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ABSTRACT

Simultaneous temperature and salinity profile measurements are of extreme importance for research;

operational oceanography; research and applications that compute content and transport of mass, heat, and

freshwater in the ocean; and for determining water mass stratification and mixing rates. Historically, tem-

perature profiles are much more abundant than simultaneous temperature and salinity profiles. Given the

importance of concurrent temperature and salinity profiles, several methods have been developed to derive

salinity solely based on temperature profile observations, such as expendable bathythermograph (XBT)

temperature measurements, for which concurrent salinity observations are typically not available. These

empiricalmethods used to date contain uncertainties as a result of temporal changes in salinity and seasonality

in the mixed layer, and are typically regionally based. In this study, a new methodology is proposed to infer

salinity in the Atlantic Ocean from the water surface to 2000-m depth, which addresses the seasonality in the

upper ocean andmakes inferences about longer-term changes in salinity. Our results show that when seasonality

is accounted for, the variance of the residuals is reduced in the upper 150m of the ocean and the dynamic height

errors are smaller than 4 cm in the whole study domain. The sensitivity of the meridional heat and freshwater

transport to different empirical methods of salinity estimation is studied using the high-density XBT transect

across 34.58S in the South Atlantic Ocean. Results show that accurate salinity estimates are more important on

the boundaries, suggesting that temperature–salinity compensation may be also important in those regions.

1. Introduction

Salinity is a key variable for determining density and

steric height in the ocean; consequently, it affects the

strength of ocean currents, the depth of the mixed layer,

and the transport of mass, heat, salt, and nutrients across

the globe. Ocean data assimilation relies on salinity ob-

servations and/or estimates for prediction of climate and

weather patterns over marine and land areas. Without

assimilation of salinity data, strong drift can occur in as-

similationmodels as a result of poor knowledge of surface

freshwater fluxes as well as limited understanding of mix-

ing processes and the strength of the thermohaline circu-

lation (Haines et al. 2006). A significant amount of the

historical hydrographic profiles over the ocean (more

than 4 million or 30%; www.nodc.noaa.gov) comes from

observations performed with mechanical and expendable

bathythermographs (MBTs and XBTs, respectively),

which provide only upper-ocean temperature measure-

ments. These data contribute to long-term monitoring

systems of global heat content, mixing, and volume and

heat transport by the ocean currents (Goni et al. 2010;

Cheng et al. 2016).

Historically, records of simultaneous temperature and

salinity have predominantly come from conductivity–

temperature–depth (CTD) and bottle station data. Al-

though CTD profile data have high precision, the required

ship time and personnel costs prohibit widespread use.

Since 2004, autonomous Argo profiling floats provide

nearly global measurements with more than 100 000

temperature–salinity profiles per year. These observa-

tions have greatly improved our knowledge of ocean

water properties in the top 2000m of the global ocean,

and the assimilation of salinity profiles plays a significantCorresponding author: Marlos Goes, marlos.goes@noaa.gov
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role in improving ocean state estimation products and the

skill of ocean forecast systems (i.e., Smith and Haines

2009; Huang et al. 2008; Chang et al. 2011a,b) . Even after

the spinup of the Argo system, XBT observations repre-

sent a very large subset of global upper-ocean tempera-

ture profile data, including more than 330000 profiles in

the Atlantic Ocean since 1990 (www.nodc.noaa.gov), and

are still the most cost-effective platform to provide tem-

perature data along fixed transects that can be used to

1) resolve and monitor variability of boundary currents,

2) estimate surface and subsurface current velocities

and transports while resolving mesoscale features, and

3) study the variability of upper-ocean temperature (e.g.,

Goes et al. 2013; Domingues et al. 2014; Lima et al. 2016).

Since MBTs and XBTs measure only temperature pro-

files, it is necessary to infer their corresponding salinity

profiles in order to estimate the haline contribution to the

density and stratification of the ocean. Early studies (e.g.,

Sverdrup et al. 1942) considered the temperature–salinity

(T–S) relationship as a conservative estimate in the ocean

that allowed the definition of water masses by their T–S

properties. Stommel (1947) highlighted the use of the

mean T–S relationship to estimate salinity for dynamic

height computation, a methodology that allowed the in-

vestigation of geostrophic ocean currents and volume

transports when only temperature profiles are available.

At higher latitudes, however, the T–S relationship may

not be sufficiently conservative to be used for salinity

estimations, and the salinity dependence with depth

produces more reliable estimates of dynamic height (e.g.,

Emery and O’Brien 1978; Emery and Dewar 1982).

Posteriorly, several more sophisticated methods, based

on local regression techniques (e.g., Hansen and Thacker

1999; Thacker 2007; Ballabrera-Poy et al. 2009), empirical

orthogonal functions (e.g., Carnes et al. 1994; Maes and

Behringer 2000; Chang et al. 2011a), or high-order poly-

nomials (e.g., Marrero-Díaz et al. 2006; Fox et al. 2002;

van Caspel et al. 2010), have been developed to generate

synthetic salinity profiles, from which many applied these

techniques to infer water mass properties regionally (e.g.,

Reseghetti 2007). Thacker (2007) proposed a relatively

simple and efficient scheme that relates salinity to the

temperature squared at fixed depths, which has been

widely used in studies of ocean currents, meridional

overturning circulation (MOC), and meridional heat and

freshwater transports (MHTandFWT, respectively) in the

South Atlantic Ocean using XBT and satellite altimetry–

derived temperature profiles (e.g., Baringer and Garzoli

2007; Dong et al. 2009, 2011; Garzoli et al. 2013).

Given the substantial increase over the past decade of

salinity measurements from Argo profiling floats globally,

and from underwater gliders and pinnipeds regionally, it

is appropriate to update earlier methodologies by taking

advantage of improved global and regional coverage by

adding more recent data. Here, we build upon previous

studies by (i) including additional data, (ii) expanding the

coverage of synthetic salinity estimates from regional to

the whole Atlantic basin, and (iii) allowing the temporal

variability of salinity by resolving seasonality and making

inferences about interannual to decadal variability of sa-

linity in the Atlantic Ocean.

This manuscript is structured as follows. Section 2

describes the dataset used to construct the empirical re-

lationships to estimate salinity from temperature profile

data, and provides a description of the validation data-

sets, which includes the data used in the case study.

Section 2 also describes the four methodologies used that

will be compared throughout the manuscript. Section 3

compares the synthetic salinity and dynamic heights

computed using the four methodologies, and shows the

importance of including seasonal information to predict

salinity near the surface. A case study for theMHT/FWT

in the South Atlantic using the four methodologies is

also given in section 3. Section 4 features the discussions

and conclusions, as well as provides recommendations

for future work.

2. Data and methodology

a. Data

The synthetic methodologies tested in this study rely

on the use of in situ T and S profile measurements. Two

main data sources are used as the trial population for

a multivariate regression calibration. The first consists of

historical simultaneous temperature and salinity profiles

from the Coriolis Ocean Dataset for Reanalysis (CORA,

version 3.4; Cabanes et al. 2013), which includes data

from CTD, expendable CTD (XCTD), moorings, pinni-

peds (mammals), underwater gliders, and Argo floats

from 1990 to 2011. The CORA data used are from the

World Meteorological Organization (WMO) instrument

numbers 830 and 700–751 (http://www.wmo.int/pages/

prog/www/WMOCodes/WMO306_vI2/LatestVERSION/

WMO306_vI2_CommonTable_en.pdf), and are flagged as

good data (quality control flags 1 and 2), according to

the WMO standard. Additionally, data from the global

Argo float dataset available from 2012 to 2015 are also

included in a trial population. The Argo data are from the

NationalOceanic andAtmosphericAdministration (NOAA)

global Argo repository (https://www.nodc.noaa.gov/argo/),

where only the delayed mode data are used, and from the

floats distributed within the Atlantic domain.

In this work, all the data are vertically interpolated to

standard depth levels in order to constrain all profiles to

the same vertical axis and to reduce the occasional

vertical gap in profile data. To accomplish this, a locally
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weighted scatterplot smoothing (LOWESS) filter is ap-

plied with windows of 30 and 150m, which is a com-

promise between low and high variability in the profiles.

A total of 85 standard levels are used from 7.5 to 2000m,

using a spacing of 10m in the top 300m, and 20m farther

down. The study domain is the entire Atlantic Ocean

basin with portions of the Arctic Ocean and the South-

ern Ocean, comprising the latitudes between 708S and

658Nand longitudes between 1008Wand 308E.A total of

approximately 1 000 000 profiles are used as input in the

regression. It is noteworthy that the number of profiles

used in this study is larger than in any other similar study

(Korotenko 2007; Thacker 2008; Ballabrera-Poy et al. 2009).

The distribution of the trial profile population across

the Atlantic domain used in the calibration is shown in

Fig. 1, divided for illustration purposes into non-Argo

CORA and Argo-only datasets. The non-Argo CORA

data generally follow cruise transects and show a high

density of more than 100 profiles per degree square near

the boundaries, particularly along the Antarctic Peninsula

and north of 308N (Fig. 1a). The distribution of Argo

data is much more homogeneous over the study do-

main. The North Atlantic, especially north of 308N,

is where the density of hydrographic profiles is the

highest, frequently more than 100 profiles analyzed per

degree square for both the CORA and Argo datasets.

Regions with the lowest density of profiles are lo-

cated in the Caribbean Sea, the southeastern tropical

Atlantic, and the Southern Ocean, with often fewer

than 30 profiles per degree square. Near the coastal

boundaries and in shallow marginal seas such as the

North Sea, between Great Britain and Scandinavia,

Argo distribution is very low or inexistent, although

CORA data compensate for some of this lack of Argo

data. The distribution of data per year shows a strong

increase in the number of profiles after 2000 in all

basins. Before 2000, the Southern Ocean and the

South Atlantic basin had fewer than 1000 profiles

per year.

The validation dataset used in this work is the Argo

salinity and temperature data from 2016. These data

are excluded during calibration and are therefore in-

dependent. A total of approximately 57 000 profiles are

withheld for validation across the whole study domain.

We introduce a case study using the AX18 XBT tran-

sect data. The AX18 transect is bounded by South

Africa and South America, and is aimed at monitoring

the MOC in the South Atlantic along the nominal of

34.58S (Baringer andGarzoli 2007). As part of theAX18

transect, temperature profiles are obtained quarterly

in the top 850m of the ocean, with a nominal longitu-

dinal sampling of 25km. A total of 45 realizations of

this XBT transect are used, from which the MOC, MHT,

and FWT are estimated.

b. Methods

In this study, we use a multivariate linear regression

method to estimate salinity from observed temperature,

FIG. 1. Distribution of the number of profiles per degree squared used as a trial population in the statistical method subdivided into

(a) CORA dataset (1990–2015; excluding Argo) and (b) Argo-only data (1998–2015). (c) Profiles per degree square for the Argo 2016

validation dataset overlaid by the locations of the AX18 transects (magenta lines). The domain comprises the Atlantic Ocean between

708S and 658N, and the black lines in (a) are the locations of the five regional basins analyzed.
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location, and time of observations. In this regression, we

assume that the outcome S5 S(u) is a function of several

predictors u. The predictors typically available in pro-

files such as the XBT data are T, depth z, month of the

year (mo), year (yr), latitude (lat), and longitude (lon).

Other predictors could be used as well, such as sea sur-

face height (Guinehut et al. 2012; Goes et al. 2013;

Chang et al. 2011a), sea surface salinity (Hansen and

Thacker 1999; Ballabrera-Poy et al. 2009; Yang et al.

2015), and surface freshwater fluxes [runoff, and evap-

oration minus precipitation (E 2 P)]. However, their

use would impose the need for additional datasets

(e.g., satellite data), which may not be available at the

time of prediction, and therefore will not be included

in this study as predictors. The first, simple step should

be to use annual, seasonal, or monthly climatologies

of T–S relationships with depth. These are the ones

explored here.

Formally, the vectorAofpparameters,A5 (a1, a2, . . ., ap),

is estimated at each depth and horizontal location

according to

Y5AX , (1)

where Yz3n is the vector of n centered salinity values,

Y5 [S2hS(z)i] , (2)

where hS(z)i is the horizontally weighted mean of the

n profiles in each bin. The matrix Xp3n is the predictor

matrix, composed of p rows and n columns.

Here, we compare four different empirically derived

methods to estimate salinity from temperature profiles.

Two of these are T–S lookup-based methods (1 and 2),

which are derived using information of the mean sa-

linity and/or temperature only, and the other two

methods (3 and 4) are based on local regressions at each

depth with varying numbers of parameters in the matrix

X used in the regression. The methods are described as

follows:

1) TSMEAN: This method was first developed by

Stommel (1947), in which for each bin S 5 hS(T)i.
Therefore, salinity is estimated from the local mean

T–S curve by matching hT(z)i profiles using a linear

interpolation on the T space. This method conserves

the T–S curve but suffers from uncertainties resulting

from interpolation biases when water masses are too

homogeneous (Stommel 1947).

2) SMEAN: In this method only the information of the

mean hS(z)i profile is used to estimate the salinity

at a particular location. This method is similar to the

methodology used byEmery andDewar (1982), which

assumes that in regions where the T–S relationships

feature inflection points or small variability over the

majority of the water column, S 5 hS(z)i is more

reliable than the TSMEANmethod. This is achieved

by solving Eq. (1) for

Y5 0. (3)

3) RDIST: This method was developed by Thacker

(2008), which assumes that salinity at a particular

depth can be estimated using a linear combination

of temperature, temperature squared, and the

distance (latitude and longitude) to the center of

the grid:

X5 [T,T2, lon, lat]. (4)

4) RSEAS: The method presented in this study is similar

to RDIST, and also introduces seasonality to the

regression. Seasonality is accounted for by replacing

the distance terms in Eq. (4) with the annual and

semiannual harmonics in the regression. Including

seasonality in the regression by fitting the annual

and semiannual harmonics adds four additional terms,

and reduces the potential skewness of the residuals

when there are nonuniform seasonal distributions of

data in the regions (Ridgway et al. 2002; Machín et al.

2008). Therefore,

X5
h
T ,T2, cos

�
2p

mo

12

�
, sin

�
2p

mo

12

�
,

cos
�
4p

mo

12

�
, sin

�
4p

mo

12

�i
. (5)

In Eq. (5), the variance of the seasonal cycle can be as-

sessed using

Var;N(a23 1 a24 1 a25 1 a26)/[2(N2 1)] , (6)

whereN is the number of observations, and a3–a6 are the

coefficients associated with the annual and semiannual

harmonics in Eq. (5).

Similar to the salinity, the predictors on the right-hand

side of Eqs. (3)–(5) are all individually centered (zero

mean). For this, all methods use the same mean salinity

profile hS(z)i estimated in SMEAN, and RSEAS and

RDIST use the same temperature mean profile hT(z)i
as estimated in TSMEAN. Regardless of the method-

ology applied, each regression is evaluated at the center

of each 18 3 18 bin. A minimum of 150 profiles are

considered in each bin. Although this criterion is not

always met, it is chosen in the attempt to reduce the

mesoscale variability in the mean. If the number of

profiles within a bin is smaller than 150, we include the

nearby data, following a 0.28 increase in the search radius

up to a maximum area of 48 or 150 profiles, whichever
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is smaller. Fitting the data with overlapping regions

is advantageous for adding more data to the fitting,

as well as for guaranteeing smooth variations across

cells (Thacker 2008). In the regression-based methods

(RDIST and RSEAS), one regression is performed at

each depth level; therefore, depth is treated as a cate-

gorical (qualitative) variable. Surface salinity is calcu-

lated as an extrapolation to the first estimated level

(7.5m). For all depths, data weights are defined as a

function of latitude and longitude assuming a spatial

double exponential autocorrelation function (e.g., Goes

et al. 2010) with an isotropic e-folding scale of 28 from
the center of each cell and a variance of 1 psu2.

3. Results

Here we present results in the spatial domain defined

between 708S and 658N in the Atlantic Ocean. We first

present the regional aspects shared by the statistical

methods, with an emphasis on the RDIST and RSEAS

methods, which are the methods based on a multivariate

regression, and the evolution of the residuals output

directly from the regression. Next, we present results

using the validation dataset, where we show the effects

of all empirical salinity methodologies on the salinity

profiles and dynamic height, followed by the time evo-

lution of the residuals, where half of the historical data

are selected as the trial dataset and the other half of the

data are used for validation. Finally, we show results

using data from the AX18 XBT transect along 34.58S,
and analyze the impact of the different estimates of

salinity on the MOC and MHT computations using

these data.

a. Regional and temporal features of the
regression-based methodologies

REGIONAL ASPECTS

Here we describe the regional features of the meth-

odologies presented in the previous section. The dis-

tance L (Fig. 2a) corresponds to the length of the

squared area taken into account for the weighted re-

gression in each 18 grid cell. The coefficient L is there-

fore dependent on the data availability in each region. In

the North Atlantic (NA) and northern ocean (NO), as a

result of the dense data coverage over time, L is close to

its minimum value of 18. There is one exception, the

Caribbean Sea, where data are scarcer. Because of the

shallow bathymetry over most of the region, Argo floats

are not deployed in the Caribbean, as they cannot

sample waters shallower than 2000m. The tropical

Atlantic (TA) and South Atlantic (SA) are relatively well

covered, especially after Argo, with exceptions near the

boundaries, shallow continental shelves off southeastern

SouthAmerica, and in the center of the subtropical gyre,

where there is little residence time for the Argo floats. It

is worthy of notice that the data coverage may change

significantly for other databases and other versions of

CORA. The Southern Ocean (SO) is the region with

least data coverage, and L values are often above 2.58
wide. The distribution of the root-mean-square (RMS)

of the salinity residuals from the RSEAS method

(Fig. 2b) shows that the RMS error is in general below

0.05 psu. However, the regions with strong currents and

eddy activities, such as the Brazil–Malvinas confluence,

the North Brazil Current, the Gulf Stream, and the

Nordic seas, experience larger errors, up to 0.3 psu.

These regions are characterized by high variance of sa-

linity as a result of strong eddy activity, seasonality

(Fig. 2c), and potentially longer-term variability. The

ratio between the RMS errors from RSEAS and RDIST

(Fig. 2d) is lower than 1 inmost of the domain, suggesting

that the RSEAS gives better salinity estimates. As ex-

pected, theRSEASmethod has higher gain in the regions

with stronger seasonality in salinity (Fig. 2c). Regions of

lower data density (Fig. 2a), such as in the southeastern

South American continental shelf or SO are the ones

where the RDIST method improves over the RSEAS

method. This is also expected, since the RSEAS method

has two additional estimated parameters and therefore a

reduced number of degrees of freedom.

b. Mean differences

1) SALINITY

The Argo data from 2016 over the study domain are

used to estimate the error of salinity inferred by the four

methods in each of the five regions: NO, NA, TA, SA,

and SO. For easy visualization, one sample is given to

demonstrate the performance of each method in all five

regions, in which a typical salinity profile and its re-

spective T–S curve from an Argo profile are compared

to the same profile with salinity replaced by its estimates

(Fig. 3). In general, all methods capture the structure of

salinity profiles and T–S curves in all regions. A mean

bias of ;0.1 psu is evident in the T–S curve of the SO

profile, and all the other profiles show a good agreement

over depth. The SMEAN method (blue in Fig. 3) shows

large differences (.0.8 psu) in the T–S diagrams, and

also larger differences relative to Argo than the other

methods in the tropical and subtropical regions. In the

SO, however, the SMEAN method agrees better with

the other methods. The TSMEANmethod shows better

agreement with Argo than the SMEAN method in the

tropical–subtropical regions. The TSMEAN method

(green in Fig. 3) generally fails within the intermediate
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waters, between 800 and 1100m in the TA and SA re-

gions, where the temperature is flat in the T–S diagrams,

and also in the SO between 300 and 700m. The RDIST

(red in Fig. 3) and RSEAS (orange in Fig. 3) methods

agree better with the Argo observations than the other

two methods, and are very similar, almost indistinguish-

able, below 400m in all cases. This is where the T and T2

terms dominate the multivariate regression, and hence

this agreement is not surprising. In contrast, the methods

tend to diverge more in the upper 150m, with RSEAS

exhibiting the best agreement with Argo, which can be

seen clearly in the NO region.

To assess the accuracy of each method to infer salinity

at different depths, we examine the 90% confidence

interval (CI) of salinity residual distributions, which is

defined as the average between the 5th and 95th per-

centiles of the residual probability distributions of the

profiles in each region and depth. Figure 4 shows in the

upper panels the 90% CI of all regions, averaged within

four layers bounded by the 0-, 200-, 800-, 1200-, and

2000-m depths. All basins exhibit a similar behavior,

that is, with wider distributions in the top few hundred

meters of the ocean and converging to much narrower

distributions below the thermocline. Larger errors in the

upper ocean are expected, as this is the region where the

T–S relationship breaks down as a result of strong sur-

face fluxes, and eddy and mixing activities. The mean

salinity (SMEAN) only cannot represent the regions

with high T–S variability, such as the SA and NA, and

the salinity errors have a much wider distribution at

FIG. 2. (a) Box size (L, 8) that encompasses the profiles used in the regression, (b) RMS error (psu) between the

estimated and original salinity using only the profiles within 18 distance from the center of each box, (c) variance of

the harmonics in the top 100m calculated using the RSEAS method, and (d) RMS error ratio (RSEAS/RDIST).
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lower depths. The TSMEANmethod has a fairly similar

behavior to the SMEAN method in the NA and NO

regions, and performs better at central depths where

there are strong linear T–S relationships. However, in

the TA, SA, and NO regions, this method cannot rep-

resent the regions where the Antarctic Intermediate

Water is located—that is, depths between 800 and

1200m—because of the inversion of the T–S curve that

is characteristic of this watermass (see Fig. 3). In the SO,

because of the strongly homogeneous temperature

profile, the TSMEAN method has large errors (90%

CI $ 0.3 psu) throughout the whole water column. The

RDISTmethod reduces considerably the errors at depth

relative to the TSMEAN and SMEAN methods, and

the 90% CI is below 0.3 psu in the upper 200m and less

than 0.1 psu below 200m in all five regions. The RSEAS

method performance is very similar to that of RDIST,

but it shows a slight reduction (;0.05 psu) in the re-

sidual spread near the surface. The implications of

these errors to the dynamic height estimations are

analyzed next.

2) DYNAMIC HEIGHT

The dynamic height is the most appropriate parame-

ter to infer the influence of salinity on dynamical

changes in the ocean, since it is closely related to a

streamfunction to estimate oceanic steric flows. The

residual distributions of the surface dynamic height

relative to 500m (DH500) are calculated for all five

subregions of the study domain (Fig. 4, lower panels).

These residuals are the differences of dynamic height

calculated using the Argo 2016 T–S data against the

dynamic height derived from the Argo temperature

profile and salinity produced by the four T–S lookup

methods.

The SMEANmethod presents higher DH500 residuals

in all subregions relative to the three other methods,

except for the TSMEAN method in the SO, since the

TSMEAN method shows strong caveats in regions

where temperature is homogeneous (i.e., Fig. 3). The

90% CI of the residuals for the SMEAN method is [4.4,

7.7, 3.8, 10.7, and 6.7] dyn cm over the [SO, SA, TA, NA,

and NO] regions, respectively, compared to the 90% CI

values of [10.9, 4.5, 2.5, 9.5, 5.2] dyn cm for the TSMEAN

method. The 90% CI of the residual values are for

RDIST [3.1, 3.1, 2.3, 4.5, 3.8] dyn cm and for RSEAS

[3.4, 2.9, 2.2, 4.5, 3.4]; therefore, both methods show

maximum dynamic height (relative to 500m) errors of

less than 4.5 dyn cm, and their errors are in general 30%

smaller than the SMEAN method. Apart from the SO

region, where the RDIST method outperforms the

RSEAS method (3.1 against 3.4 dyncm), all other basins

FIG. 3. Comparison of (top) T–S diagrams and (bottom) salinity profiles from Argo 2016 (black) with the estimates from the SMEAN

(blue), TSMEAN (green), RDIST (red), and RSEAS (orange) methodologies. Panels are divided sideways for each basin: (left to right)

NO, NA, TA, SA, and SO.
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show a slight reduction in DH500 errors using the RSEAS

method relative to the RDIST method.

c. Time evolution of residuals

To investigate the time evolution of the salinity re-

siduals, we compare the basin-averagedmonthly salinity

residuals of the four methods within all five basins

(Fig. 5). To perform this analysis, we recomputed the

methods using only half of the trial population from

1990 to 2015 (Fig. 1) and used the other half for verifi-

cation. The significance of these residuals is of course

dependent on the number of profiles used every month.

To reduce coverage biases, this comparison is shown

only for the period of 1999–2015. Several regionally

specific features can be captured in this comparison. In

the SO (Fig. 5a), the TSMEANmethod produces strong

positive salinity bias DS . 0.2 in the top 400m of the

ocean as a result of strongly mixed waters in the upper

ocean. SMEAN andRDIST produce similar results, and

the residuals show strong seasonality in the top 200m,

where the residuals alternate from positive to negative

within a year, superimposed onto a smaller interannual

residual variability, which is also observed in RSEAS.

In the SO and SA, the RSEAS method reduces signifi-

cantly the seasonality of the residuals relative to RDIST

because it accounts for the first two harmonics [Eq. (5)].

In the SA, the TSMEANmethod improves considerably

over the SO, and the amplitude of its averaged salinity

residuals is generally jDSj, 0.1. Some seasonality of the

residuals is observed in the SMEAN method in SA in

the top 150m (Fig. 3b), which is surprisingly enhanced in

the RDIST method. This residual seasonality is clearly

seen when comparing the averaged 150-m residual sa-

linity time series of RDIST against RSEAS in the top

panel of Fig. 5b. In the TA (Fig. 5c), there is little sea-

sonality and modest interannual variability in the re-

siduals in the RDIST, RSEAS, and SMEAN methods,

and the highest residual variability is concentrated in the

top 100m. The RDIST and RSEAS methods perform

comparably well in the TA region, although the mag-

nitude salinity residuals in RSEAS is typically slightly

smaller (,0.02 psu) than in RDIST. In NA and NO

(Figs. 5d,e, respectively), there is strong interannual

variability that is coherent between the two basins, with

an approximately 5-yr cycle until 2010 and a more stable

behavior after 2010. The causes of this basinwide vari-

ability north of 158Nmay be related to themodulation of

the E 2 P by large-scale phenomena, such as the North

Atlantic Oscillation (e.g., Reverdin et al. 2002). In NA

and NO, the salinity residuals from TSMEAN show

strong freshening in the top 100m and salinification

below it, characterizing some depth compensation of

FIG. 4. (top) Bar plots of 90% CI of the residual differences (psu) averaged within depth ranges 0–200, 200–800, 800–1200, and

1200–2000m applied to theArgo 2016 salinity profiles using each of the four salinity estimationmethods. (bottom)Distribution of surface

dynamic height differences (dyn cm) referenced to 500m using the Argo 2016 profile data. Box represents the 25th and 75th percentiles,

the whiskers represent the 5th and 95th percentiles, and dots indicate themean and the full width of the distributions. Each panel is for one

subbasin (from left to right: SO, SA, TA,NA, andNO), and the box-and-whisker colors are associatedwith the SMEAN (blue), TSMEAN

(green), RDIST (red), and RSEAS (yellow) methods.
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the residuals. Some seasonality of the residuals in SMEAN

and RDIST is observed in the NA and to a larger extent

in the NO regions, where the amplitude of the seasonal

variability is comparable to the interannual variability.

TheRSEAS exhibits far less seasonal variability in the

NA and NO regions and, thus, it outperforms the

RDIST method. This decrease in seasonal variability of

the residuals is further illustrated by taking the auto-

correlation function (ACF) of the residual time series

averaged over the NO (Fig. 6). The ACF decay of ap-

proximately 30 months in the RSEAS method (Fig. 6c)

is due to the large-scale interannual variability in the

region. The RDIST method is still strongly affected by

the seasonality of the residuals time series (Fig. 6d), and

its ACF is characterized by alternating peaks of about

12 months. Although not discussed here, the interannual

variability of the RSEAS residuals can potentially be

addressed as a low-order autoregressive model, as shown

by the significant peaks in the partial ACF functions

(Figs. 6e,f).

d. South Atlantic MHT and FWT

One important application of the salinity estimate

methods is the computation of water mass, heat, and

freshwater transport using XBT temperature profile

data. Here we assess the sensitivity of the MHT and the

FWT to the salinity in the upper 800m estimated from

the four methods introduced earlier. We use for this

comparison data from the AX18 transect along the

nominal latitude of 34.58S in the South Atlantic. The

MHT and FWT are estimated following the methodol-

ogy of Dong et al. (2009; 2011) and Garzoli et al. (2013),

in which the deep salinity and temperature are padded

from the 1/48World Ocean Atlas 2013 (WOA13) seasonal

climatology (Locarnini et al. 2013; Zweng et al. 2013). The

cross-transect geostrophic velocities are estimated from

dynamic height referenced to the s2 5 37.09kgm23 sur-

face and corrected to allowa 0.04ms21 at the bottomalong

the western boundary. Previous studies have analyzed the

impact of the methodological approximations and XBT

measurement uncertainties on the calculation of the me-

ridional overturning and meridional heat transports across

the AX18 transect (Baringer and Garzoli 2007; Goes et al.

2015a,b). By simulating the AX18 observing system in a

model, those studies suggested that the choice of the ref-

erence depth is the largest uncertainty in themethodology,

and that XBT depth biases do not contribute significantly

to MOC/MHT biases shorter than decadal time scales.

Biases induced by salinity estimates from the T–S re-

lationship and padding of climatology below XBT mea-

surement depth are relatively small, contributing as much

as 1Sv (1Sv [ 106m3 s21) at seasonal time scales.

The RMS differences in salinity and cross-sectional

velocities among the four methods are shown in Fig. 7.

The salinity differences between RDIST and RSEAS

are generally below 0.1 psu, mostly concentrated in the

top 150m. In the western boundary, west of 408W, the

two methods show greater differences, up to 0.2 psu. As

shown in Fig. 2, this is a region of low data density along

the shelf, but with strong seasonality in salinity poten-

tially resulting from the high variability near the Brazil–

Malvinas confluence zone (Fig. 2c). Therefore, in this

region the RSEAS method performs particularly well

(Fig. 2d). Derived velocity differences obtained using

these methods (RDIST minus RSEAS) are small, typi-

cally below 0.03m s21 (Fig. 7d).

Salinity differences between the SMEANandRSEAS

methods (Fig. 7b) are much larger and widespread than

FIG. 5. Time evolution of salinity residuals (psu) for the different methods averaged over each basin in the Atlantic sector from 1999 to

2015. (top) Respective time series of averaged residuals in the top 150m for the RSEAS (blue) and RDIST (red) methods. The contour

panels are the monthly averaged profiles in each basin for the (from top to bottom) TSMEAN, SMEAN, RDIST, and RSEAS methods.
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(RDIST minus RSEAS). SMEAN–RDIST salinity dif-

ferences are very similar to Fig. 7b, thus not shown. The

boundaries are again the region with the highest differ-

ences, exceeding 0.2 psu across the water column between

200 and 500m at central water depth range (Fig. 7b). This

depth range is where there is strong compensation be-

tween salinity and temperature, which are not captured

by the SMEAN method. Derived velocity differences

(SMEAN minus RSEAS) can reach 0.2m s21 in the

top 300m (Fig. 7e). The TSMEAN method (Figs. 7c,f)

has a better representation of the water masses in this

region than the SMEAN method. Salinity differences

(TSMEAN minus RSEAS) are generally lower than

0.125 psu, increasing to 0.2 psu west of 408W,whichmay

suggest again, similar to the comparison with RDIST

(Fig. 7a), that strong seasonality exists in the upper layer,

particularly in the western boundary. The (TSMEAN

minus RSEAS) velocity differences (Fig. 7f) reflect

the same intensified upper-ocean variability.

The MHT and FWT time series from XBT transects

with salinity derived from the four methods are shown in

Fig. 8. Variations in the MOC (not shown), MHT, and

FWT on both seasonal and interannual time scales are

very similar, suggesting that the thermosteric contribu-

tions to dynamic height dominate their variability. FWT

variability is opposite of MHT and MOC, since fresh-

water is defined as (S0 2 S)/S, where S0 is the mean sa-

linity along the section (Garzoli et al. 2013). The mean

strength of the MOC (not shown), MHT, and FWT

for the RDIST and RSEAS methods are ;19.3 6 4 Sv,

0.516 0.2 PW, and20.336 0.3 Sv, respectively, similar

to previous estimates that used a method similar to

RDIST. These values are greater than the ones using the

SMEANmethod (18.56 5Sv, 0.416 0.4 PW, and20.266
0.4 Sv) and are slightly lower than the estimates using

the TSMEAN method (19.4 6 4 Sv, 0.53 6 0.2PW,

and20.366 0.3 Sv). Interestingly, the SMEANmethod

allows for a reversal of MHT (negative values), which is

not seen in the other methods (Fig. 8a). The seasonal

cycle of MHT (MOC) shows a semiannual pattern,

with higher values during February–April and August–

September, and lower values during June and October/

November (Figs. 8c,d), which is similar to that of FWT

(stronger in April/September). According to the numer-

ical model analysis of Goes et al. (2015a), salinity errors

derived from a T–S lookup table show seasonal behavior

with RMS errors of 61Sv. Similarly, we investigate the

seasonality of the MHT and FWT residuals relative to

RSEAS (Figs. 8e,f). The RDIST–RSEAS differences

are small, typically lower than DMHT ; 0.02 PW and

DFWT ; 0.06 Sv, and with opposing phase to the sea-

sonal cycle shown in Figs. 8c and 8d, suggesting that the

seasonality not captured by the RDIST method (see

Fig. 5b) has a small influence (;1%) in reducing the

meridional transports.

The monthly mean MHT residuals of the SMEAN

method are on order of magnitude higher than the ones

from the other three methods, and are scaled by 1021

FIG. 6. (a),(b) Time series; (c),(d) autocorrelation function; and (e),(f) partial autocorrelation function from the

time series of the residual salinity (estimate minus observation) averaged in the top 150m over the northern ocean

region. (left) RSEAS and (right) RDIST methods.
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in Fig. 8e. Particularly in the second half of the year (June–

December), when MHT shows lower values, SMEAN

underestimates the heat transport by up to 0.3 PW. As

oppose to the RDIST method, the SMEAN method

shows a strengthened seasonality in MHT and FWT

across 34.58S. This result corroborates with Fig. 7, in that

temperature–salinity compensation occurs at this lati-

tude, which tends to reduce the transport variability but is

not captured using the SMEAN method.

4. Discussion and conclusions

The upper-ocean (,200m) variability presents one of

the greatest challenges in estimating salinity from tem-

perature profiles. This is because the T–S relationships

break at the surface as a result of strong mixing and sur-

face fluxes. Here, we introduce a direct and self-contained

methodology for the construction of salinity lookup tables

from temperature profile data. A regression method is

used to construct a relationship between salinity, tem-

perature, depth, month, and geographical location. Sea-

sonality is one potential contributor to the variance (and

covariance) of the residuals in the upper ocean. We

show that substituting the horizontal predictors using the

seasonal information consistently improves the salinity

estimates in the top 150m of the ocean. Seasonality is

important in key regions of the ocean, including frontal

systems, boundaries, and close to the equatorial region.

Below 150m, seasonality is less important, and the simple

relationship of salinity with depth and temperature can

provide a very good approximation.

Our results agree in part with early studies, which

show that a mean T–S curve can capture most of the

halosteric variability in the ocean. However, this re-

lationship does not hold in regions of low stratification,

high mixing, and where the T–S relationship is weak,

such as the Antarctic Intermediate Water (AAIW)

layers. In those regions, such as the Southern Ocean and

depths below 1600m, inferring salinity from a depth

annual mean profile can be more efficient. However, in

most locations and particularly in the upper ocean, the

SMEAN method is the least effective to estimate sa-

linity. One of the most important findings in this study

reveals that the variations in the MHT and FWT in the

South Atlantic on both seasonal and interannual time

scales are very similar regardless of variations in salinity

estimates, which may be indicative that the thermosteric

contributions to dynamic height dominate the MHT

and FWT variability. This result is important because

it highlights the value of estimates produced using

FIG. 7. RMS differences of (a)–(c) salinity and (d)–(f) velocity estimated in the top 800m for the AX18 sections. The differences are

calculated relative to RSEAS for the RDIST, TSMEAN, and SMEAN methods (labels above the top panels). Note that the SMEAN–

RSEAS velocity differences shown in (e) display increased color bar range relative to (d) and (f).
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XBT observations since 2002 and with satellite altimetry

since 1993.

The variability at interannual to decadal time scales is

not resolved by the methods presented in this study. In

the RSEAS and RDIST methods, some small in-

terannual variability is observed, and accounts for only

a 60.1 psu in the upper 200m of the ocean. This vari-

ability seems to be related to large-scale processes, such

as NAO in the NA and NO, and potentially to ENSO

and other large-scale phenomena.

Longer-term salinity trends in the Atlantic have been

detected in recent studies (e.g., Durack and Wijffels

2010; Grodsky et al. 2006; Hosoda et al. 2009; Goes

et al. 2014). These may be associated with the

strengthening of the hydrological cycle (evaporation

and precipitation), ocean advection, and are regionally

varying. Long-term changes are revealed in the TSMEAN

method (Fig. 5), which although subject to coverage

biases, they hinge on a freshening at the surface and

salinification at central depths in the NA and NO

regions. These long-term changes are not observed

when the SMEAN method is used, so the trends may

be drivenmostly by temperature changes to themeanTS

and spiciness instead of salinity itself. These long-term

changes and their effect on the distribution of water

masses over depth may have large-scale impacts, such as

the stability of the AMOC. We tested the sensitivity of

the meridional heat and freshwater transports to the

empirical salinity estimates across 358S in the South

Atlantic. The sensitivity of the MHT and FWT to dif-

ferent salinity estimates is an order ofmagnitude smaller

than theirmean climatological values, and the east andwest

boundaries are more sensitive to the methodology choice.

Although small, the SMEANmethod can drive reversals of

the MHT and FWT estimates, and is not recommended

to be used in the South Atlantic. Other regions such as

the North Atlantic may have different impacts, and the

TSMEAN method may bring larger errors.

Results of the work presented here have immediate

impact on the studies of ocean circulation and climate

studies, in particular on studies that use historical and

current XBT profile data, and applications for ocean

forecast and ocean state estimation, for which salinity

plays a critical role. Future improvements for this method

FIG. 8. Estimates of (left) MHT and (right) FWT from the AX18 data using the four salinity estimation methods.

(a),(b) Time series using each salinity method; (c),(d) monthly means; and (e),(f) monthly means of residuals

relative to RSEAS. The SMEAN–RSEAS residuals in (e) are scaled by 1021 to allow comparison with the other

estimates.
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may include 1) large-scale predictors [e.g., NAO, southern

annular mode (SAM)], principal component methods of

large-scale surface properties, and autoregressivemethods,

including information about interannual to decadal vari-

ability of salinity in the upper ocean, which are only par-

tially represented by the temperature predictors; 2) more

structured and variable spatial covariance function, using,

for example, weights given from satellite altimetry, and

classification methods (clustering), which can efficiently

reduce the number of boxes required to define similar T–S

patterns (e.g., Maze et al. 2017). This would reduce the

noise andmesoscale eddy variability in themean profile by

increasing the number of trial population, particularly in

poorly sampled areas; and 3) the methods presented here

treat each depth as independent. Assuming depth as

an independent variable may bring the advantage of

avoiding dealing with depth-varying error variances

(heteroscedasticity) and missing data, but loses in-

formation of depth autocorrelation. This can be in-

cluded with depth principal components (e.g., Maes

and Behringer 2000) or fitting a structured depth au-

tocovariance matrix (e.g., Goes et al. 2010).
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