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Abstract1

The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) pro-2

vides measurements of the upper ocean and near-surface atmosphere at 18 locations.3

Time series from many moorings are nearly 20 years in length. However, instrumental4

biases, data drop-outs, and the coarse vertical resolutions of the oceanic measurements5

complicate their use for research. Here an enhanced PIRATA data set (ePIRATA) is6

presented for the 17 PIRATA moorings with record lengths of at least seven years.7

Data in ePIRATA are corrected for instrumental biases, temporal gaps are filled using8

supplementary data sets, and the subsurface temperature and salinity time series are9

mapped to a uniform 5-m vertical grid. All original PIRATA data that pass quality10

control and do not require bias correction are retained without modification, and de-11

tailed error estimates are provided. The terms in the mixed layer heat and temperature12

budgets are calculated and included, with error bars. As an example of ePIRATA’s13

application, the vertical exchange of heat at the base of the mixed layer (Q−h) is cal-14

culated at each PIRATA location as the difference between the heat storage rate and15

sum of net surface heat flux and horizontal advection. Off-equatorial locations are16

found to have annual mean cooling rates of 20–60 W m−2, while cooling at equatorial17

locations reaches 85–110 W m−2 between 10◦W–35◦W and decreases to 40 W m−2 at18

0◦. At most off-equatorial locations, the strongest seasonal cooling from Q−h occurs19

when winds are weak. Possible explanations are discussed, including the importance20

of seasonal modulations of mixed layer depth and the diurnal cycle.21
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1 Introduction22

The tropical Atlantic has a strong seasonal cycle that is shaped by coupled ocean-23

atmosphere-land interactions (Mitchell and Wallace 1992, Okumura and Xie 2004).24

Deviations of sea surface temperature (SST) and winds from the seasonal cycle, though25

less pronounced than seasonal changes, are important because of their influence on the26

location of the Intertropical Convergence Zone (ITCZ) (Nobre and Shukla 1996, Chiang27

et al. 2002), continental rainfall (Nobre and Shukla 1996, Polo et al. 2008, Yoon and28

Zeng 2010), and anomalous SST and atmospheric circulation in other ocean basins29

(Kucharski et al. 2007, Rodriguez-Fonseca et al. 2009, Ham et al. 2013).30

The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA)31

was established in 1997 to improve our understanding and predictability of tropical32

Atlantic weather and climate (Servain et al. 1998, Bourlès et al. 2008). The array33

was designed to sample the two main patterns of interannual-decadal variability: the34

Atlantic Meridional Mode (Nobre and Shukla 1996, Chiang and Vimont 2004) and35

the Atlantic equatorial mode (Zebiak 1993, Carton and Huang 1994). Three moorings36

were added to PIRATA in 2005 as the Southwest Extension, followed by four additional37

Northeast Extension moorings in 2006–2007, and a Southeast Extension mooring at38

6◦S, 8◦E that was first deployed during 2006–07 (Rouault et al. 2009) and then from39

2013 to the present (Figure 1). Scientific motivation for these extensions includes the40

connection between tropical Atlantic SST and hurricane activity (Kossin and Vimont41

2007), the potential impact of the salinity-induced barrier layer on hurricanes and42

tropical Atlantic climate (Breugem et al. 2008, Reul et al. 2014), the importance of43

South Atlantic SSTs for South American rainfall variability (Bombardi et al. 2014),44

and persistent coupled climate model biases (Richter and Xie 2008).45
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Measurements from PIRATA have been used to address a variety of research46

topics, including the Equatorial Undercurrent, upper-ocean diurnal cycle, and tropical47

instability waves at 0◦, 23◦W (e.g., Grodsky et al. 2005, Giarolla et al. 2005, Wenegrat48

and McPhaden 2015), carbon parameters and the factors affecting CO2 variability at49

6◦S, 10◦W (e.g., Parard et al. 2014, Lefèvre et al. 2016), seasonal variations of salinity50

and their potential impact on SST (e.g., Foltz and McPhaden 2009, Foltz et al. 2015),51

and the causes of seasonal and interannual variations of SST (e.g., Foltz et al. 2003,52

2012, 2013a, Rugg et al. 2016). PIRATA data have also been used to validate satellite-53

based measurements of SST (Gentemann et al. 2004), rainfall (Serra and McPhaden54

2003), and winds (Ebuchi et al. 2002), and for validation of numerical model output55

and atmospheric and oceanic reanalyses (e.g., Han et al. 2008, Wade et al. 2011, Nobre56

et al. 2012).57

The time series from many PIRATA moorings are approaching 20 years in length58

and are a valuable resource for examining upper-ocean and near-surface atmospheric59

variability on diurnal to decadal timescales. The moorings’ sensors are calibrated after60

every buoy recovery (approximately once per year) and regularly quality-controlled, yet61

instrumental biases can remain, and there are some gaps in the time series due to sensor62

failure or other unforeseen circumstances (Figure 1 and Appendix; see http://www.63

pmel.noaa.gov/tao/drupal/disdel/ for full details of data availability). In addition,64

the vertical resolutions of the subsurface temperature and salinity measurements from65

the moorings are often too coarse to resolve fully the mixed layer depth and vertical66

salinity structure, key parameters that affect ocean-atmosphere variability. Since the67

first PIRATA moorings were deployed in 1997, many new satellite, reanalysis, and in68

situ data sets have become available (e.g., Argo, ERA-interim reanalysis, microwave69
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SST, satellite sea surface salinity) that can be used to fill gaps in PIRATA time series70

and to provide enhanced vertical resolution of PIRATA temperature and salinity data.71

In the remainder of the paper we describe a new “enhanced” PIRATA data72

set (ePIRATA) that provides rigorously quality-controlled, gap-filled (temporal and73

vertical) time series for ocean-atmosphere research and model validation in the tropical74

Atlantic. ePIRATA complements the tropical Atlantic components of global data sets75

such as TropFlux (Kumar et al. 2012), OAFlux (Yu andWeller 2007), Argo (www.argo.76

ucsd.edu/Gridded_fields.html), and the Ocean Surface Current Analysis Realtime77

(OSCAR; Bonjean and Lagerloef 2002), which use in situ measurements from moorings78

only for validation or to adjust satellite and reanalysis data for biases. Here, in contrast,79

we retain all original mooring data after quality-control and fill gaps with other in80

situ data and bias-corrected satellite and reanalysis products, forming high-quality81

continuous daily records, with error bars, at each of the 17 PIRATA locations with82

a record length of at least seven years. Also included in ePIRATA are continuous83

daily time series of terms in the mixed layer heat and temperature budgets at each84

mooring location, which we anticipate will be useful for exploring the mechanisms85

of SST variability and the causes of biases in climate models. After describing the86

methods used to create ePIRATA, we use the data set to calculate the mixed layer87

heat budget residuals at the mooring locations and relate them to annual mean and88

seasonal variations of vertical turbulent cooling at the base of the mixed layer.89

2 Data and Methods90

In this section we describe the data and methods used to create ePIRATA, beginning91

with the atmospheric parameters and followed by the oceanic data. All moorings mea-92
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sure subsurface temperature and conductivity (used to calculate salinity), as well as air93

temperature, relative humidity, shortwave radiation, winds, and rainfall. Several moor-94

ings also measure barometric pressure, downward longwave radiation, and ocean veloc-95

ity at a depth of 10 m (Table 1). All data except rainfall and barometric pressure are96

used in this study. We exclude these variables because they are not used directly to cal-97

culate the mixed layer heat and temperature budgets, one of the main motivations for98

ePIRATA. Additionally, because of the short timescales and small spatial scales associ-99

ated with tropical rainfall, filling gaps with gridded data sets is more challenging (Serra100

and McPhaden 2003). All PIRATA data used in this study are the daily averages, avail-101

able in real-time from www.pmel.noaa.gov/tao/disdel/frames/main.html. Higher102

temporal resolution data are also available from the moorings, but they are not avail-103

able in real-time and sometimes not for several years following a deployment. For104

this reason, and because the coarse vertical resolutions of temperature and salinity on105

many moorings cannot resolve well the diurnal cycle, we use only the daily-averaged106

data. Note that any corrections applied to the high-resolution delayed-mode data after107

post-recovery calibration have also been applied to the daily-averaged data.108

2.1 Atmospheric Data109

As mentioned in the previous section, biases can develop in the PIRATA time series110

during approximately year-long buoy deployments. The first steps are therefore to111

remove data that are obviously biased and fill temporal gaps in the records.112

2.1.1 Air Temperature, Relative Humidity, and Winds113

To determine the quality of the air temperature data, we first create a daily climatology114

of the difference between SST and air temperature (∆T ) using all available data from115
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a given mooring. We also compute the daily standard deviation of ∆T with respect116

to its climatology. Because biases very rarely develop in ocean temperature measure-117

ments (Freitag et al. 1999), most biases in ∆T can be attributed to issues with the air118

temperature sensors. The advantage of using ∆T instead of air temperature itself is119

that ∆T exhibits much smaller variability outside of the seasonal cycle than air tem-120

perature. For example, there are noticeable interannual variations in air temperature121

at many locations, but interannual variations in ∆T are much smaller (Figure 2a).122

We focus on identifying data with a spurious long-term drift over at least one month123

because (1) this is the dominant source of error and (2) biases in shorter-frequency124

variability are very difficult to detect.125

First, for each day at a given location, we count the number of days in a centered126

31-day window that have ∆T less than the daily climatology minus one standard devi-127

ation (Nl) or greater than the climatology plus one standard deviation (Nh). A period128

of 31 days was chosen to focus on removing spurious drifts that last longer than one129

month. Next, the 0.15 and 0.85 quantiles of Nh and Nl are calculated for each calendar130

day (Q15 and Q85, respectively), and days when Nh > Q85 or Nl < Q15 are flagged as131

periods when there may be biases in the air temperature measurements. Finally, for a132

101-day moving window centered on each day, if the number of days with low flags or133

high flags is greater than 50, the flagged values are removed from the record. This step134

is then repeated with a 301-day moving window and a threshold of 90 days instead of135

50. We found, after experimentation, that using a 101-day window with a threshold136

of 50 gave reasonably robust identification of obviously biased air temperature data.137

Using fewer days resulting in the elimination of too much data because of some periods138

with large high-frequency fluctuations of the air-sea temperature difference. Also, due139
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to natural high-frequency variations of the temperature difference, it is necessary to140

use a longer period of 301 days to identify biases that are small at first and become141

larger over several months.142

This procedure results in up to 5% of the data being removed at each location.143

Additional subjective quality control is performed based on the ∆T time series, result-144

ing in the total removal of up to 35% of the data at a given location. The subjective145

procedure mainly involves identifying whole buoy deployments, typically 1–2 years in146

length, with questionable data that were not entirely removed by the objective method.147

As an example, the 0◦, 35◦W mooring record contains highly questionable data during148

the late 2006 to early 2008 deployment and the early 2009 to mid 2010 deployment149

(Figure 2a). All of these data were removed, regardless of whether they were flagged150

by the objective method. Removal was motivated mainly by the presence of sustained151

negative ∆T values, which were not observed except during these deployments. It is152

unclear what causes these biases during some deployments, especially since instrumen-153

tal errors are only about 0.2◦C based on pre-deployment and post-recovery calibration154

coefficients (Lake et al. 2003). It is possible that something became stuck on the155

temperature sensor while deployed on the buoy, reducing air flow and hence increasing156

the temperature the sensor recorded.157

To verify that periods of several months with air temperature greater than158

SST are unrealistic, we calculated the monthly air-sea temperature difference at each159

PIRATA location from the International Comprehensive Ocean-Atmosphere Dataset160

(ICOADS; Woodruff et al. 2011) during 1960–2007. We found that 0–0.7% of the161

months at each location have air temperature greater than SST for that month and162

the following four months. In the monthly TropFlux data set, during 1979–2015 at each163
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location there are at most three months total, and at most two consecutive months,164

with air temperature greater than SST, and differences are always less than 0.1◦C. The165

questionable values of air temperature that we remove from PIRATA records are well166

outside of these bounds in terms of magnitude and duration.167

The same procedure is used to quality-control the relative humidity time series168

from the moorings, except the climatological value is subtracted from the observations169

to derive the daily anomalies that are used for the detection of biases. This approach170

results in the removal of up to 5% of the data at each location, except 15% at 0◦N,171

35◦W (Figure 2b). No data were removed from the PIRATA wind records because no172

obviously biased values were found. Any remaining gaps in the mooring air tempera-173

ture, relative humidity, and wind time series were filled with the mooring climatology174

plus daily ERA-interim reanalysis (Dee et al. 2011) anomalies. The mooring and175

ERA-interim climatologies were calculated using the same time periods. Kumar et176

al. (2012) found that ERA-interim near-surface air temperature, humidity, and winds177

generally agree best with mooring values compared to other reanalysis products. De-178

tailed comparisons at each PIRATA location are provided in the Appendix. We use179

only ERA-interim anomalies from the seasonal cycle in order to eliminate possible an-180

nual mean and seasonally varying biases. Note that ERA-interim does not assimilate181

PIRATA measurements.182

2.1.2 Shortwave and Longwave Radiation183

The main source of error in PIRATA shortwave radiation measurements is the buildup184

of dust and other aerosols on the radiometer domes at buoy locations north of 4◦N185

(Foltz et al. 2013b). These time-dependent biases are removed following the “MERRA186

clear-sky” method described in Foltz et al. (2013b). Gaps in the time series are187
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filled following the methodology of Kumar et al. (2012) as follows. For each buoy188

time series, we first form a daily climatology. We then regress daily NOAA satellite189

outgoing longwave radiation (OLR) anomalies at the buoy location onto the bias-190

corrected PIRATA shortwave anomalies. The regression coefficients are applied to the191

time series of OLR anomalies to create an OLR-based shortwave radiation anomaly192

time series that is used to fill gaps in the PIRATA time series. The method works193

reasonably well in the regions where high cloudiness dominates (south of 20◦N and194

outside of the cold tongue region), with daily and monthly anomaly correlations of 0.5–195

0.8 between the PIRATA shortwave radiation and the OLR-regressed values (Figure196

3). In regions where low cloudiness is more important (e.g., 20◦N, 38◦W, the eastern197

equatorial Atlantic, and 6◦S and 10◦S along 10◦W), correlations are generally lower198

(0.3–0.4). Note that these correlations are for anomalies from the mean seasonal cycle199

and that correlations between the full time series range from 0.67 to 0.92, as described200

in the Appendix.201

Downward longwave radiation is recorded on six PIRATA buoys (Table 1). At202

four locations with long records that are unbiased by dust (indicated in Table 1),203

downward radiation from the moorings is used, and gaps are filled with the daily204

PIRATA climatology plus the ERA-interim daily anomalies. At these locations, the205

correlations between daily anomalies of PIRATA and ERA-interim downward longwave206

radiation are between 0.43 (at 10◦S, 10◦W) and 0.66 (at 19◦W, 34◦W). Full correlations207

and RMS differences, calculated with data that include the seasonal cycle, are shown208

in the Appendix. At all other locations, downward longwave radiation directly from209

ERA-interim is used. Outgoing surface longwave radiation is calculated as ǫσT 4, where210

ǫ = 0.97, σ the Stefan-Bolzman constant, and T is SST from the gap-filled PIRATA211
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record (the methodology used to fill gaps is described in the next section).212

2.2 Oceanic Data213

The oceanic measurements from the PIRATA moorings consist of temperature, salinity,214

and velocity. At all locations, temperature is available at depths of 1 m and 20 m, at215

20 m intervals down to 140 m, and at 180 m, 300 m, and 500 m. Many moorings216

have additional sensors in the upper 40 m. Salinity is available at 1 m, 20 m, 40 m,217

and 120 m at all moorings, and many have additional measurements in that depth218

range. Velocity is available from some moorings at a depth of 10 m (Table 1 shows the219

locations). In this section we describe the methodologies used to remove questionable220

PIRATA data, fill temporal gaps, and perform vertical interpolation.221

2.2.1 Temperature and Salinity222

We found no obvious biases in the mooring temperature and velocity time series, based223

on comparisons between mooring and satellite SST data and examination of the PI-224

RATA time series for discontinuous jumps or suspicious linear trends during deploy-225

ments, so no data were removed from them. Gentemann et al. (2004) also did not find226

any obviously biased SST mooring data in their comparison to microwave SST. For227

salinity, instrumental bias is most easily detected by examining time series of differ-228

ences in salinity between depth levels. The first step in the quality-control procedure is229

therefore calculating differences between the PIRATA salinity from all available depth230

pairs (∆S) for every day in a given record. The full set of depth pairs includes all pairs231

of unique depths, using only the depths at which salinity measurements are available.232

For example, on a given day if salinity is available at depths of 1, 20, 40, and 120233

m, there are six depth pairs ([1,20], [1,40], [1,120], [20,40], [20,120], [40,120]). The234

11



available depths and depth pairs can be different on different days because of missing235

data and occasionally the deployment of new sensors during a servicing cruise. From236

these ∆S values, three-month seasonal means (January–March, etc.) and standard237

deviations are calculated for each depth pair. These are used to test whether data on238

a given day for a given pair of depths are questionable. As before, a moving 31-day239

window centered on each day in a given PIRATA record is used. If all 31 values of ∆S240

for a given depth pair exceed the seasonal mean plus three standard deviations, or are241

lower than the seasonal mean minus three standard deviations, the 31 values at each242

depth level are flagged. This procedure is repeated for all depth pairs. The flagged243

data are examined and obviously biased measurements are discarded.244

The most obvious indicator of erroneous data is a near-surface salinity inversion245

(i.e., values that decrease with depth) that is not supported by strong temperature246

stratification, or surface salinity that is abnormally fresher than salinity at a deeper247

level for an extended period of time. As examples, instances of salinity inversions248

were found at 12◦N, 38◦W during 2004 and 2008–09, at 0◦, 0◦ during 2012–2013, and249

at 10◦S, 10◦W during early 2011 (Figure 4). Periods with abnormally low salinity250

at 1 m compared to 20 m were also found at 12◦N, 38◦W during late 2007 and at251

10◦S, 10◦W during 2008 and 2013–14 (Figure 4a,c). In many cases, it is easy to label252

the abnormally fresh values as erroneous because the fresh bias with respect to the253

next depth immediately disappears when the mooring is serviced and new sensors are254

installed. Such servicing occurred in April 2008 at 12◦N, 38◦W (Figure 4a) and in255

September 2008 at 10◦S, 10◦W (Figure 4c). Overall, this quality-control procedure256

results in the removal of up to 6% of the salinity data at each location. Resulting gaps257

in PIRATA surface salinity after July 2011 are filled using the daily climatology from258
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the mooring plus daily anomalies from the Aquarius satellite instrument. This method259

works reasonably well at most locations (see Appendix for more details). Aquarius260

data are available from http://podaac.jpl.nasa.gov/aquarius beginning in August261

2011 and continuing through May 2015. We anticipate that surface salinity from the262

Soil Moisture and Ocean Salinity (SMOS) satellite sensor will be useful for filling263

gaps in future updates to ePIRATA. Gaps in PIRATA SST are filled with microwave264

satellite SST, available starting in 1998 from http://www.remss.com/measurements/265

sea-surface-temperature/oisst-description, using a similar methodology.266

Next, historical Argo profiles are used to map each daily PIRATA temperature267

and salinity profile to a uniform 5 m resolution in depth. We first obtain all Argo268

temperature and salinity profiles within ±2◦ of latitude and ±3◦ of longitude of a269

given PIRATA mooring, and within ±90 days of a given calendar day. For example,270

for April 1, 2010, all profiles available during January–June of any year are obtained.271

We then interpolate each Argo profile to a 5 m vertical grid, from 10 m to 200 m,272

and extend it upward to 5 m and 1 m using the value at 10 m. The assumption of273

a uniform layer from 1 m to 10 m is reasonable because we are using daily-averaged274

PIRATA data. There are between 390 and 1605 profiles available for the regression at275

each PIRATA location. The fewest are available at the Southwest Extension sites and276

at 0◦, 35◦W, and the largest numbers are found along 23◦W and at 20◦N, 38◦W. For277

each day in a PIRATA record with temperature available at a minimum of two levels,278

we first identify all missing levels, defined as depths of 1 m, and from 5 m to 200 m in 5279

m increments, that do not have PIRATA data on that day. For each missing depth, we280

obtain temperature at that depth from all Argo profiles in the ±90 day time-span and281

2◦ × 3◦ region surrounding the mooring. We then obtain all Argo temperature data282
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at the depths for which PIRATA temperature is available and perform multiple linear283

regression of the Argo temperatures at the available depths onto Argo temperatures at284

the missing depth. Using the resultant regression coefficients, we estimate the PIRATA285

temperature at the missing depth on the given day as286

287

Tm = a0 +
A
∑

i=1

aiT (zi) (1)
288

Here a0 and ai are the regression coefficients that convert PIRATA temperatures at289

the available depths (T (zi)) to temperature at the missing depth (Tm), and A is the290

number of depths for which PIRATA temperature is available on the given day. The291

Argo regression and (1) are repeated for each missing PIRATA depth on the given292

day, and then repeated for all days in a given PIRATA record. The result is a profile293

of temperature between 1 m and 200 m at a 5 m vertical resolution on each day for294

which PIRATA temperature is available at a minimum of two depth levels. The same295

methodology is used for salinity, except Argo temperature and salinity profiles are used296

in the regression model because we found that the inclusion of temperature improves297

the model.298

This method significantly reduces biases that result from simple linear interpo-299

lation between the nearest PIRATA depth levels and gives small reductions in RMS300

error relative to linear interpolation (Figures 5, 6). For this comparison, we first re-301

tained Argo temperature data only at 20 m intervals between 20 m and 140 m, and302

at 180 m, and salinity only at 20, 40, and 120 m. These are depths at which data303

are typically available at all moorings. The moorings also measure temperature and304

salinity at a depth of 1 m. Because Argo measurements are generally not available at305

1 m, temperature and salinity at 10 m were used to represent values at a depth of 1 m.306
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We then used 75% of the Argo data at each location to “train” the regression model307

and filled gaps in the remaining 25% of the profiles using the regression coefficients and308

the data at the available depths, based on (1). Note that in general these are not the309

exact errors associated with mapping the actual PIRATA data to a 5 m vertical grid,310

which depend on the depths at which PIRATA temperature is available on a given day,311

the specific mooring location, and to a lesser extent, the time of year. The calculation312

of these errors is described in the Appendix.313

Though the Argo regression method reduces biases introduced by the use of sim-314

ple linear interpolation in depth, it occasionally generates unrealistic vertical gradients315

of temperature or salinity for cases in which the regression model has low predictabil-316

ity. To eliminate unrealistic temperature values, we first determine the maximum and317

minimum observed vertical temperature gradient over a distance of 5 m (i.e., between318

two vertical grid points), based on all Argo profiles within 2◦ of latitude and 3◦ of319

longitude of the mooring and for a given calendar month. If the vertical gradient for320

any ePIRATA daily-averaged profile, calculated between two depth levels, is outside of321

these upper and lower bounds set for each calendar month, temperature at each depth322

level is removed and filled using the climatology (based on all data available at that323

depth) plus the anomaly vertically interpolated between the closest available depths324

with good data. However, if original PIRATA data are available at a given depth, they325

are retained. The procedure is then repeated using gradients over a distance of 20 m.326

The same method is used to eliminate unrealistic salinity data. This results in the327

replacement of up to 5% of the temperature and salinity data at most locations.328

When PIRATA temperature or salinity data are available at zero or one depth329

level, different techniques are used to fill the gaps. These gaps can occur, for example,330
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if the mooring line breaks and instruments are not recovered. If the temporal gap331

at a given level is 10 days or less, linear interpolation in time is performed at that332

depth. If the gap is longer than 10 days, optimum interpolation is performed, using333

all Argo profiles within ±10◦ of latitude, ±15◦ of longitude, and ±3 months from a334

given mooring on a given day. The cut-off of 10 days was chosen because we found335

that linear interpolation outperforms optimum interpolation at each location when the336

gap is less than about 10 days, and optimum interpolation is better for filling longer337

gaps. In practice, linear interpolation is rarely used, however, since less than 1% of338

the days at each location are part of a temperature or salinity gap that is 10 days or339

less. Optimum interpolation is more commonly performed, since as many as 44% of340

the days at some locations are part of gap that is longer than 10 days.341

Following Reynolds and Smith (1994) and Kawai et al. (2006), optimum inter-342

polation can be expressed as343

344

Ak = Fk +
N
∑

i=1

wki(Ti − Fi) (2)
345

Here Ak is the interpolated “analysis” value for a given PIRATA location, day, and346

depth, Fk is the monthly climatological first-guess value from World Ocean Atlas 2013347

(WOA13; Locarnini et al. 2013, Zweng et al. 2013), linearly interpolated to the PI-348

RATA location, calendar day, and depth, Ti and Fi are the individual Argo observations349

and associated WOA13 first-guess values, respectively, at location-time i, and N is the350

total number of Argo profiles within the latitude, longitude, and time ranges specified351

previously. The weights (wki in (2)) can be expressed as352

353

Πki =
N
∑

j=1

wkjΠij (3)
354
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where Πki is the correlation between the first-guess error at the mooring location and355

the error for a given Argo measurement and Πij is the correlation between the first-356

guess errors associated with two given Argo measurements. We have assumed that the357

observational errors from individual Argo measurements are uncorrelated, and we use358

a Gaussian function in space and time for both sets of correlation coefficients, following359

Reynolds and Smith (1994):360

361

Πij = exp



−
(

xi − xj

Lx

)2

−
(

yi − yj
Ly

)2

−
(

ti − tj
Lt

)2



 (4)
362

Decorrelation scales are set to Lx = 300 km, Ly = 200 km, and Lt = 15 days, and363

the results are not very sensitive to other reasonable choices of these parameters. The364

percentage of depth levels filled with Argo optimal interpolation is up to 44% for salinity365

and up to 28% for temperature, depending on the gaps present in each PIRATA time366

series.367

The resulting time series are then checked for static stability using the method368

of Jackett and McDougall (1995). If there is instability at a given depth, we deter-369

mine whether it is caused by temperature, salinity, or both by performing the stability370

calculation again using constant salinity as a function of depth, then using constant371

temperature. Unstable temperature and salinity values are replaced with the clima-372

tology plus the anomaly linearly interpolated between the closest depths with stable373

values. If there are still instabilities, the unstable values are replaced using linear374

interpolation in depth. Original PIRATA temperature and salinity data, with the375

exception of those removed using the methodology described earlier in this section,376

are retained regardless of the stability. Therefore, the result of the interpolation and377

stability-checks is continuous daily time series of temperature and salinity at each PI-378
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RATA location, with 5 m vertical resolution, in which all original PIRATA data that379

pass quality-control have been retained.380

2.2.2 Mixed Layer Depth and SST gradients381

The mixed layer depth (MLD) can be defined as the depth at which density is ∆ρ382

greater than the density at a depth of 1 m. Using the ePIRATA temperature and383

salinity, we choose a value of ∆ρ that is a balance between (1) maximizing the seasonal384

amplitude of MLD (periods greater than 180 days) relative to smaller timescale vari-385

ability (standard deviation of MLD high-pass filtered at a period of 10 days) and (2)386

minimizing the difference between SST and temperature averaged in the mixed layer387

(T ). The reasoning behind (1) is that it is desirable to have a MLD with a well-defined388

seasonal cycle and which is not strongly influenced by spurious higher-frequency varia-389

tions induced by uncertainties in the vertical interpolation of temperature and salinity.390

We choose a 10-day cut-off period for high-frequency variations so that intraseasonal391

variability is excluded, though results are not very sensitive to the period chosen. Sim-392

ilar arguments were used by de Boyer Montégut et al. (2004), though they calculated393

MLD over the global ocean. In general, larger ∆ρ give stronger seasonal cycles of MLD394

and weaker high-frequency variations. The reason for (2) is that this requirement is395

advantageous for relating the terms in the mixed layer heat and temperature budgets396

to changes in SST. For larger ∆ρ (increasing from zero to 0.3 kg m−3), the MLD, its397

seasonal amplitude, and the ratio of the seasonal amplitude to high-frequency vari-398

ability all increase when averaged across all mooring locations (Figure 7a). However,399

the difference between SST and T also increases, as does the seasonal amplitude of400

SST −T (Figure 7b). Based on these considerations, we define the MLD as the depth401

at which density is 0.12 kg m−3 greater than at 1 m. This definition results in a mean402
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SST−T of 0.06◦C (black square in Figure 7b) and a seasonal cycle of MLD that is four403

times larger than the amplitude of high-frequency variability (purple square in Figure404

7a). Our density criterion translates to a temperature criterion of about 0.35◦C, which405

is similar to that chosen by de Boyer Montégut et al. (2004), considering that they406

used a reference depth of 10 m instead of our 1-m depth.407

We use daily microwave SST to estimate horizontal mixed layer temperature408

gradients, which are needed along with mixed layer depth and velocity to calculate409

horizontal temperature and heat advection, important terms in the mixed layer tem-410

perature and heat budgets, respectively. The horizontal SST gradients are provided as411

part of the ePIRATA data set. To determine the optimal spatial averaging to apply412

to the 1

4

◦

satellite SST data before computing gradients, we compared the RMS dif-413

ferences between daily satellite SST at each PIRATA location, using different spatial414

averaging, to daily SST from the mooring. We considered spatial averaging regions415

centered on the mooring location and ranging from 0.25◦ × 0.25◦ to 1.75◦ × 1.75◦.416

The minimum RMS difference, averaged across all PIRATA locations, was found for a417

1◦ × 1◦ average. The RMS difference tends to be larger for smaller averaging regions418

because of a smaller signal to noise ratio and increases for regions larger than 1◦ × 1◦419

because the averaged SST is less representative of the mooring SST. We therefore use420

centered differences of 1◦×1◦ averages of satellite SST, calculated over a distance of one421

degree, to calculate horizontal SST gradients at each PIRATA location. For example,422

for zonal gradients at 0◦, 35◦W, SST is first averaged in 1◦ boxes centered at 35.5◦W423

and 34.5◦W, then the difference between these spatial averages is calculated.424
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2.2.3 Velocity425

At the off-equatorial locations with velocity measurements (see Table 1), we use the426

mooring data without correction and fill temporal gaps with a weekly surface drifter-427

altimetry-wind synthesis product (Lumpkin and Garzoli 2011) linearly interpolated428

to a daily time series at each mooring location. Daily anomalies from the seasonal429

cycle are added to the daily climatology calculated using all available PIRATA data430

at a given mooring. Comparisons between the mooring velocity time series and those431

from the drifter product and OSCAR revealed that the drifter product compares more432

favorably at most locations in terms of annual mean and seasonal amplitude of zonal433

and meridional velocity. At 0◦, 23◦Wwe fill gaps with OSCAR since the drifter product434

relies on Ekman balance for the wind-driven component and is therefore unavailable435

on the equator. At other equatorial locations, where no velocity data is available from436

the moorings, we also use OSCAR. The RMS differences and correlations between437

PIRATA 10-m velocity and the products used to fill gaps are shown in the Appendix.438

To convert the continuous records of 10 m velocity at each mooring location to439

vertically-averaged velocity in the mixed layer (needed for the calculations of horizontal440

mixed layer heat and temperature advection, and included in the ePIRATA data set),441

we use monthly Ocean Reanalysis System 4 (ORAS4) data for 2000–2014 (Balmaseda442

et al. 2013). In general, we found that ORAS4 velocity compares more favorably to443

PIRATA than the Simple Ocean Data Assimilation (SODA), Global Ocean Data As-444

similation (GODAS), or Estimating the Circulation and Climate of the Ocean (ECCO)445

products. This may be due in part to the assimilation of PIRATA temperature and446

salinity measurements in ORAS4. For the zonal and meridional components sepa-447

rately, we regress the ORAS4 mixed layer velocity onto the 10 m velocity and MLD.448

20



The multiple linear regression is performed at each PIRATA location, and the resulting449

coefficients are used along with daily MLD from the mooring location to adjust the 10 m450

velocity to mixed layer-averaged velocity. The result of the correction is a mixed layer451

velocity with a stronger eastward component at most locations. Record-length mean452

differences between mixed layer and 10 m zonal velocity are -0.3 to 3.7 cm s−1 except453

at 0◦, 23◦W and 0◦, 35◦W, where the mean differences are 8.1 and 12.9 cm s−1 due to454

deep mixed layers and a strong Equatorial Undercurrent. There is a strong seasonality455

to the corrections along the equator, with the largest values during July–January, when456

the mixed layer is thickest (Figure 8a). Mean corrections and seasonality are generally457

much weaker at the off-equatorial sites (Figure 8b). Corrections to meridional velocity458

are -3.1 to 1.7 cm s−1 and are northward (>0) only at the Southern Hemisphere sites,459

reflecting the dominance of the poleward Ekman component, which is strongest at the460

surface.461

2.3 Mixed Layer Heat and Temperature Budgets462

Mixed layer heat and temperature budget analyses are useful techniques for assessing463

the causes of changes in mixed layer heat content and SST, respectively. The heat464

budget equation can be expressed as465

466

ρcph
∂T

∂t
= −ρcphv · ∇T +Q0 +Q−h (5)

467

Here h is the mixed layer depth, T is vertically averaged temperature in the mixed layer,468

v is horizontal velocity averaged in the mixed layer, ∇T is the horizontal gradient of T ,469

estimated using satellite SST, Q0 is the net surface heat flux, consisting of shortwave470

radiation absorbed in the mixed layer, net surface longwave radiation absorption, and471
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latent and sensible heat fluxes, and Q−h is the vertical turbulent flux of heat at the472

base of the mixed layer. The mixed layer temperature equation is simply equation473

(5) divided by ρcph. We use the ePIRATA daily time series to calculate each term in474

(5) and its temperature balance equivalent, with the exception of Q−h, which can be475

estimated as the residual between the term on the left and the sum of the first two terms476

on the right. We have neglected a term in (5) that is proportional to the horizontal477

divergence of the vertically averaged temperature-velocity covariance (see Eq. (A19)478

of Moisan and Niiler 1998) because Foltz and McPhaden (2009) found that this term479

is insignificant in comparison to the other terms (annual means and monthly standard480

deviations are less than 2 W m−2). Horizontal eddy heat advection on timescales less481

than one week is also not included in (5) because it cannot be calculated reliably using482

observations. This term may be important on the equator, where there are strong SST483

gradients and intraseasonal fluctuations of near-surface currents.484

We estimate the shortwave radiation that penetrates through the base of the485

mixed layer using an algorithm that depends on the surface chlorophyll-a concentration486

(chl-a), following Morel and Antoine (1994) and Sweeney et al. (2005) and using487

the 1998–2009 monthly mean seasonal cycle of chl-a from SeaWiFS. Algorithms that488

account for chl-a provide a significant improvement over those that rely on broader489

water type classifications (Ohlmann 2003). An albedo of 6% (Payne 1972) is applied490

to the surface shortwave radiation before calculation of the penetrative component.491

The latent and sensible heat fluxes are calculated with version 3 of the Coupled Ocean492

Atmosphere Response Experiment (COARE) bulk algorithm (Fairall et al. 2003) using493

the ePIRATA air temperature, relative humidity, wind speed, and SST time series. The494

ePIRATA mixed layer depth, mixed layer temperature, horizontal mixed layer velocity,495
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and SST gradients are used to calculate heat storage rate and horizontal advection496

(first and second terms in the equation). Because the Q−h term is difficult to calculate497

directly, we do not provide direct estimates of this term in our data set.498

Each term of the mixed layer temperature budget is also provided in the data499

set for more direct diagnosis of SST variability. The ePIRATA data set contains daily-500

averaged values of each term in the heat and temperature budget equations at the501

17 long-term PIRATA mooring locations, as well as daily time series of data used to502

calculate the budget terms, the depth of the 20◦C isotherm, and isothermal layer depth503

(useful for calculating barrier layer thickness). Error estimates for these terms are also504

provided (see Appendix for details of their calculation). Figure 9 shows the time period505

over which ePIRATA data are available at each location.506

3 Results507

Here we present examples of ePIRATA at selected locations and illustrate the usefulness508

of the time series for examining the processes responsible for changes in mixed layer509

heat content and SST. Near-surface temperature from ePIRATA at 12◦N, 38◦W shows510

strong seasonal variations (Figure 10a) tied to meridional movement of the ITCZ and511

associated changes in wind speed and surface solar radiation (e.g. Foltz et al. 2003,512

Yu et al. 2006). The mixed layer depth and thermocline depth vary in phase (black513

and white lines in Figure 10a, respectively), becoming shallowest in boreal summer and514

fall when the ITCZ is farthest north. Interannual variations of SST can be seen, most515

notably strong warm events in early 2005 and in 2010. Surface salinity also undergoes a516

strong seasonal cycle at 12◦N, 38◦W (Figure 10b), decreasing abruptly in boreal fall and517

winter as low-salinity water from the ITCZ and Amazon River outflow is transported518
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northward (e.g. Coles et al. 2013, Foltz et al. 2015). At 0◦, 23◦W the mixed layer519

and thermocline depths have weaker seasonal cycles compared to 12◦N, 38◦W (Figure520

10a,c). Near-surface salinity also undergoes weaker seasonal variability at 0◦, 23◦W,521

with lowest values generally during boreal winter and spring (Figure 10d), when SST522

and rainfall are highest and vertical mixing and entrainment of saltier thermocline523

water are weakest (e.g. Da-Allada et al. 2013).524

To illustrate the value of ePIRATA for heat budget studies, we show the daily525

mixed layer heat storage rate, surface heat flux components, and horizontal mixed layer526

heat advection at 0◦, 23◦W (Figure 11). Changes in heat storage rate show strong527

short-timescale variations (Figure 11a) that are likely caused by lateral movements528

of the equatorial SST front. Error bars for the daily heat storage rate are generally529

less than 100 W m−2, but become much larger when PIRATA data are unavailable530

and satellite SST or Argo data are used to fill the gaps (i.e., early 2005, middle of531

2009, and late 2014). A full description of the errors is provided in the Appendix. The532

amount of shortwave radiation absorbed in the mixed layer (Figure 11b) shows a strong533

seasonal cycle. Error bars on this term are often less than 10 W m−2, but increase to534

20–40 W m−2 when gaps in the PIRATA record are filled with satellite data. There535

are strong seasonal and interannual variations of latent heat flux, and error bars are536

consistently about 25 W m−2 (Figure 11c). Finally, horizontal heat advection at 0◦,537

23◦W (Figure 11d) shows strong variability on daily to weekly timescales, peaking in538

boreal summer and fall, when the cold tongue is present and tropical instability wave539

(TIW) activity is strongest. In many years there is a secondary peak of variability in540

boreal winter, possibly related to the November–December central equatorial Atlantic541

zonal mode (Okumura and Xie 2006). Errors show a similar seasonality, reaching542
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150 W m−2 or higher in boreal summer and fall and dropping to about 50 W m−2
543

during the rest of the year. The large errors in summer, often exceeding the actual544

magnitude of horizontal advection, are caused by strong TIW velocites of up to 80545

cm s−1, combined with large ucertainties involved with estimating SST gradients with546

satellite data. Note that when averaged to monthly means, the errors are reduced by547

a factor of 3/
√
3, as discussed later in this section. For climatological monthly means548

the errors are reduced by an additional factor of 2.8–4.1 because each ePIRATA time549

series is 8–17 years long. Therefore, daily advection errors of 150 W m−2 are reduced550

to about 20 W m−2 for climatological monthly mean advection (Figure 12). The heat551

budget terms show noticeable seasonal variations (Figure 12) and seasonal modulations552

of interannual variability (vertical bars in Figure 12), with the largest variances in heat553

storage rate and advection during boreal summer, when the cold tongue is developed,554

and strongest interannual variations of shortwave radiation in boreal spring, when the555

ITCZ is near the equator.556

One of the least frequently measured and least well understood components of557

the mixed layer heat budget is vertical turbulent mixing across the base of the mixed558

layer (Q−h). This term can be estimated at each ePIRATA location as the difference559

between the mixed layer heat storage rate and the sum of the net surface heat flux560

and horizontal advection. These estimates must be viewed with caution because of561

the accumulation of errors from other terms in the heat balance. However, comparison562

of heat budget residuals to more direct measurements of the turbulent heat flux has563

shown good agreement (e.g., Moum et al. 2013, Hummels et al. 2014), indicating that564

the residual can be used with some confidence to estimate vertical turbulent cooling.565

Estimates of vertical turbulent cooling based on parameterizations (e.g., Niiler and566
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Kraus 1977, McPhaden 1982, Stevenson and Niiler 1983) are not provided in ePIRATA567

because of large uncertainties inherent in their calculations and in choosing the proper568

parameters and constants.569

We first calculate the monthly mean seasonal cycle of each term in the heat budget570

from its daily time series and then compute record-length means. Errors are calculated571

using standard error propagation and then multiplied by 3/
√
3 to account for the ∼ 3-572

day decorrelation timescale found for most variables. At all off-equatorial locations,573

the record-length mean Q−h is between -60 and -20 W m−2 (Figure 13; negative values574

indicate a tendency to cool the mixed layer). The smallest cooling from Q−h occurs at575

4◦N, 23◦W, which experiences weaker mean winds and higher surface solar radiation576

compared to many other sites because of its location close to the mean latitude of the577

ITCZ. Surprisingly, the other three locations in the ITCZ region, defined as area in578

which climatological wind speed is less than 5 m s−1 for at least three months of the579

year (4◦N, 8◦N, and 12◦N along 38◦W; red symbols in Figure 13) have a mean Q−h580

that is similar to values at locations outside of the equatorial and ITCZ bands (blue581

symbols in Figure 13). On the equator, there is significantly more cooling from Q−h582

at 10◦W, 23◦W, and 35◦W, with mean values of -110 to -85 W m−2 (green symbols583

in Figure 13). In contrast, the mean Q−h at 0◦, 0◦ is comparable to that found at584

the off-equatorial sites. This reduction in cooling at 0◦, 0◦ is believed to be caused585

by a decrease in vertical current shear (Jouanno et al. 2011, Hummels et al. 2014,586

Giordani and Caniaux 2014). It is unclear why Q−h at 35◦W is comparable to that at587

10◦W and 23◦W, since Jouanno et al. (2011) found a significant reduction in vertical588

turbulent cooling in the western equatorial Atlantic. Despite this difference, overall the589

results are consistent with previous studies, which show the strongest vertical turbulent590
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cooling on the equator (e.g. Foltz et al. 2003, Peter et al. 2006, Hummels et al. 2013).591

The ePIRATA estimates of Q−h show strong seasonal variations at many locations,592

and the largest peak-to-peak amplitude of 150 W m−2 occurs at 0◦, 10◦W (vertical593

lines in Figure 13).594

To explore the possible causes of seasonal variations of Q−h, we first calculate its595

seasonal range, Q−h(∆S) = Q−h(Smax) − Q−h(Smin), where Smax is the three-month596

season (DJF, JFM, FMA, etc.) with the largest mean cooling from Q−h (i.e., most597

negative value), and Smin is the three-month season with the smallest mean cooling598

from Q−h. We then calculate the difference in wind speed between these seasons,599

W (∆S) = W (Smax) − W (Smin), since wind speed is known to affect the rate of ver-600

tical turbulent mixing. We also calculate the difference in the standard deviation of601

the diurnal cycle of SST, D(∆S) = D(Smax) − D(Smin), using 10-minute averages of602

temperature at a depth of 1 m from the PIRATA moorings. The standard deviation603

is first calculated for each calendar month using all available 10-minute measurements,604

after applying a 36-hour high-pass filter. D(∆S) is then calculated from the monthly605

values. Studies of turbulent mixing on the equator have indicated that the diurnal cy-606

cle is important (e.g., Moum et al. 2011), and here we explore whether the same may607

be true at off-equatorial locations in the Atlantic. The diurnal cycle of SST is used as608

a proxy for diurnal variations of mixed layer depth and current shear, since previous609

studies have shown strong relationships between these parameters (e.g., Cronin and610

Kessler 2009).611

Comparison of Q−h(∆S) and W (∆S) shows that at 15 of 17 locations, winds612

are weaker (W (∆S) negative) during the season with the strongest Q−h cooling than613

during the season with weakest cooling (Figure 14a). For large negative values of614
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W (∆S) (< 1 m s−1), there is a tendency for larger values of Q−h(∆S) to be associated615

with larger values of W (∆S). At most of these locations, the seasonal range of wind616

speed is close to W (∆S) (not shown), suggesting that stronger seasonal variations of617

wind speed may drive stronger seasonal cycles of Q−h. At off-equatorial locations, the618

correlation between Q−h(∆S) andW (∆S) is 0.53 across all locations (winds are weaker619

when cooling is stronger), and this correlation is significant at the 90% level. Along the620

equator, the relationship between Q−h(∆S) and W (∆S) is very weak, likely because621

of the importance of seasonal variations in current shear driven by the equatorial622

undercurrent (Jouanno et al. 2011, Hummels et al. 2014).623

The tendency for cooling from Q−h to be strongest when wind speed is weakest624

may be related to the tendency for a thinner mixed layer and stronger diurnal cycle625

when winds are weak (Fairall et al. 1996a). At 11 of 13 off-equatorial locations, the626

mixed layer is thinner in the season with the strongest Q−h cooling than in the season627

with the weakest Q−h cooling (not shown). We also found that the diurnal cycle of628

SST tends to be stronger in the season with strongest Q−h cooling (D(∆S) > 0 in629

Figure 14b). At off-equatorial locations, the correlation between Q−h(∆S) and D(∆S)630

is -0.64 (diurnal cycle is stronger when cooling is stronger), significant at the 95% level.631

The correlation drops to -0.43 when equatorial sites are included.632

Previous studies have shown the importance of the diurnal cycle for generating633

vertical current shear and vertical turbulent mixing in the equatorial Pacific (Cronin634

and Kessler 2009, Moum et al. 2011, Smyth et al. 2013, Pham et al. 2013) and635

Atlantic (Wenegrat et al. 2015). Stronger and shallower stratification during daytime636

is associated with stronger near-surface currents and vertical shear, which descends637

and generates enhanced turbulent mixing as surface solar heating decreases. On the638
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equator, the equatorial undercurrent provides an essential source of vertical current639

shear, explaining the large annual mean turbulent cooling on the equator (Figure 13,640

Jouanno et al. 2011, Hummels et al. 2014). We hypothesize that even at off-equatorial641

locations, there may be enough diurnally-driven current shear below the mixed layer642

and mixed layer deepening (i.e., entrainment mixing) to generate significant turbulent643

cooling of the mixed layer. Despite weaker winds when the diurnal cycle is most644

active, the thinner mixed layer and stronger stratification may lead to stronger near-645

surface current shear than during periods without a strong diurnal cycle, thus possibly646

explaining the tendency for Q−h to be largest when winds are weakest and the diurnal647

cycle is strongest (Figure 14).648

The importance of the diurnal cycle may also explain why at off-equatorial lo-649

cations the annual mean Q−h values are similar, even with annual mean wind speed650

varying between 4.5 and 7 m s−1. At locations with stronger mean winds, the mixed651

layer tends to be thicker (correlation between annual mean wind speed and mixed layer652

depth is 0.4 across all off-equatorial locations) and the diurnal SST standard deviation653

tends to be smaller (correlation of -0.8 between annual mean wind speed and diurnal654

SST standard deviation). Stronger winds by themselves tend to generate more mixing,655

but at the base of the mixed layer this increase may be balanced by a decrease in656

mixing because of an increase in mixed layer depth, acting to reduce current shear,657

and a decrease in diurnal cycle amplitude and associated entrainment cooling. These658

hypotheses will need to be tested using numerical models and direct measurements of659

current shear and turbulent mixing.660
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4 Summary661

A new daily enhanced PIRATA (ePIRATA) data set has been developed that fills662

temporal gaps and maps subsurface temperature and salinity to depths of 1 m and with663

5-m vertical spacing between 5 m and 200 m. All original PIRATA data are retained664

after elimination of questionable data, and detailed error estimates are provided. The665

resultant continuous daily time series at each of the 17 PIRATA locations are then666

used to calculate the terms in the mixed layer heat and temperature budgets and their667

error bars. This data set complements the tropical Atlantic portions of global data668

sets such as OAFlux, TropFlux, and OSCAR, which use PIRATA measurements only669

for validation or to correct for biases. In contrast, ePIRATA consists of the highest-670

quality basin-scale, co-located time series of upper-ocean and near-surface atmospheric671

measurements, which we anticipate will be valuable for studies of the upper ocean and672

air-sea heat and moisture exchange. ePIRATA is available from http://www.aoml.673

noaa.gov/phod/epirata/ and will be updated in the middle of each year to extend674

through the end of the previous year.675

As an example of the application of ePIRATA, the vertical turbulent exchange676

of heat across the base of the mixed layer was estimated as the difference between the677

mixed layer heat storage rate and the sum of the net surface heat flux and horizontal678

advection at each ePIRATA location. On average, vertical mixing acts to reduce the679

mixed layer heat content at off-equatorial locations and 0◦, 0◦ by 20–60 W m−2. On680

the equator at 10◦W, 23◦W, and 35◦W, mean rates of heat content reduction are 85–681

110 W m−2. Significant seasonal variations of vertical turbulent cooling are found at682

most locations, and the largest peak-to-peak amplitude of 150 W m−2 was found at683

0◦, 10◦W. Off the equator, the seasonal maximum of turbulent cooling tends to occur684
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when winds are weak and diurnal variability of SST is strong. These results suggest685

that the interplay between the diurnal cycle, stratification, and current shear may be686

important for explaining off-equatorial vertical turbulent cooling of the mixed layer.687

In addition to its value for upper-ocean and climate research and model vali-688

dation, ePIRATA presents a framework for assessing the value of additional PIRATA689

sensors for reducing uncertainties in upper-ocean temperature and salinity, mixed layer690

depth and currents, and mixed layer heat and temperature budget components. It is691

anticipated that the largest potential to reduce uncertainties in mixed layer depth and692

currents is through the addition of one or two current meters in the mixed layer at693

each mooring location and additional salinity sensors in the upper 50–100 m.694
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704

Appendix: Data Availability and Error Estimates705

In this appendix we briefly summarize the availability of data at each PIRATA location706

and the agreement between PIRATA measurements and the reconstructed data used707

to fill gaps. We then describe the methodology used to calculate error bars for each of708
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the daily ePIRATA parameters described in the main text. These errors are included709

in the ePIRATA data set along with the corresponding daily time series of each pa-710

rameter. Also included in the data set are flags indicating the quality of the data that711

went into the calculation of each parameter. A flag of ’0’ indicates that some or all712

of the data that went into the calculation of that parameter came from sources other713

than PIRATA (for example, a value of ’0’ is assigned for temperature at a depth of 50714

m if a direct measurement from a PIRATA sensor is not available on that day at that715

depth). A flag of ’1’ indicates that original PIRATA data were used, and ’2’ means716

that original PIRATA data were used, but a bias correction was applied (applicable717

for shortwave data at several locations between 8◦N and 20.5◦N).718

719

1. PIRATA Data Availability and Quality of Reconstructed Data720

Table A1 shows the percentage of days with missing data for each variable at each721

location. For this calculation, we take into account only the period after the start of722

the time series for a given variable begins at a given location. For this reason, there723

are blanks in Table A1 if a parameter has never been measured. For subsurface tem-724

perature and salinity, all depth levels are used in the calculation. The availability of725

PIRATA data varies across locations and variables (Table A1). In general, there are726

more missing subsurface temperature, salinity, and velocity data than meteorological727

data. At many locations, more than 25% of the data are missing for at least one728

variable, and in some cases 40% or more of salinity or velocity is missing. Note that729

the high percentage of missing longwave radiation data at 20◦N, 38◦W results from730

measurements made for only about two months in 2011 and 10 months in 2013, after731

which the longwave radiation sensor was not re-deployed.732
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Table A2 shows the agreement between daily mean PIRATA measurements and733

the data used to fill gaps in the PIRATA meteorological records. The RMS differences734

and correlations are calculated using days when both the PIRATA measurements and735

gap-filling data are available. Correlations are generally highest for air temperature736

and wind speed (0.89–0.99) and lower for relative humidity and radiation (0.60–0.94).737

The agreement is good for SST, with correlations of at least 0.8, but worse for sea738

surface salinity (SSS) and 10-m ocean velocity, with correlations generally between 0.4739

and 0.8 (Table A3). The near-zero correlation for SSS at 19◦S, 34◦W is due to a very740

weak seasonal cycle of SSS, resulting in a very low signal-to-noise ratio for the satellite741

SSS used to fill gaps.742

743

1. Ocean Temperature and Salinity Errors744

Errors in subsurface temperature and salinity result primarily from (1) vertical inter-745

polation between PIRATA depth levels, (2) filling of temporal gaps in PIRATA records746

with Argo optimum interpolation, and (3) PIRATA instrumental uncertainties. Errors747

from (1) and (3) are only applicable when PIRATA data at more than one depth are748

available on a given day (otherwise Argo optimum interpolation is used and the moor-749

ing data are not), and (2) is only relevant when PIRATA data are available at zero750

or one depth. For (1), all Argo profiles within ±2◦ of latitude and ±3◦ of longitude751

from a given mooring, and within ±30 days of a given mooring day (regardless of the752

year in which the Argo data reside) are obtained. These profiles are then used to753

calculate the RMS difference between the interpolated temperature or salinity at each754

missing level, based on the regression method described in section 2.2.1, and the actual755

Argo temperature or salinity at that level. For PIRATA days on which temperature756
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or salinity at a depth of 1 m has been filled with satellite SST or SSS, respectively, the757

uncertainty at that level is instead estimated as the RMS difference between PIRATA758

and satellite SST or SSS for that climatological day. The result is an uncertainty esti-759

mate, consisting of one of the aforementioned RMS differences, for each day on which760

PIRATA measurements at a minimum of two depth levels are available.761

To calculate uncertainties for case (2), in which PIRATA measurements are avail-762

able at less than two depths on a given day, we perform optimum interpolation at each763

Argo profile location within ±10◦ of latitude and ±15◦ of longitude of the mooring,764

using all other Argo profiles that are within ±10◦ of latitude and ±15◦ of longitude765

and ±3 months of the profile location and following the methodology used for the766

Argo optimum interpolation at the PIRATA locations described in section 2.2.1. The767

interpolation is performed at each ePIRATA depth level separately. At each depth, the768

RMS difference between the optimally interpolated value and the actual Argo value769

is calculated and the monthly climatology of the RMS difference is fit to an annual770

harmonic. For a given ePIRATA day and depth, the uncertainty in temperature or771

salinity is obtained from the corresponding monthly annual cycle of RMS difference.772

When PIRATA measurements are available at more than one depth on a given773

day, instrumental uncertainties of ±0.003◦C and ±0.02 psu are used for temperature774

and salinity, respectively (www.pmel.noaa.gov/tao/proj_over/sensors.shtml), at775

the ePIRATA depths corresponding to those measurements. The temperature error at776

each depth and on each day (ǫT ) is calculated from either (1), (2), or (3), and simi-777

larly for the salinity error (ǫS). When vertical interpolation is used between PIRATA778

temperature values, errors are typically 0–0.5◦C at off-equatorial locations, increasing779

to 0–1◦C in the eastern equatorial Atlantic. Temperature errors are as high as 2◦C780
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on days when all PIRATA data are missing. Salinity errors are 0–0.15 when vertical781

interpolation is used, and up to 0.3 when all PIRATA data are missing.782

783

2. Mixed Layer Depth, Velocity, and SST Gradient Errors784

We use ePIRATA temperature, salinity, ǫT , and ǫS to calculate errors in mixed layer785

depth (MLD). First, for a given day, a random value of the temperature error at each786

depth is obtained using a normal distribution with a standard deviation set to ǫT ,787

and similarly for the salinity error. These random temperature and salinity errors are788

then added to the ePIRATA temperature and salinity profiles, respectively, for that789

day. If there is static instability in the resultant density profile, the random error790

generation is repeated until there is stability or the number of iterations reaches 50,791

whichever occurs first. The MLD is then calculated from the resultant temperature792

and salinity profiles. All of the above steps are performed 10 times, giving 10 differ-793

ent MLD values for a given PIRATA day. The standard deviation of these values is794

then used as the uncertainty estimate for MLD. Typical errors for daily-averaged MLD795

are 3–10 m, with smallest values along the equator, where mean MLDs are smallest.796

Relative errors (record-length mean daily error divided by record-length mean MLD)797

are about 10–25%. The procedure for estimating MLD errors is repeated to calculate798

errors for isothermal layer depth, depth of the 20◦C isotherm, and vertically averaged799

temperature in the mixed layer.800

To calculate errors in the mixed layer velocity estimates, we consider three main801

sources of uncertainty: (1) use of the drifter-altimetry product to fill gaps in the PI-802

RATA records, (2) converting from 10 m velocity to velocity averaged in the mixed803

layer, and (3) PIRATA instrumental uncertainty, when direct measurements from cur-804
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rent meters are available. At locations with some PIRATA velocity measurements (Ta-805

ble 1), the daily RMS difference between the PIRATA values and the drifter-altimetry806

values (ǫVfill) are used for (1). At locations with no direct measurements, we use the807

errors from nearby locations with measurements: 4◦N, 23◦W errors are used at 4◦N,808

38◦W and 8◦N, 38◦W; 15◦N, 38◦W errors are used at 12◦N, 38◦W; 0◦, 23◦W errors809

are used at all equatorial locations; and 10◦S, 10◦W errors are used at all locations810

in the South Atlantic. For errors associated with converting 10 m to mixed layer ve-811

locity (2), we use the RMS difference between the mixed layer velocity from monthly812

ORAS4 data (1958–2014) and mixed layer velocity predicted by the multiple linear re-813

gression described in section 2.2.2 (ǫVdz). A constant value of ±5 cm s−1 is used for all814

instrumental errors (ǫVinstr) (www.pmel.noaa.gov/tao/proj_over/sensors.shtml).815

The total uncertainty in mixed layer velocity (zonal or meridional) at a given location816

for a given ePIRATA day is ǫV =
√

ǫV 2

fill + ǫV 2

dz + ǫV 2
instr for days with no PIRATA817

data at locations with some PIRATA data on other days (ǫVinstr is included in this818

case because the PIRATA seasonal cycle is added to anomalies of drifter/altimetry or819

OSCAR velocity), ǫV =
√

ǫV 2

fill + ǫV 2

dz for locations with no PIRATA velocity data,820

and ǫV =
√

ǫV 2

dz + ǫV 2
instr for days with PIRATA data. Daily velocity errors range from821

5–30 cm s−1 within 4◦ of the equator and decrease to 5–10 cm s−1 poleward of 4◦N.822

To calculate errors in horizontal gradients of SST ǫSST , first the RMS difference823

between daily satellite SST and daily PIRATA temperature at a depth of 1 m is calcu-824

lated for each calendar month using data from all years. Errors in the zonal gradient825

of SST are calculated as ǫdx =
√

2ǫ2SST/∆x. Here ∆x is the one-degree distance (in826

meters) centered on each PIRATA location. Errors in the meridional gradients of SST827

are calculated similarly. Errors in horizontal heat advection are calculated from the828
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errors in MLD, velocity, and SST gradients using standard error propagation and as-829

suming that the errors in each term are uncorrelated.830

831

3. Atmospheric Data Errors832

There are four main sources of error in ePIRATA surface shortwave radiation (SWR).833

(1) Uncertainties associated with estimating SWR from satellite OLR are calculated834

at each location as the RMS difference between daily PIRATA SWR and OLR-based835

SWR within a given calendar month, using data from all years (ǫSWROLR). (2) The836

uncertainty in using the clear-sky method to correct PIRATA SWR for biases caused837

by dust buildup is calculated as the standard deviation of the daily clear-sky bias at838

14◦S, 32◦W, where the dust-induced bias is very close to zero (ǫSWRCS). This gives839

a single number (7 W m−2) that is used across all locations and for all days. (3)840

Errors due to short-duration (less than about one month) dust deposition events that841

are not fully accounted for in the clear-sky correction technique are estimated to be842

20% of the SWR correction applied on a given day (ǫSWRST ). (4) Instrumental error843

of ±2% is used for the PIRATA solar radiometers (ǫSWRinstr). On days for which844

PIRATA SWR is not available and OLR-based SWR is used instead, the total error845

is calculated as ǫSWR =
√

ǫSWR2
instr + ǫSWR2

OLR. Note that instrumental errors are846

included here because the OLR-based SWR anomalies are added to the mean seasonal847

cycle of mooring SWR, and similarly for other atmospheric time series described later848

in this section. On days with direct PIRATA measurements for which a dust correction849

was applied, the error is ǫSWR =
√

ǫSWR2
instr + ǫSWR2

CS + ǫSWR2

ST . On days with850

PIRATA measurements and no dust correction, the error is ǫSWR = ǫSWRinstr.851

At locations where long time series of PIRATA downward longwave radiation852
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(dLWR) are available, the error is estimated as the RMS difference between daily853

PIRATA dLWR and ERA-interim dLWR for each calendar month, across all years854

(ǫLWRfill). Otherwise, we use the RMS difference from 0◦, 23◦W for the other equato-855

rial locations; 10◦S, 10◦W for 6◦S, 10◦W; 15◦N, 38◦W for all other locations along 38◦W856

and 23◦W; and 19◦S, 34◦W for 8◦S, 30◦W and 14◦S, 32◦W. Instrumental error of 1% is857

applied only when PIRATA data are available (ǫLWRinstr.). The total error in dLWR858

is calculated as ǫdLWR =
√

ǫLWR2
instr. + ǫLWR2

fill on days in which ERA-interim val-859

ues are used and ǫdLWR = ǫLWRinstr. on days in which direct PIRATA measurements860

are available. The total error in net LWR is given as ǫLWR =
√

ǫ2dLWR + ǫ2uLWR, where861

ǫuLWR is the error in emitted LWR calculated from the SST error and using standard862

error propagation.863

For air temperature, relative humidity, and winds, errors include (1) the RMS864

difference between daily PIRATA and ERA-interim values for a given calendar month,865

based on days when PIRATA data is available at a given location and (2) instrumental866

errors of 0.2◦C for air temperature, 2.7% for relative humidity, and 0.3 m s−1 for wind867

velocity and speed. On days with missing PIRATA data, the errors are calculated as868

square-root of the sum of the squares of the RMS error and the instrumental error,869

and on days with PIRATA measurements, the error is equal to the instrumental error.870

Uncertainties for the heat and temperature budget terms are calculated using871

standard error propagation and assuming that the different sources of error for a given872

term are uncorrelated in time. Error estimates for latent and sensible heat fluxes take873

into account the errors in air temperature, relative humidity, wind speed, and SST874

described earlier in the Appendix, as well as uncertainty associated with the use of a875

bulk formula (12% of the daily latent or sensible heat flux value; Fairall et al. 1996b).876
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Typical errors for daily latent, sensible, longwave, and absorbed shortwave heat fluxes877

are 15–30, 2–7, 5–10, and 5–20 W m−2, respectively. Relative errors (record-length878

mean daily error divided by mean value) are 10–30% for latent and longwave, 30–879

100% for sensible, and 5–10% for absorbed shortwave. Daily errors for horizontal heat880

advection are normally 30–80 Wm−2, with maximum values where mixed layer currents881

are strongest (along the equator and at 4◦N). Because of weak annual mean advection882

and significant short-timescale fluctuations at most locations, relative errors can reach883

as high as 50 times the record-length mean, especially within 4◦ of the equator.884
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Table 1 PIRATA locations with downward longwave radiation and 10-m ocean velocity1109

measurements. Locations with longwave radiation also measure barometric pressure.1110

Second and third columns indicate beginning years for longwave and velocity mea-1111

surements, respectively. All measurements continue through the present. Numbers in1112

italics indicate that the data is contaminated by dust.1113

LWR Vel
20◦N, 38◦W 2011 2007
15◦N, 38◦W 2006 2005

20.5◦N, 23◦W 2007
11.5◦N, 23◦W 2007 2006

4◦N, 23◦W 2006
0◦, 23◦W 2006 2005

10◦S, 10◦W 2006 2005
19◦S, 34◦W 2010
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Table A1 Percentage of daily data that is missing at each PIRATA location. Columns1114

show values for air temperature (AT), relative humidity (RH), wind speed (WS), short-1115

wave radiation (SWR), longwave radiation (LWR), ocean temperature (Temp), salinity1116

(Salin), and velocity at a depth of 10 m (Vel).1117

1118

1119

AT RH WS SWR LWR Temp Salin Vel
20◦N, 38◦W 14 14 20 25 72 26 36 51
15◦N, 38◦W 4 5 14 3 21 11 31 41
12◦N, 38◦W 5 8 17 2 12 32
8◦N, 38◦W 14 11 30 9 11 44
4◦N, 38◦W 12 10 25 16 20 34

20.5◦N, 23◦W 1 9 13 1 10 24 50
11.5◦N, 23◦W 18 19 16 14 17 15 15 36

4◦N, 23◦W 1 1 6 19 10 29 41
0◦, 35◦W 10 7 16 10 14 50
0◦, 23◦W 6 6 26 9 16 16 26 58
0◦, 10◦W 29 38 47 27 33 37

0◦, 0◦ 30 32 41 34 31 41
6◦S, 10◦W 1 1 18 7 10 32
10◦S, 10◦W 5 5 10 25 13 9 21 46
8◦S, 30◦W 9 9 9 9 16 23
14◦S, 32◦W 6 6 7 10 10 14
19◦S, 34◦W 15 15 9 5 1 10 261120
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Table A2 Comparisons between daily PIRATA measurements and data used to fill1121

gaps. Shown are the RMS differences and correlations (in parentheses) at each location1122

for air temperature (AT), relative humidity (RH), wind speed (WS), shortwave radia-1123

tion (SWR), and longwave radiation (LWR). Calculations at each location are based1124

only on time periods when PIRATA and gap-filling data are available.1125

1126

1127

AT RH WS SWR LWR
20◦N, 38◦W 0.1 (0.99) 2.1 (0.93) 0.5 (0.97) 20.9 (0.92)
15◦N, 38◦W 0.2 (0.99) 3.4 (0.81) 0.5 (0.96) 35.7 (0.73) 6.0 (0.93)
12◦N, 38◦W 0.3 (0.98) 3.2 (0.76) 0.7 (0.95) 37.6 (0.71)
8◦N, 38◦W 0.3 (0.91) 3.0 (0.75) 0.6 (0.96) 42.3 (0.72)
4◦N, 38◦W 0.3 (0.90) 2.8 (0.81) 0.6 (0.94) 40.0 (0.78)

20.5◦N, 23◦W 0.2 (0.99) 2.2 (0.94) 0.5 (0.97) 24.0 (0.88)
11.5◦N, 23◦W 0.2 (0.99) 2.2 (0.88) 0.4 (0.98) 26.4 (0.82)

4◦N, 23◦W 0.2 (0.95) 2.4 (0.87) 0.6 (0.95) 32.1 (0.79)
0◦, 35◦W 0.3 (0.89) 2.5 (0.78) 0.5 (0.96) 34.0 (0.77)
0◦, 23◦W 0.3 (0.96) 3.1 (0.60) 0.5 (0.96) 29.2 (0.70) 4.7 (0.94)
0◦, 10◦W 0.3 (0.99) 2.4 (0.84) 0.5 (0.93) 28.3 (0.68)

0◦, 0◦ 0.5 (0.96) 2.5 (0.76) 0.5 (0.93) 32.3 (0.70)
6◦S, 10◦W 0.3 (0.99) 3.0 (0.73) 0.4 (0.94) 31.0 (0.67)
10◦S, 10◦W 0.3 (0.98) 3.5 (0.66) 0.5 (0.93) 31.2 (0.80) 7.1 (0.79)
8◦S, 30◦W 0.2 (0.98) 2.0 (0.86) 0.4 (0.96) 20.5 (0.89)
14◦S, 32◦W 0.1 (0.99) 2.1 (0.85) 0.4 (0.96) 21.1 (0.91)
19◦S, 34◦W 0.2 (0.99) 2.6 (0.90) 0.6 (0.96) 26.7 (0.91) 4.6 (0.95)1128
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Table A3 Same as Table A2, except values for SST, sea surface salinity (SSS), and1129

zonal and meridional velocity at a depth of 10 m (U and V, respectively).1130

1131

1132

SST SSS U V
20◦N, 38◦W 0.3 (0.98) 0.1 (0.38) 8.1 (0.72) 8.7 (0.69)
15◦N, 38◦W 0.3 (0.98) 0.2 (0.55) 7.8 (0.45) 8.1 (0.40)
12◦N, 38◦W 0.4 (0.96) 0.2 (0.59)
8◦N, 38◦W 0.4 (0.92) 0.4 (0.82)
4◦N, 38◦W 0.3 (0.80) 0.2 (0.69)

20.5◦N, 23◦W 0.3 (0.99) 0.2 (0.56) 8.1 (0.63) 6.5 (0.72)
11.5◦N, 23◦W 0.4 (0.98) 0.2 (0.76) 12.3 (0.46) 11.3 (0.50)

4◦N, 23◦W 0.4 (0.87) 0.3 (0.63) 16.4 (0.56) 18.1 (0.53)
0◦, 35◦W 0.3 (0.88) 0.2 (0.65)
0◦, 23◦W 0.4 (0.96) 0.2 (0.78) 25.5 (0.50) 19.4 (0.40)
0◦, 10◦W 0.4 (0.98) 0.4 (0.81)

0◦, 0◦ 0.5 (0.96) 0.3 (0.88)
6◦S, 10◦W 0.3 (0.99) 0.1 (0.78)
10◦S, 10◦W 0.3 (0.98) 0.1 (0.79) 6.6 (0.52) 6.6 (0.48)
8◦S, 30◦W 0.2 (0.97) 0.1 (0.63)
14◦S, 32◦W 0.3 (0.97) 0.2 (0.67)
19◦S, 34◦W 0.3 (0.98) 0.1 (0.06)1133
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Figure Captions1134

1135

Figure 1 Annual mean satellite microwave SST (contours, ◦C). Squares show the lo-1136

cations of the “backbone” PIRATA array, first deployed in 1997. Triangles and circles1137

indicate the positions of the Northeast Extension and Southwest Extension moorings,1138

respectively, first deployed in 2005–06. The black circle shows the position of the1139

Southeast Extension mooring, part of PIRATA since 2013 and not used in this study1140

because of its short duration. Colors indicate the percentage of PIRATA data that are1141

missing at each location, calculated using all sensors and starting on the first day of1142

the first deployment at a given location.1143

1144

Figure 2 (a) Time series of original PIRATA air temperature (purple), original data1145

that were removed after quality-control (black), bias-corrected ERA-interim data that1146

were used to fill gaps in the quality-controlled time series (red), and difference between1147

SST and air temperature (green) at 0◦, 35◦W. (b) Same as (a) except relative humid-1148

ity (purple, black, and red) and relative humidity anomaly from the daily climatology1149

(gray).1150

1151

Figure 3 Correlation between PIRATA shortwave radiation (SWR) and SWR esti-1152

mated from outgoing longwave radiation (OLR). Values were computed using anoma-1153

lies from either the daily mean or monthly mean seasonal cycle. No smoothing was1154

applied to the time series before computing anomalies. At each location, gray bars1155

are for daily mean anomalies and red circles are for monthly mean anomalies. See the1156

Appendix for correlations between time series that include the seasonal cycle.1157
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1158

Figure 4 (a) Daily time series of salinity at a depth of 20 m (purple, red, and black)1159

and the difference between salinity at 20 m and at 1 m (gray shading) at the 12◦N,1160

38◦W PIRATA location. Purple indicates original PIRATA data that have passed1161

quality-control. Red shows data that were removed during quality-control, and black1162

represents the final 20 m salinity record with gaps filled. (b) Same as (a) except data1163

are from the 0◦, 0◦ mooring. (c) Same as (a) except data are from the 10◦S, 10◦W1164

mooring and salinity at a depth of 1 m is shown (purple, red, and black). The green1165

line shows in (c) shows the difference between salinity at a depth of 10 m and at 1 m.1166

1167

Figure 5 (a) RMS difference between temperature from Argo profiles near the 4◦N,1168

38◦W mooring and temperature estimated using the Argo regression method (red) and1169

linear interpolation between the two nearest depths (black). For the regression and in-1170

terpolation methods, Argo profiles were subsampled every 20 m in depth. (b) Same as1171

(a) except the mean bias between temperature estimated using the regression method1172

(red) and linear interpolation (black). (c) and (d) Same as (a) and (b) except at the1173

0◦, 10◦W mooring location.1174

1175

Figure 6 Same as Figure 5 except for salinity. For the regression and interpola-1176

tion methods, Argo profiles were subsampled at depths of 1, 20, 40, and 120 m.1177

1178

Figure 7 (a) Mixed layer depth (MLD, black), amplitude of the seasonal cycle of1179

MLD (red), and ratio of the seasonal amplitude of MLD to the standard deviation1180

of high-frequency (period less than 10 days) MLD variability (purple) as a function1181
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of MLD criterion, based on an increase in density from the value at a depth of 1 m.1182

Values have been averaged over all daily data and all PIRATA locations. (b) Same1183

as (a) except difference between SST and mixed layer temperature (∆T , black) and1184

amplitude of the seasonal cycle of ∆T (red). Squares in (a) and (b) indicate the values1185

corresponding to a MLD defined using a 0.12 kg m−3 criterion.1186

1187

Figure 8 (a) Time series of mixed layer depth (gray shading), zonal velocity at a1188

depth of 10 m (black), and correction to 10-m velocity used to obtain the velocity1189

vertically averaged in the mixed layer (green shading) at 0◦, 35◦W. (b) Same as (a)1190

except at 6◦S, 10◦W and velocity correction is shaded purple.1191

1192

Figure 9 Availability of daily ePIRATA data at each mooring location. Black in-1193

dicates “backbone” moorings, red shows Southwest Extension, and green Northeast1194

Extension.1195

1196

Figure 10 ePIRATA (a) temperature (shaded), mixed layer depth (black line), and1197

depth of the 20◦C isotherm (white line) at 12◦N, 38◦W. (b) Same as (a) except shading1198

is salinity. (c) and (d) Same as (a) and (b) except at 0◦, 10◦W.1199

1200

Figure 11 ePIRATA data at 0◦, 23◦W: (a) mixed layer heat storage rate (black line),1201

(b) shortwave radiation absorbed in the mixed layer (red line), (c) latent heat flux (blue1202

line), and (d) horizontal mixed layer heat advection (green line). In (a)-(d) shading1203

indicates error estimates, with values on the right axis.1204

1205
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Figure 12 ePIRATA monthly mean climatological heat budget terms at 0◦, 23◦W:1206

mixed layer heat storage rate (black line), (b) shortwave radiation absorbed in the1207

mixed layer (red line), (c) latent heat flux (blue line), and (d) horizontal mixed layer1208

heat advection (green line). Shading indicates error estimates and vertical error bars1209

show the standard deviation for each calendar month across all years (a measure of1210

interannual variability).1211

1212

Figure 13 Heat budget residual (heat storage rate minus sum of net surface heat1213

flux and horizontal advection) at each ePIRATA location. Large symbols represent1214

record-length mean, lines show the range of climatological monthly values, and small1215

symbols are the error estimates for the annual mean. Blue indicates locations outside1216

of the ITCZ and equatorial regions, red shows locations in the ITCZ region, and green1217

is for locations on the equator.1218

1219

Figure 14 Scatter-plots of the seasonal range of Q−h at each ePIRATA location, cal-1220

culated as the difference between the three-month season (Smax) with the largest mean1221

cooling from Q−h (i.e., most negative value) and the three-month season (Smin) with1222

the smallest cooling, versus (a) the corresponding wind speed difference, W (Smax) −1223

W (Smin), and (b) the difference in the diurnal amplitude of SST. Dark blue and light1224

blue indicate locations in the Northern and Southern Hemisphere, respectively, and1225

outside of the ITCZ. Red indicates locations within the ITCZ, and green is for loca-1226

tions on the equator. Bars in (a) represent error estimates for each seasonal difference1227

of Q−h. Error bars for wind speed in (a) and SST in (b) are less than 0.1 m s−1 and1228

0.01◦C, respectively, and are not shown.1229
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Figure 1 Annual mean satellite microwave SST (contours, ◦C). Squares show the
locations of the “backbone” PIRATA array, first deployed in 1997. Triangles and
circles indicate the positions of the Northeast Extension and Southwest Extension
moorings, respectively, first deployed in 2005–06. The black circle shows the position
of the Southeast Extension mooring, part of PIRATA since 2013 and not used in this
study because of its short duration. Colors indicate the percentage of PIRATA data
that are missing at each location, calculated using all sensors and starting on the first
day of the first deployment at a given location.
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Figure 2 (a) Time series of original PIRATA air temperature (purple), original data
that were removed after quality-control (black), bias-corrected ERA-interim data that
were used to fill gaps in the quality-controlled time series (red), and difference between
SST and air temperature (green) at 0◦, 35◦W. (b) Same as (a) except relative humidity
(purple, black, and red) and relative humidity anomaly from the daily climatology
(gray).
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Figure 3 Correlation between PIRATA shortwave radiation (SWR) and SWR esti-
mated from outgoing longwave radiation (OLR). Values were computed using anoma-
lies from either the daily mean or monthly mean seasonal cycle. No smoothing was
applied to the time series before computing anomalies. At each location, gray bars
are for daily mean anomalies and red circles are for monthly mean anomalies. See the
Appendix for correlations between time series that include the seasonal cycle.

60



98   00   02   04   06   08   10   12   14   

0

1

∆
S

 (
ps

u)

(a) 12 oN, 38 oW

34

35

36

37

S
al

in
ity

 (
ps

u)

∆S Final Removed Pass QC

98   00   02   04   06   08   10   12   14   

0

1

∆
S

 (
ps

u)

(b) 0 o, 0 o

33

34

35

36

S
al

in
ity

 (
ps

u)

98   00   02   04   06   08   10   12   14   
Year

0

1

∆
S

 (
ps

u)

(c) 10 oS, 10 oW

34

35

36

37

S
al

in
ity

 (
ps

u)

Figure 4 (a) Daily time series of salinity at a depth of 20 m (purple, red, and black)
and the difference between salinity at 20 m and at 1 m (gray shading) at the 12◦N,
38◦W PIRATA location. Purple indicates original PIRATA data that have passed
quality-control. Red shows data that were removed during quality-control, and black
represents the final 20 m salinity record with gaps filled. (b) Same as (a) except data
are from the 0◦, 0◦ mooring. (c) Same as (a) except data are from the 10◦S, 10◦W
mooring and salinity at a depth of 1 m is shown (purple, red, and black). The green
line shows in (c) shows the difference between salinity at a depth of 10 m and at 1 m.
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Figure 5 (a) RMS difference between temperature from Argo profiles near the 4◦N,
38◦W mooring and temperature estimated using the Argo regression method (red)
and linear interpolation between the two nearest depths (black). For the regression
and interpolation methods, Argo profiles were subsampled every 20 m in depth. (b)
Same as (a) except the mean bias between temperature estimated using the regression
method (red) and linear interpolation (black). (c) and (d) Same as (a) and (b) except
at the 0◦, 10◦W mooring location.
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Figure 6 Same as Figure 5 except for salinity. For the regression and interpolation
methods, Argo profiles were subsampled at depths of 1, 20, 40, and 120 m.

63



0 0.1 0.2 0.3
0

10

20

30

40

50

M
LD

, M
LD

 a
m

p.
 (

m
)

(a)

0

2

4

6

8

10

M
LD

 a
m

p.
 r

at
io

MLD
MLD amp.
MLD amp. ratio

0 0.1 0.2 0.3

MLD criterion (kg m -3 )

0

0.05

0.1

0.15

0.2

S
S

T
 -

 T
M

L
 (

o
C

)

(b) ∆T
∆T amp.

Figure 7 (a) Mixed layer depth (MLD, black), amplitude of the seasonal cycle of
MLD (red), and ratio of the seasonal amplitude of MLD to the standard deviation
of high-frequency (period less than 10 days) MLD variability (purple) as a function
of MLD criterion, based on an increase in density from the value at a depth of 1 m.
Values have been averaged over all daily data and all PIRATA locations. (b) Same
as (a) except difference between SST and mixed layer temperature (∆T , black) and
amplitude of the seasonal cycle of ∆T (red). Squares in (a) and (b) indicate the values
corresponding to a MLD defined using a 0.12 kg m−3 criterion.
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Figure 8 (a) Time series of mixed layer depth (gray shading), zonal velocity at a depth
of 10 m (black), and correction to 10-m velocity used to obtain the velocity vertically
averaged in the mixed layer (green shading) at 0◦, 35◦W. (b) Same as (a) except at
6◦S, 10◦W and velocity correction is shaded purple.
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Figure 9 Availability of daily ePIRATA data at each mooring location. Black indicates
“backbone” moorings, red shows Southwest Extension, and green Northeast Extension.
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Figure 10 ePIRATA (a) temperature (shaded), mixed layer depth (black line), and
depth of the 20◦C isotherm (white line) at 12◦N, 38◦W. (b) Same as (a) except shading
is salinity. (c) and (d) Same as (a) and (b) except at 0◦, 23◦W.
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Figure 11 ePIRATA data at 0◦, 23◦W: (a) mixed layer heat storage rate (black line),
(b) shortwave radiation absorbed in the mixed layer (red line), (c) latent heat flux (blue
line), and (d) horizontal mixed layer heat advection (green line). In (a)-(d) shading
indicates error estimates, with values on the right axis.
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Figure 12 ePIRATA monthly mean climatological heat budget terms at 0◦, 23◦W:
mixed layer heat storage rate (black line), (b) shortwave radiation absorbed in the
mixed layer (red line), (c) latent heat flux (blue line), and (d) horizontal mixed layer
heat advection (green line). Shading indicates error estimates and vertical error bars
show the standard deviation for each calendar month across all years (a measure of
interannual variability).
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Figure 13 Heat budget residual (heat storage rate minus sum of net surface heat flux
and horizontal advection) at each ePIRATA location. Large symbols represent record-
length mean, lines show the range of climatological monthly values, and small symbols
are the error estimates for the annual mean. Blue indicates locations outside of the
ITCZ and equatorial regions, red shows locations in the ITCZ region, and green is for
locations on the equator.
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Figure 14 Scatter-plots of the seasonal range of Q−h at each ePIRATA location,
calculated as the difference between the three-month season (Smax) with the largest
mean cooling from Q−h (i.e., most negative value) and the three-month season
(Smin) with the smallest cooling, versus (a) the corresponding wind speed difference,
W (Smax) − W (Smin), and (b) the difference in the diurnal amplitude of SST. Dark
blue and light blue indicate locations in the Northern and Southern Hemisphere, re-
spectively, and outside of the ITCZ. Red indicates locations within the ITCZ, and
green is for locations on the equator. Bars in (a) represent error estimates for each
seasonal difference of Q−h. Error bars for wind speed in (a) and SST in (b) are less
than 0.1 m s−1 and 0.01◦C, respectively, and are not shown.
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