(O)| iArg[Ri2(0)]
2"(t) R (0)” t Rn0) © 7 (1), (14)

where R1,(0)=E[z{z,]=E[(u —ivy)(ua+iv5)] is the complex-valued cross covariance at zero lag, and Rq1(0)
the autocovariance of z;. The ratio |R12(0)|/R11(0) indicates if z;(t) underestimates or overestimates the
magnitude of z(t). Arg[R12(0)] indicates an average angular offset of z,(t) compared to the orientation of
z1(t). A perfect interpolation method would return a regression coefficient with real component 1 and
imaginary component 0. To focus on relatively short time scales of variance, we calculate the regression
coefficients for 1724 10-day nonoverlapping segment trajectories, keeping all data, verifiable or not. We
then compute 2-D histograms of the regression coefficients in the complex plane (Figure 8).

Kriging returns the most favorable distribution of regression coefficients with the smallest spread along
both real and imaginary axes. The coefficient distributions for the WMLE methods indicate that these meth-
ods return velocities which are better aligned with the GPS velocities compared to the spherical linear
method (less spread along the imaginary axis for the 2-D distribution) even if these methods appear to
underestimate the GPS velocity magnitude (more spread along the real axis toward zero). Between the
WMLE methods, the method with normal PDF returns velocities which are better aligned with GPS velocities
than the method with t PDF, but underestimates more often the velocity magnitude. These results do not
qualitatively change when the calculations are conducted on time series five days or 20 days long.

4.2.2. Rotary Spectral Analyses

We now assess the ability of each method to represent velocity variance as a function of frequency by com-
paring spectral analyses between the hourly velocities derived from the QC GPS locations, and the velocities
derived from the four interpolation methods. We divide the drifter velocity time series into 395 40-day
nonoverlapping segments, keeping all data points. To reduce spectral leakage, we multiply each time series
segment by a single Slepian taper with a time-bandwidth product equal to 4 [Slepian, 1978], calculate the
Fourier transform, and average across all estimates to obtain rotary autospectra (Figure 9) and cross-spectra
estimates from which we also compute coherence squared (Figure 10), and coherence phase (not shown).
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Figure 9. Rotary velocity spectra estimates for GPS-derived velocities and veloc-
ities derived from each of the four interpolation methods as indicated in the
legend. The negative, anticyclonic, spectra are offset vertically by two decades for
legibility. The thin vertical gray lines correspond to tidal frequencies. The horizon-
tal bar marked by f indicates the range of inertial frequencies from the latitudinal
distribution of the data.
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Figure 10. Rotary coherence squared estimates for (top) negative anticyclonic fre-
quencies and (bottom) positive cyclonic frequencies between GPS-derived veloc-
ities and velocities derived from each of the four interpolation methods, as
indicated in the legend. The shadings indicate plus or minus one approximated
standard deviation of the estimates following Carter [19871.

Here the coherence squared indicates
the fraction of the variance of the GPS-
derived velocity that the estimated
velocity by each of the methods is able
to capture, as a function of frequency.
The coherence phase indicates any
geometrical or temporal angular differ-
ence between velocities, also as a
function of frequency. The standard
deviations of the coherence squared
estimates are approximated using the
expression for a large number of seg-
ments given by Carter [1987].

Compared to the GPS velocity spectra
in both cyclonic and anticyclonic
domains, all methods accurately cap-
ture the power level at relatively low
frequencies (frequencies less than 1/10
cpd), but underestimate the power at
intermediate frequencies between 1/
10 cpd and 1/12 cph (Figure 9). At fre-
quencies higher than approximately 1/
12 cph, the velocity spectra from the
spherical linear interpolation become
dramatically higher and flatter than
the GPS spectra, showing that this
method introduces spurious noise at
these frequencies. In the same high
frequency range, Kriging dramatically
underestimate the GPS spectra, which
is expected since Kriging velocities are
calculated by central differences (see
also Figure 3). In contrast, the WMLE
methods reproduce approximately the
slopes and power levels of the GPS
spectra, with the WMLE method with t
PDF performing the best. Note that the
ability of the WMLE methods to reach
a power level similar to the GPS veloc-
ities is achieved by selecting an appro-
priate number of data points for the
method (using more than 2 data
points on each side of interpolating
times reduces the velocity variance at
high frequencies).

For frequencies less than 1/10 cpd, all
methods exhibit near-perfect coher-
ence squared at levels of 0.98 and
above (Figure 10), which is not surpris-
ing considering the relatively short
Argos sampling interval for this data
set. At intermediate frequencies, from
0.1 to between 2 and 4 cpd, the
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coherence squared is generally higher for anticyclonic frequencies than for cyclonic frequencies, and the
shape of the coherence squared follows roughly the shape of the rotary spectra, decreasing nonmonotoni-
cally from 0.98 to about 0.5, likely a result of a decreasing signal-to-noise ratio. Between 0.1 and 2-3 cpd,
the coherence squared is slightly significantly higher for Kriging compared to other methods, likely because
Kriging relies on a semivariogram model (and hence a model for velocities) specifically fitted to the data.
The other methods fare approximately equivalently in this range of frequencies. Toward frequencies higher
than 4 cpd, the WMLE method with t PDF generally exhibits the highest coherence squared, between 0.5
and 0.6, and often significantly. The coherence phase (not shown) reveals that none of the methods intro-
duce distortions of the phase or temporal delays, at least up to frequency 4 cpd. At higher frequencies, the
phase estimates are noisy and unreliable due to the relatively low coherence.

In summary, the WMLE method with t PDF exhibits the best performances toward high frequencies while
the kriging method Kriging fares better at low frequencies.

4.3. Analyses of Predicted Variances

4.3.1. Location Variance

All four interpolation methods return location uncertainty, or error, in the form of estimated (predicted) var-
iances for the interpolated coordinates. In this section, we quantify and evaluate the predicted variances to
assess their usefulness. By considering the GPS locations minus the interpolated locations from each of the
methods, we have calculated observed longitude and latitude errors at each interpolating time, continu-
ously along trajectories. We consider 3366 10-day trajectory segments with 50% overlap in order to calcu-
late the variance of the observed longitude and latitude error time series for each segment, which we
compare to the mean of the estimated variances for longitude and latitude, from each method along these
segments (Figure 11). For each calculation, we exclude the nonverifiable locations.

The results indicate that over the range of densest observed error variances, the Kriging variance almost
always overestimates the true error variance. In contrast, over most observed values, both WMLE methods
most often adequately estimate the error variance. Only toward the largest observed values do the WMLE
methods underestimate the variance. The predicted variance from the spherical linear interpolation is not
useful as it is independent of the observed variance. By design, the predicted variance from the spherical
linear interpolation takes a limited range of values set by the linear combination of the error variance of
each class.

In conclusion, only location variances obtained by bootstrapping for the WMLE methods are adequate
measures of the true error variance for longitude and latitude.

4.3.2. Velocity Variance

For the WMLE methods, horizontal drifter velocity components are calculated from the estimates of the
coordinates and their derivatives as

U=Rcos (5>%=Rcos (/?3)/3‘1”7 (15)
v—RE—R[ﬂ. (16)

Thus, to calculate the predicted variance of V is straightforward, but to calculate the predicted variance of 4,
we use a Taylor approximation, and neglect the covariance between the parameter estimates /38 and ﬁ‘f.
We therefore obtain

Var[i ] ~ R?sin? ([?3) (ﬁﬁb)zVar[[?éHchos 2 < %)Var[[ﬁ{;], (17)

Var[V}=R2Var[71’}. (18)

We consider again 3366 10-day trajectory segments with 50% overlap as previously, and calculate the var-
iance of the observed zonal and meridional velocity component errors. We compare these values to the
mean of the predicted variances, Var[u] and Var[v], for the two WMLE methods. For each calculation, we
exclude the nonverifiable locations (Figure 12). The results indicate that both WMLE methods typically
underestimate the square root of observed variances for both velocity components, by typically 25%-50%,
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Figure 11. Two-dimensional histograms of the square root of estimated versus observed error variance for (left) longitude and (right) latitude
for each method (rows). Note the different scales for each color bar. For reference, the dotted black lines are regression curves with slope 1
and intercept 0. The scales on these plots are such that —3 represents approximately 100 m error and —2 approximately 1 km error.

and up to 75% (and thus the variance by typically 44%-75%, up to 94%). The WMLE method with t PDF usu-
ally performs better by underestimating less often the observed velocity components variances.

5. Global Application to the Argos Data Set

For the interpolation of the global Argos data set, we choose to apply the WMLE interpolation method
assuming a t PDF of the Argos locations. This choice is motivated by several factors. This method performs
as well and sometimes better than the other methods when estimating locations. It performs the best in
terms of velocity spectral level, and the estimated velocities exhibit coherence with GPS-derived velocities
which is the best at high frequencies and almost as good as the best method at lower frequencies. It returns
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Figure 12. Two-dimensional histograms of the square root of estimated versus observed error variance for (left) zonal velocity and (right)
meridional velocity for the two WMLE method (rows). Note the different scales for each color bar. For reference, the dotted black lines are
regression curves with slope 1, 0.75, 0.5, and 0.25, and intercept 0.

a predicted variance of the location estimates which is commensurate with the observed error variance,
and the best predicted variance of velocity components estimates of all methods, albeit an underestima-
tion. Finally, we favor that this method relies on observed statistics of the data, rather than on assumptions
about the underlying dynamics leading to the observations, as Kriging does by assuming a model for the
structure function.

5.1. The Global Drifter Data Set Since 2005

Figure 13 shows the spatial density of 69,487,583 nonuniform Argos locations from 11,849 drifter trajecto-
ries since 1 January 2005 on a 1° X 1° grid. The geographical distribution is the result of the history of
deployments, the efforts by the GDP to coordinate a regular and global sampling, the lifespan of drifters
[Lumpkin et al., 2012], as well as the patterns of near-surface convergence and divergence zones associated
with the oceanic general circulation and locally wind-driven currents.

Figure 14 displays combined illustrations of the distribution of temporal separation and distance separation
between consecutive QC nonuniform Argos locations along drifter trajectories. The latitudinal and temporal
distributions of those separations are
mostly a consequence of the geome-
try and orbital characteristics of the
Argos satellite array. As an example,
15 min is approximately the length of
an Argos satellite pass during which a
single location is captured, and 101.47
min is the orbital period of a single
satellite. A drifter seen by a single sat-
ellite is likely seen again by the same
satellite 101.47 min later and this
explains the peak in the temporal sep-
aration distribution (Figure 14b). The
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Figure 13. Geographical distribution of the QC nonuniform Argos drifter data
between 1 January 2005 and 30 June 2015.
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Figure 14. (a) Joint histogram of mean latitude and time separation of two consecutive QC nonuniform Argos locations along drifter tra-
jectories between 1 January 2005 and 30 June 2015. (b) Distribution of time intervals between consecutive locations (left axis) and cumula-
tive fraction distribution (right axis). The black vertical lines correspond to 15, 101.47, 7 X 101.47, and 14 X 101.47 min, where 101.47 min
is the orbital period of polar orbiting Argos satellites. Fifteen minutes is the approximate length of a satellite pass. (c) Joint histogram of
distance separation and time separation of two consecutive Argos locations along drifter trajectories. The magenta, white, and black lines
correspond to 2.5, 0.1, and 0.005 m s~ ', respectively.

mean value of the temporal separation is 1.4 h, and the median value is 1.2 h. The joint distribution of tem-
poral separation and distance separation suggests that there is a 2.5 m s~ ' cap imposed on Argos platform
velocities (Figure 14c).

5.2. Interpolation Implementation

We apply the WMLE interpolation method with t PDF to the global QC nonuniform Argos drifter data since
1 January 2005. Before running the interpolation on each individual trajectory, we reduce the Argos nonuni-
form location time series in 20 min windows in the same way as explained in section 3.1. At the time of this
current study, the QC data set extends to 30 June 2015. In the historical data set, some drifter locations are
of Argos location class 0, and for various reasons, a number of drifters do not have a record of Argos loca-
tion class. For these observations, we assume that they are distributed like the overall distribution of all
Argos locations for the SPURS data set (all classes in Table 2), and use those corresponding parameters of
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! ! B iR ! the t PDF to compute the likelihood
g functions. We provide with this data

200 300 400 500 set two pieces of information from the
Number of Data: Points interpolation procedure. The first is the
: i size of the interpolating gap, i.e., the
difference between the closest poste-
b rior and anterior Argos locations used
for the interpolation. The second piece
of information is the square root of the
raT mean squared temporal distances
---------- . Wil o from the hourly interpolated location
) i i b to the four adjacent Argos locations
used for the interpolation. Note that at
| the beginning and end of trajectories
:...101.47 min_ only three locations are used for the
' interpolation. These pieces of informa-
b tion should be considered by users in
order to assess the validity of the
interpolation.

T 800m:: As an example of the impact of the
25 L §|1 00 m .1 km interpolating gap, Figure 15 shows for

5 -4 3 2 - 0 the SPURS data the distribution of
Log10 A X\ (Degree) angular separation error for the WMLE

method with t PDF as a function of the
Figure 15. Two-dimensional histogram on decimal logarithmic scales of angular . f the int lati Th
separation error (AZ) and length of interpolating gap. The errors presented are for size 0 € Interpolating gap. The error
the WMLE method with t location-scale PDF for the SPURS drifter data. Horizontal distribution is fairly unchanged for
dotted lines indicate 12 h and 101.47 min gaps. Vertical dotted lines indicate gaps shorter than 101.47 min (Argos
100 m, 800 m, and 1 km errors. The black curve indicates the fiftieth percentiles of i . i i
the error distributions for each interpolating gap bin. For 12 h gaps, the fiftieth orbital peHOd)l but progresswely shifts
percentile is at about 800 m. toward larger values for increasingly

longer gaps. In particular, we find that

for gaps of 12 h and longer, the fiftieth
percentile of the angular separation error is at least 800 m. This error value corresponds approximately to
the 95th percentile of observed standard deviation of errors in both the zonal and meridional directions
(see Figure 12). Thus, we choose to not interpolate trajectories for gaps longer than 12 h for the global data
set.
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We thus create a global drifter data set of locations and velocities at hourly intervals, along with their associ-
ated variance errors from 2005 to 2015, now freely available through the DAC website at http://www.aoml.
noaa.gov/phod/dac/dacdata.php. Excluding drifters tracked by GPS, this data set consists of 11,670 individ-
ual trajectories, totaling more than 95.8 million on-the-hour estimates. For the GPS drifters of the GDP data
set, we apply the LOWESS filter described in section 2.2 followed by linear interpolation to hourly times.
Since 2005, 408 drifters were tracked by GPS, and the resulting interpolated data set consists of 2.3 million
on-the-hour locations and velocities. Of these, 136 were also tracked by Argos and both types of trajectories
are available in the new database.

5.3. Global Velocity Variance Analysis

In order to broadly assess the global potential of the new hourly data set, we conduct a frequency analysis
of the drifter velocity variance of the interpolated drifter data set from Argos. For comparison, we also con-
sider the standard DAC kriged data set of drifter locations at 6 h intervals and the associated velocities cal-
culated by a central difference scheme. For this analysis, we purposefully discard drifters tracked by GPS to
focus on the results from the interpolation of Argos locations. We also ignore the drogue status of the
drifters, considering the trajectories from deployment to drifter death. Estimating how much of the variance
is due to real oceanic motions versus wind slippage [Niiler et al., 1995] is beyond the scope of this assess-
ment and should be considered in future studies.
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| - From these, we consider the complex-
valued time series of velocities which
we multiply by a single Slepian taper
with time-bandwidth product equal to
| 2 [Slepian, 1978] before taking the
! r absolute FFT squared to obtain single
|b 2' rotary spectral estimates. We subse-
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Figure 16. Globally averaged anticyclonic and cyclonic rotary spectra of drifter spectral estimation method to the 6-
velocities from 2048 h (~85 days) trajectory segments overlapping by 50%. Verti- hourly kriged version of the same tra-
cal gray lines correspond to astronomical tidal frequencies. The inset is a zoom for
frequencies between 0.75 and 2.25 cpd.
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jectories. It is beyond the scope of this
study to analyze and interpret all
aspects of this new global rotary spectra but we highlight a few points here.

As expected, over the common range of accessible frequencies, the rotary spectra from the hourly data sur-
pass the spectra from the 6-hourly data, not only at near-inertial and tidal frequencies but also down to
approximately 0.2 cpd, for both cyclonic and anticyclonic frequencies.

Up to approximately 5 cpd, the anticylonic spectrum is higher than the cyclonic spectrum, a consequence
of the generally larger anticyclonic wind forcing [Rio and Hernandez, 2003; Elipot and Gille, 2009a] and pref-
erential anticyclonic response of the upper ocean [Gonella, 1972; Elipot and Gille, 2009b].

The broad plateau of power between approximately 0.7 and 1.77 cpd corresponds primarily to wind-driven
inertial oscillations in the ocean. The frequency distribution of this plateau is the result of the inertial fre-
quency range (from 0 at the equator to 2 cpd at the poles) and of the latitudes of predominant wind forcing
[Elipot and Lumpkin, 2008; Chaigneau et al., 2008]. As the inertial frequency goes to zero near the Equator,
some of the power seen within the near-zero frequency peak corresponds to inertial oscillations blending
with low-frequency motions. Note how the anticyclonic power plateau has no conspicuous counterpart in
the cyclonic domain, indicating the ubiquitous circularity of inertial motions.

Many sharp peaks above the background spectrum stand out, some clearly located at tidal astronomical fre-
quencies, notably the dominant diurnal and semidiurnal species O, K;, M,, and K; [Poulain, 2013; Poulain
and Centurioni, 2015]. The anticyclonic peak for K, is clearly superimposed onto, and standing above, the
inertial plateau. Many other peaks at higher frequencies also exist, some maybe associated with astronomi-
cal species, others with harmonics of the diurnal and semidiurnal peaks.

As an update of Elipot and Lumpkin [2008], we present in Figure 17 a latitude-frequency plot of the drifter
velocity spectra in 1° latitude bins, averaged over all ocean basins, from both our new hourly data set
(Figures 17a and 17b) and from the kriged 6-hourly data set (Figure 17c). Many of the same features high-
lighted in Elipot and Lumpkin [2008] can be seen, yet here more sharply because of the increased volume of
data, the new method of interpolation, and more advanced spectral estimates. Note the sharply defined
ridge of near-inertial energy as a function of latitude. Note also the spreading of energy toward higher fre-
quency with increasing latitude. As seen previously in the global averaged spectra (Figure 16), spectral
peaks near integer frequency numbers (in cpd) are conspicuous at almost all latitudes. A remarkable feature
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Figure 17. (a) Zonally averaged drifter rotary velocity spectra in 1° latitude bins from 2048 h (=85 days) trajectory segments at 1 h resolu-
tion, overlapping by 50%, from the new global hourly product post-2005. (b) Same as in Figure 17a but zoomed in for frequencies in the
range *3.2 cpd. The black dashed curve indicates the inertial frequency (—f/2n cpd) and the white dashed curve the Coriolis frequency
(f/2m cpd). Note that the color scales indicate different ranges of values and are both saturated. (c) Same as in Figure 17b but calculated
from the post-2005 6-hourly Kriged global product for the same trajectories.

is the presence of replicates of the latitudinal-dependent inertial peak near frequencies —f/2n+n where n
is an integer. While the origins of these features are unknown at this stage, one can speculate that they may
arise from wave triad interactions, or may indicate the departure from purely sinusoidal-shaped waves.
Also, sampling artifacts may not be ruled out. To test to some extent the robustness of these features, we
recompute the same spectra after applying the spherical linear interpolation method on the global data set
(not shown). We find that the spectral peaks near integer frequency numbers persist, but the replicates of
the near-inertial peak do not, most likely overwhelmed by the velocity noise introduced from the linear
interpolation (see Figure 9). The study of the exact nature of these features will be the subject of future
investigations. We calculate as a function of latitude the ratios of integrated hourly spectra to the 6-hourly
spectra, for frequencies between 0 and 2 cpd, for positive and negative frequencies. We find that these

ELIPOT ET AL.

GLOBAL HOURLY DRIFTERS 25



@AGU Journal of Geophysical Research: Oceans 10.1002/2016JC011716

ratios (not shown) are generally larger than 1, and indicate that the new data set contains between 25%
and 50% more variance than the 6-hourly kriged data set, and up to 100% more in the Southern Ocean.

6. Conclusions

We have reported in this paper the methods used to produce location and velocity estimates along the tra-
jectories of GDP surface drifters, tracked by either Argos or by GPS. The resulting product is freely available
via the DAC of the GDP (http://www.aoml.noaa.gov/phod/dac/dacdata.php). Preliminary analyses of the
drifter velocity variance showed that this new data set is potentially a new tool for the study of relatively
small-scale, and high-frequency, oceanic processes. In particular, velocity rotary spectra suggest that high-
frequency tidal and internal wave motions are detectable globally.

A prerequisite for making the choice of interpolation method was to realize that the observed frequency
distribution of the Argos locations is not well described by a normal PDF model, and this distribution varies
significantly as a function of Argos location class, and between longitude and latitude coordinates. Our anal-
yses of the Argos errors led us to devise an estimation method which considers that Argos location errors
are distributed like t PDFs. This type of PDF has an extra parameter compared to a normal PDF, which can
account for heavier tails and narrower central peaks. The underlying idea with this type of data modeling is
that the estimation is less sensitive to outliers, and the method is deemed robust. For our interpolation
model, we have chosen to model the drifter trajectories by an order one polynomial locally in time, and
have applied a weighted maximum likelihood estimation method to obtain the coefficients of this
polynomial.

An order one polynomial may not be high enough to model properly drifter trajectories when acceleration
is important, but we have not found that using higher-order polynomials improved overall the results.
Assessing the performance of the methods by comparing interpolated positions to GPS-derived positions,
we have found that assuming either form of PDF of the data, normal or t, did not make a very large differ-
ence when considering the longitude and latitude errors, contrary to our expectations. It is likely that this
does not make much of a difference because the error distributions are not dramatically different from nor-
mal distributions. In contrast, we have found that the method assuming t PDF of the data performed better
when comparing the estimated drifter velocities to the GPS-derived drifter velocities. Variances of the trajec-
tory parameters were obtained by bootstrapping and we have found that either assumption for the PDF of
the data returned estimated coordinate variances commensurate with the observed variances. However,
we found that bootstrapping assuming a t PDF of the data returned slightly better estimates of the velocity
variances. Overall, these analyses led us to our final choice of interpolation method, the WMLE method with
t PDF, for Argos data.

For GPS data, we have also chosen to model the drifter trajectories by a first-order polynomial, but we have
estimated the polynomial coefficient at the original nonuniform GPS times by using the Locally Weighted
Scatterplot Smoother, or LOWESS [Cleveland, 1979]. These parameters were subsequently linearly interpo-
lated to uniform hourly steps.

Based on the analyses of 82 drifters released in the North Atlantic as part of the SPURS experiment, the
interpolated locations from Argos by our chosen method can be expected to be most often absolutely
accurate by 201 m, and 68% of these errors are expected to be 533 m or less. In the zonal direction, 68% of
the errors are expected to be 355 m or less, and 309 m or less in the meridional direction. Our chosen
method is not the method that performs the best for location errors: Kriging does. Yet Kriging is by defini-
tion an objective analysis method which requires one to specify a variogram model for the data, which can
be obtained by fitting to the data first, as is done at the DAC for the 6 h product. For our purpose of produc-
ing a high-resolution data set, there are several issues with Kriging that ultimately led us to dismiss this
method, beyond the fact that it did not result in the best estimate of velocities in our analyses. First, using a
variogram model assumes that it is applicable to all time scales, which is certainly not the case in the ocean
where linear and nonlinear superpositions of dynamical regimes occur. Second, fitting first a variogram
model to the data before interpolating would require (as an example) to divide the drifter data into regular
or irregular regions in which the model can be fitted, and ideally to take into account potential monthly,
annual, and interannual variations of the parameters for this model. This would require extensive statistical
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) ) ‘ smoothing the GPS locations at their orig-
Figure 18. Kernel estimates of PDF and CDF of distances between QC GPS . . . . . .
locations and smoothed GPS locations after applying a LOWESS filter (see inal nonuniform times by ﬁttmg Iteratlvely
Figure 2). (here 3 times) a polynomial of order 1,

modeling two-dimensional (2-D) locations
and their temporal derivatives in a local Cartesian plane of projection. We apply a weighted least squares
method to fit the trajectory model to location data within a temporal window of variable bandwidth, or
half-width hy, around each original nonuniform time step t,. We set the bandwidth hy=(tx+s—tk—5) with
B = 2. For a given time t, the temporal window sets the weights for the data points at other times t; as

t—t
th(tj):K(lh k), (A1)
k
with the tricube kernel
70
K(t)=§(1—\T\3)3/[—1.1](f)7 (A2)
and
(t) b= (A3)
1(t)_ 1= A3
E 0, g > 1.

The purpose of the iteration is to calculate a new set of weights for the least squares estimation from the
previous set, but scaled down at each pass by the median of the absolute distance residuals.

The probability and cumulative distribution functions of the nonzero distance differences between the QC
GPS positions and the smoothed GPS positions are displayed in Figure 18. While the maximum difference is
6.8 km, 50% of differences are 30 m or less and 90% are 77 m or less. The differences may appear negligible,
but the advantage of the method is that velocities, as well as locations, were estimated.

Appendix B: Estimates of the Structure Function From QC Location Data

In order to fit the structure function model (3) using SPURS drifter data, we first compute estimate S of the
structure function from longitude differences, latitude differences and angular separations, from either the
QC nonuniform Argos or the QC nonuniform GPS locations. We consider trajectory segments of N =170
consecutive nonuniform Argos locations, and N = 170 every other nonuniform GPS locations. For each of
these segments (1950 from GPS and 1154 from Argos), we compute the N!/2/(N—2)!=14,365 possible half
differences squared (x,—x;)*/2 which we sort as a function of increasing time differences 7;=|ty—t;| for
each segment. We then compute smooth estimates of S at discrete intervals 1, hourly intervals from 1 hto 6
days and then at daily intervals from 6 to 10 days. For these estimates, we use a Nadaraya-Watson kernel
estimator with a 1-day bandwidth and an Epanechnikov kernel [e.g., Fan and Gijbels, 1996]. We then
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Figure 19. Two-dimensional histograms of variogram function S estimates for (top row) longitude ¢, (middle row) latitude 6, and (bottom
row) angular separation A/, for (left column) GPS data and (right column) Argos data. For each temporal bin, the gray shading represents
the normalized histogram count from 1 (black) to zero (white). The orange curves connect the maximum in each bin. The straight curves

corresponds to the variogram model S(t)=ut’ either fitted to the maxima in the
sen and Poulain [1996] for ¢ and 0 (blue lines).

Table 9. Fitted Coefficients for the Variogram Model S(t)=az* of Figure
19 From GPS and Argos Data®

10% B
Longitude GPS 22 1.84
Argos 33 1.82
Hansen and 119; 99 1.47
Poulain [1996]
Latitude GPS 30 1.83
Argos 30 1.79
Hansen and 33;32 143
Poulain [1996]
Angular separation GPS 53 1.77
Argos 56 1.80

*The two values for o by Hansen and Poulain [1996] correspond to the
updated coefficient by the DAC for the second half of 2012 and first half
of 2013 for the North Atlantic.

range 1 h <t < 3 day (dashed yellow lines), or from Han-

consider all Nadaraya-Watson estimates at
discrete time lags and form 2-D histograms
of InS and In 7 (Figure 19).

For all cases, the 2-D histograms shows that
the spread of InS increases with Int. Yet
there exists in general a peak of the InS dis-
tribution for each Int bin (shown as a
jagged curve in each plot of Figure 19).
These peaks are aligned along a near
straight line in this 2-D logarithm space,
compatible with model (3). Thus, we con-
duct a least squares fit for In S(t)=Ina+fIn <
for all time differences shorter than 3 days
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(results are listed in Table 9). Our results are larger than Hansen and Poulain [1996] and closer to 2, possibly
because we focus on comparatively shorter time scales and the displacement of drifters may approach linear
motion. Argos and GPS data return similar values for f3, suggesting that to some extent both types of tracking
systems capture similar drifter kinematics. For the o parameter from Argos data, we find commensurate values
for longitude and latitude suggesting isotropic displacement variance but from GPS we find smaller values for
longitude compared to latitudes. The method of Hansen and Poulain [1996] returns the opposite, that is, much
larger values of o for longitude compared to latitude, maybe because of the coarser time scales.

We recalculated the structure function model parameters after discarding undrogued data points. We found
that this lowers the values of the parameters, except for the f§ parameter for longitude which is increased.
Yet, we find that the changes for § amounts to less than *=10% of the values obtained with all data points,
and the decreases in o« amount to about 21% at the most for longitude from Argos data. Thus, we use for
Kriging the parameter values for both drogued and undrogued data.
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