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ABSTRACT

Tropical Cyclone (TC) rapid intensification (RI) is difficult to predict and poses a formidable

threat to coastal populations. A warm upper ocean is well-known to favor RI, but the role of ocean

salinity is less clear. This study shows a strong inverse relationship between salinity and TC RI

in the eastern Caribbean and western tropical Atlantic due to near-surface freshening from the

Amazon-Orinoco River system. In this region, rapidly intensifying TCs induce a much stronger

surface enthalpy flux compared to more weakly intensifying storms, in part due to a reduction in

SST cooling caused by salinity stratification. This reduction has a noticeable positive impact on

TCs undergoing RI, but the impact of salinity on more weakly intensifying storms is insignificant.

These statistical results are confirmed through experiments with an oceanmixed layer model, which

show that the salinity-induced reduction in SST cold wakes increases significantly as the storm’s

intensification rate increases. Currently, operational statistical-dynamical RI models do not use

salinity as a predictor. Through experiments with a statistical RI prediction scheme, it is found

that the inclusion of surface salinity significantly improves the RI detection skill, offering promise

for improved operational RI prediction. Satellite surface salinity may be valuable for this purpose,

given its global coverage and availability in near real-time.
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Capsule summary. We show the importance of salinity for rapidly intensifying Atlantic tropical30

cyclones and demonstrate the potential for improved prediction of rapid intensification through the31

inclusion of salinity.32

1. Introduction33

Rapid intensification (RI) of tropical cyclones (TCs), defined as the 95th percentile of 24-hr34

over-water intensity changes, or an increase in intensity of at least 30 kt in a 24-hr period, is35

extremely difficult to predict. The challenge is at the forefront of operational TC forecasting (Gall36

et al. 2013). Considering that all Category 4 and 5 TCs in the Atlantic undergo RI during their37

lifetimes (Kaplan and DeMaria 2003), the significance of RI is disproportionately high relative to38

the low chance of occurrence (Lee et al. 2016). The hyperactive 2017 Atlantic TC season was39

extremely destructive, with several intense TCs making devastating landfalls after undergoing RI40

(Rahmstorf 2017; Balaguru et al. 2018; Klotzbach et al. 2018). In 2018, TCs Florence andMichael41

underwent unanticipated explosive RI in the eastern Atlantic and in the Gulf of Mexico, before42

impacting the Carolinas and the Florida panhandle, respectively (Avila 2019). More recently, in43

August 2019 TC Dorian underwent RI to the north of the Caribbean Sea before scything through44

the Bahamas. With RI of TCs projected to rise in coastal regions just before landfall under climate45

change (Emanuel 2017), there is a critical need to improve our understanding of the phenomenon.46

TCs intensify by extracting heat energy from the ocean. Sea surface temperature (SST) under47

the core of the storm, and processes that govern its evolution, therefore play a critical role in TC48

intensification (Emanuel 1999; Cione and Uhlhorn 2003). When over the ocean, a TC’s intense49

winds induce vertical mixing and sea surface cooling that acts as a negative feedback on the50

storm’s intensity, causing upper-ocean density stratification to affect the storm’s intensification51

(Price 1981; Bender and Ginis 2000; Cione and Uhlhorn 2003). While some studies suggest that52
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processes typically favoring TC intensification are also responsible for RI (Kowch and Emanuel53

2015), others indicate that we need to improve our understanding of mechanisms governing RI54

(Rozoff and Kossin 2011).55

For operational forecasting of RI, some of the best performingmodels are statistical (Kaplan et al.56

2015). In these models, environmental parameters that influence RI are combined using statistical57

techniques such as linear discriminant analysis, logistic regression, or Bayesian methods in order58

to predict the chance of RI occurrence (Kaplan et al. 2010; Rozoff and Kossin 2011; Kaplan et al.59

2015). Typically, SST and Tropical Cyclone Heat Potential (TCHP), metrics for the warmth of60

the ocean surface and the depth of the warm water reservoir (Shay et al. 2000), respectively, are61

used to represent the ocean in these models (Kaplan et al. 2010, 2015). Though SST and TCHP62

include effects of upper-ocean thermal structure, they do not incorporate salinity impacts on ocean63

stratification (Balaguru et al. 2015). This leads to the following question: Does salinity play a role64

in RI? In the western tropical Atlantic, near-surface ocean stratification is substantially enhanced65

by the freshwater lens of the Amazon-Orinoco River system, which acts to inhibit TC-induced66

oceanic mixing and SST cooling (Balaguru et al. 2012; Grodsky et al. 2012). While several67

previous studies have shown varying degrees of salinity impact on TC intensification (Balaguru68

et al. 2012; Grodsky et al. 2012; Reul et al. 2014; Newinger and Toumi 2015; Androulidakis et al.69

2016; Yan et al. 2017; Rudzin et al. 2019; Hlywiak and Nolan 2019), its specific role in RI has not70

been evaluated.71

Irma, the strongest TC from the 2017 Atlantic TC season based on maximum sustained winds,72

reached a peak intensity of 155 knots and maintained Category 5 strength longer than any other TC73

in the world (Rahmstorf 2017; Klotzbach et al. 2018). Between September 4 and 6, Irma underwent74

a phase of RI to the east of the Caribbean Islands before making destructive landfalls in the Leeward75

Islands of the West Indies, Cuba, and the Florida Keys. The upper-ocean state just before TC Irma76
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formed on August 30 suggests that as the stormmoved west of 50◦W, it encountered an increasingly77

favorable ocean (Figs. 1A and 1B). SSTs exceeded 28◦C and TCHP was higher than 50 kJ cm−2
78

in much of the western Atlantic. The largest values of SST and TCHP, exceeding 29◦C and 100 kJ79

cm−2 respectively, were found in the northwestern Caribbean Sea and near the entrance to the Gulf80

of Mexico. The spatial variability of sea surface salinity (SSS), on the other hand, is dominated by81

the freshwater plume of the Amazon-Orinoco River system, stretching approximately from 50◦W82

to 70◦W and from the South American coast to 25◦N (Fig. 1C). Irma appears to have traversed the83

plume when it underwent RI. The storm commenced strengthening just to the west of 50◦W and84

subsequently entered a phase of RI, centered around 55◦W, where it increased in intensity from85

Category 3 to Category 5 (Fig. 1C). During this period, SST and TCHP increased by about 1◦C86

and 30 kJ cm−2 respectively (Figs. 1D and 1E). However, the TC also encountered nearly a 2 psu87

drop in salinity between 50◦W and 55◦W when it underwent RI (Fig. 1F).88

Matthew, the most powerful TC from the 2016 season (Stewart 2017), also appears to have89

undergone RI over low-salinity plume waters to the north of Venezuela in the Caribbean Sea (Sup-90

plementary Fig. 1A and 1B). A brief examination of along-track conditions for Gonzalo (2014), a91

Category 4 TC that caused widespread destruction in the Leeward Islands and Bermuda, indicates92

that it also underwent RI while over the freshwater plume near Puerto Rico (Supplementary Fig.93

1C and 1D; (Domingues et al. 2015)). Similarly, Igor, an intense Category 4 TC from the 201094

season likely intensified rapidly over the northern tip of the Amazon River plume (Reul et al. 2014).95

Hence, this preliminary examination of a few TCs raises the following question: Can the influence96

of the ocean on RI be attributed mostly to the upper-ocean thermal structure, or does salinity also97

play an important role? In this study, using a combination of observations and numerical model98

simulations, we explore the potential role of salinity in RI.99
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2. Methods100

a. Data101

Atlantic TC best track data (HURDAT2) for the period 2002-2018, obtained from the National102

Hurricane Center (https://www.nhc.noaa.gov; Landsea and Franklin (2013)), are used to103

identify storm locations and to derive TC intensification rates. We use daily optimally interpolated104

SST from Remote Sensing Systems (www.remss.com) for the period 2002-2018 at a 9 km spatial105

resolution to estimate pre-storm SST (defined as SST three days before the storm’s arrival) and106

TC-induced cold wakes or SST cooling (estimated as the difference between SST on the day of107

the TC and the pre-storm SST) along the storms’ tracks. This product combines data from all108

available infrared and microwave satellites. Daily objectively analyzed air-sea fluxes (OAFlux, Yu109

et al. (2008)), obtained from http://oaflux.whoi.edu for the period 2002-2018, are used to110

estimate the enthalpy flux at the air-sea interface under TCs. Enthalpy flux is computed as the111

sum of latent and sensible heat fluxes on the day of the TC. Although the product is available at112

a spatial resolution of 1◦, it has been used to understand air-sea heat fluxes under TCs previously113

(Balaguru et al. 2012). All data are obtained beginning in 2002, when the satellite-based Remote114

Sensing Systems SST data are made available.115

Along-track TCHP is calculated using vertical ocean temperature profiles from HYCOM Global116

Ocean Forecast System version 3.1 reanalysis (Chassignet et al. 2007). In addition to TCHP, pre-117

storm ocean temperature and salinity profiles are used to calculate ocean density, temperature, and118

salinity stratification along TC tracks. HYCOM reanalysis is available at 3-hourly frequency and at119

an eddy-resolving 8 km spatial resolution from https://www.hycom.org. The vertical resolution120

in the upper 100 m varies from 2-10 m, with higher resolution close to the surface. We extract data121

at daily frequency for our calculations. As for pre-storm SST, various parameters are obtained from122
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HYCOM three days before the storm’s arrival. To validate our main results based on HYCOM,123

we use vertical ocean temperature and salinity profiles from version 3.4.2 of the Simple Ocean124

Data Assimilation (SODA) reanalysis (Carton et al. 2018), available at a 0.5◦ spatial resolution and125

as 5-day means from http://www.soda.umd.edu. In the upper 100 m, the vertical resolution126

is approximately 10 m. TCHP, ocean stratification, and SSS are obtained from SODA over the127

5-day period prior to the storm’s arrival. The HYCOM and SODA 3.4.2 reanalyses are available128

for the periods 1994–2015 and 1980–2017, respectively. In this study, data are used beginning in129

2004 since the availability of Argo floats makes estimates of the ocean subsurface more reliable130

over this period (Baker et al. 2019). 9-day mean SSS measurements from the Soil Moisture and131

Ocean Salinity (SMOS) satellite (Boutin et al. 2017), available from http://www.catds.fr at132

a resolution of 0.25◦ and for the period 2010–2017, are used to estimate pre-storm ocean salinity133

along TC tracks. These data are used to provide an independent validation of HYCOM, and to134

show the potential value of satellite SSS for prediction. Pre-storm SSS is calculated as the SSS135

averaged over the 9-day period prior to the storm. Note that the time periods for various datasets136

differ slightly in order to maximize the data used for different analyses.137

We explore the impact of salinity on vertical mixing and thus TC-induced SST cooling by138

using the Price-Weller-Pinkel (PWP) one-dimensional ocean mixed layer model (Price et al. 1986).139

Model input data are comprised of 20 Argo float temperature and salinity profiles within the region140

70◦W-50◦W, 10◦N-20◦N during August-October 2016-2018 (Section 2c).141

Developmental data for various predictors of the Statistical Hurricane Intensity Prediction142

Scheme Rapid Intensification Index (SHIPS-RII) were obtained from http://rammb.cira.143

colostate.edu/research/tropical_cyclones/ships/developmental_data.asp.144

These data describe the large-scale TC environment and are derived from gridded operational145
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global analyses (DeMaria et al. 2005). We combine these developmental data and salinity with a146

statistical model (section 2d) to understand the value of salinity for predicting RI.147

b. Calculations148

TCHP is calculated as the integral of the temperature from the surface to the depth of the 26◦C149

isotherm:150

TCHP = ρCp

∫ Z26

0
(T(z)−26)dz (1)

where ρ is the seawater density, Cp is the seawater specific heat capacity, T(z) is the seawater151

temperature as a function of water depth, and Z26 is the depth of the 26◦C isotherm (Shay et al.152

2000). Temperature, salinity, and density stratification are defined as the difference between the153

respective variable at a depth of 100 m and the surface value. The above calculations are performed154

using data from HYCOM and SODA. Track locations contaminated with land effects are excluded155

from our analysis. Intensity change over a period is calculated as the difference between the156

intensity at the end of that period and the initial intensity.157

c. PWP model experiments158

The forcings for the PWP model are the surface heat and moisture fluxes, which here are set to159

zero throughout the model integrations, and wind stress (Balaguru et al. 2015). The model’s mixed160

layer entrains successively deeper water until the bulk Richardson number exceeds 0.65. Vertical161

mixing is then performed beneath the mixed layer until the gradient Richardson number between162

each level is greater than 0.25.163

The model was initialized with vertical profiles of temperature and salinity from Argo floats164

in the western tropical Atlantic and eastern Caribbean Sea (50◦W–70◦W, 10◦N–20◦N) during165
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August–October 2016–2018. Based on a decorrelation length scale for salinity in the western166

tropical Atlantic of about 3◦ (Sena Martins et al. 2015), we chose 20 profiles to approximately167

represent the range of salinity conditions found in this region. Most of the 20 included profiles168

exhibit strong salinity stratification in the upper 50 m. Two sets of experiments were conducted,169

each initialized with one of the 20 Argo profiles. The first set of experiments was initialized with170

observed temperature and salinity, the second with observed temperature and vertical mean salinity171

at every depth. In addition, we varied the model’s wind forcing to test the impact of intensification172

rate on salinity-induced SST cooling as described below.173

Themodel was forcedwith winds fromTCswith idealized surface circulations: The surface wind174

field was assumed to be axisymmetric, with the wind speed a function only of the storm’s maximum175

wind speed, radius of maximum winds (rm), and distance from the storm’s center (DeMaria 1987)176

as follows177

V(r) = Vm(
r
rm
)exp[

1
b
(1−

r
rm
)b] (2)

Here, V(r) is the tangential wind as a function of distance ‘r’ from the storm center and rm is the178

radius of maximum tangential winds (Vm). We used a constant value of 0.9 for b in this equation,179

giving a radius of 23 kt (12 m s−1) winds of ∼200 km. For all simulations, a rm of 50 km was used.180

With these parameters and the storm’s translation speed of 5 m s−1 (9.7 kt), the wind speed was181

calculated as a function of time along a north-south axis running through the storm’s center while182

accounting for the translation velocity. As the storm moves northward, the wind speed therefore183

increases from 25 kt to wtot =
√
w2+9.72 as the northern eyewall passes, where w is the storm’s184

maximum rotational wind speed in kt and wtot is the vector sum of the maximum rotational velocity185

and translation velocity. The wind speed then goes to zero in the eye and back up to wtot in the186

southern eyewall, here referred to as the second rm.187
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We performed a control simulation in which the maximumwind was set to 60 kt, the approximate188

mean intensity of all TCs in the western tropical Atlantic (60◦W–100◦W, 10◦N–30◦N). We then189

conducted an experiment in which the wind profile was decreased linearly along the track (starting190

with no change at t=0) so that the maximum wind speed at the second rm, located 250 km, or about191

14 hours, from the start of the integration, was 40 kt. A similar experiment was conducted so that192

the maximum wind speed at the second rm was 20 kt. The percentage reduction in wind speed was193

held constant from the second rm until the end of the integration time period, which was 24 hours.194

Similar experiments were performed in which the maximum wind was increased to either 80 kt or195

100 kt. In total, 200 model runs were performed (20 different initial profiles, each with observed196

and vertical mean salinity, and for five different TC wind scenarios).197

d. Significance of salinity for RI prediction198

To quantify the relevance of salinity for RI, we perform binary classification using the statis-199

tical scheme of Logistic Regression. A statistical binary classification model combines several200

parameters to predict a binary dependent variable, which in this case is the occurrence of RI. The201

SHIPS-RII predictors used are: Previous 12-hr intensity change or persistence (PER), 850-200202

hPa vertical wind shear within a 500 km radius after vortex removal (SHRD), 200 hPa divergence203

within a 1000 km radius (D200), Percent areas with Total Precipitable Water < 45 mm within a204

500 km radius and ± 45 degrees of the upshear SHIPS wind direction (TPW), Second principle205

component of GOES-IR imagery within a 440 km radius (PC2), Standard deviation of GOES-206

IR brightness temperature within a 50-200 km radius (SDBT), Potential Intensity (POT), TCHP,207

Inner-core dry-air predictor (ICDA), and Initial intensity (VMX0) (Kaplan et al. 2015). These 10208

predictors are available for each 6-hourly TC track location. Among them, SHRD, D200, POT,209

TCHP, and ICDA are averaged over the 24-hr forecast period (Kaplan et al. 2015). Two sets of210
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predictions are performed: one using only these 10 predictors, the other including SSS as an211

additional predictor.212

First we divide the dataset, which contains the various SHIPS-RII predictors and SSS estimated213

for the corresponding 6-hourly locations, into two subsets: one for cases in which TCs underwent214

RI and another for cases in which TCs did not undergo RI. Next we choose fractions of the data215

from the two subsets (specified later in this section) and combine them into the training set. The216

remaining data from the two subsets are then combined into a test set. We train the classification217

model on the training set and use the trained model to make predictions for the test set.218

Based on the predictions for the test set, we estimate the skill of the model using four different219

metrics: Probability of Detection (POD), False Alarm Ratio (FAR), Area Under the Receiver220

Operating Characteristic (AUROC) and the Brier Score (BS). A True Positive (TP) is defined as a221

situation when the model correctly predicts the occurrence of RI. A True Negative (TN) is defined222

as a situation when the model correctly predicts the non-occurrence of RI. A False Positive (FP)223

is defined as an event where the model incorrectly predicts that an RI will occur, while a False224

Negative (FN) is defined as an event where the model incorrectly predicts that an RI will not225

occur. With these definitions, the various metrics used to assess the model (http://www.cawcr.226

gov.au/projects/verification/) are calculated as follows. The POD indicates the number227

of correctly predicted RI events out of the total number of actual RI events ( TP
TP+FN ). The FAR228

represents the number of times RI was wrongly predicted to occur out of the total number of times229

the model predicted RI ( FP
TP+FP ). AUROC, obtained by plotting the False Positive Rate ( FP

FP+T N )230

on the x-axis and the True Positive Rate (POD) on the y-axis, represents the ability of the model to231

separate the occurrence and non-occurrence of RI. Finally, the BS is estimated as the mean squared232

difference between predicted probabilities and actual outcomes (Wilks 2011). Higher values of233

POD and AUROC, and lower values of FAR and BS indicate more skill.234
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To test model sensitivity, we use three different fractions of the data for the training set (55%,235

60% and 65%). In each case, we first use the various SHIPS-RII predictors as features to make236

predictions. Next, we include SSS along with those predictors to predict RI. All features are237

scaled between 0 and 1 before use in the model (Kaplan et al. 2010). If the inclusion of SSS238

increases the POD and AUROC, and decreases the FAR and BS, then salinity is said to have239

improved the model performance. A Student’s t-test for difference of means is used to ascertain the240

statistical significance of the improvement in prediction. The Logistic model has been implemented241

using the ‘Scikit-learn’ machine learning library in Python programming language (http://242

scikit-learn.org). When implementing the model, we use the condition that the class-weights243

are ‘balanced,’ which ensures that the weights are inversely proportional to the class frequencies.244

In other words, the model is penalized more when it fails to predict an RI event when compared245

to a non-RI event. Using this approach allows the model to be trained for handling relatively rare246

events such as RI.247

We first use the SHIPS-RII predictors along with SSS from HYCOM for the 12-year period248

2004-2015. Next, to assess the value of satellite salinity for RI prediction, and to serve as an249

independent validation, we perform the same analysis using salinity from SMOS for the period250

2010-2017.251

3. Results252

We begin by examining the role of the ocean in TC intensification, focusing on RI. The domain253

of analysis is the region from 40◦W to 100◦W and from 10◦N to 30◦N. Nearly 90% of all254

locations where TCs underwent RI during the period 2002-2018 are found in this domain, making255

it appropriate for our analysis. Fig. 2A shows the anomalous mean pre-storm SSTs, anomalous256

mean TC cold wakes, and anomalous mean enthalpy fluxes at the air-sea interface for various257
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intensification rate thresholds. For instance, the anomalous mean SST corresponding to a threshold258

of 5 kt 24 hrs−1 represents the difference between the mean SST for all 6-hourly track locations259

where the storm intensified by 5 kt or higher in 24 hours and the SST averaged over all 6-hourly260

track locations. Similarly, the anomalous mean TC cold wake represents the mean SST cooling261

over all locations where the intensification rate exceeds a value minus the mean SST cooling over262

all locations. When computing the anomalous mean, we subsample data so that the initial intensity263

of the storm and its translation speed are statistically indifferent between the two sets. In other264

words, data are selected such that ranges for storm strength and forward moving speed are similar265

in the two data sets. Doing so allows us to remove the effects of the storm state and isolate the266

impacts of the ocean on TC intensification.267

In general, the role of the ocean increases with the intensification rate of the TC (Fig. 2A), in268

line with past work (Lloyd and Vecchi 2011). While the anomalous mean enthalpy fluxes are not269

statistically significant for lower intensification rate thresholds, they are highly significant for larger270

intensification rate thresholds. For the 25 kt 24 hrs−1 threshold and RI, the anomalous enthalpy271

fluxes are about 7.5 and 9.5 W m−2 higher, respectively. This indicates that for RI, the flux of heat272

from the ocean into the atmosphere becomes more important compared to weaker intensification273

rates. The enthalpy flux under the TC is critically dependent on the SST under the core of the274

storm (Cione and Uhlhorn 2003), which is a combination of the pre-storm SST and the sea surface275

cooling induced by the TC. As expected, the anomalous mean pre-storm SST increases with the276

TC’s intensification rate. The anomalous mean SST is not significantly higher for all intensification277

rates greater than zero, but for RI the pre-storm SST is about 0.3◦C higher on average.278

Interestingly, the anomalous mean cold wakes become increasingly weaker with increasing279

intensification rates, as noted in previous studies (Lloyd and Vecchi 2011; Vincent et al. 2014).280

Note that a positive value for the anomalous mean wake does not indicate SST warming under a281
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TC, but rather that the cold SST wake is weaker when compared to the mean wake. While the282

anomalous mean wake is not statistically significant for all intensification rates nor the median283

intensification threshold (greater than or equal to 5 kt 24 hrs−1), for RI the anomalous mean cold284

wakes are significantly weaker by about 0.15◦C. Thus, conditions in the ocean subsurface that cause285

a weakening of the cold TC wake likely play an important role in RI. These differences in cold286

wakes are likely due to those in upper-ocean stratification because we have subsampled our data287

to remove the effects of the storm state. Since both the vertical temperature and salinity structure288

jointly determine the ocean density stratification, it is important to evaluate which parameter289

dominates. To this end, we predict the upper-ocean density stratification using the normalized290

temperature and salinity stratification. Based on the regression coefficients (Figs. 2B and 2C), we291

can divide our domain broadly into two regions: 1) A western region where variability in the ocean292

thermal structure tends to dominate that in density (70◦W–100◦W, 10◦N–30◦N), and 2) An eastern293

region where salinity significantly modulates density stratification (40◦W–70◦W, 10◦N–30◦N). The294

western region includes the western Caribbean Sea and the Gulf of Mexico. In this region, warm295

upper-ocean features such as the Loop Current, and the eddies shed by it, induce variations in the296

ocean thermal structure. In the eastern region, freshwater outflow from the Amazon-Orinoco River297

system imposes significant constraints on the near-surface ocean density stratification.298

To assess the impact of these spatial variations of temperature and salinity on TC RI, we compute299

TCHP, ocean stratification (density, temperature and salinity) and SSS along TC tracks for each300

region. We consider two intensification rate threshold scenarios: 1) A median intensification301

threshold with intensification rates greater than or equal to 5 kt 24 hrs−1, and 2) RI. As before, for302

each threshold, we compute the anomalous mean TCHP, the anomalous mean ocean stratification303

(density, temperature and salinity) and the anomalous mean SSS. For the western region (Fig. 3A),304

none of the parameters is statistically significant for the median intensification threshold, indicating305

14
Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0303.1.



the minimal role played by the ocean subsurface for weaker intensification rates. For RI however,306

TCHP is highly significant and is larger by about 9.6 kJ cm−2 on average (Fig. 3B). This increase in307

significance for TCHP at higher intensification rates is consistent with previous studies (Mainelli308

et al. 2008; Kaplan et al. 2015). In regions with a deep thermocline and weak vertical temperature309

gradients, TC-induced mixing brings less cold water into the mixed layer, causing a reduction in the310

cold wake magnitude and favoring TC intensification. In the Gulf of Mexico for instance, several311

historical TCs have intensified rapidly over warm Loop Current eddies, such as Opal (1995) and312

Katrina (2005) (Shay et al. 2000; Mainelli et al. 2008; Lin et al. 2013). Consequently, TCHP has313

been shown to be a useful metric of the upper-ocean thermal structure for forecasting RI (Mainelli314

et al. 2008; Kaplan et al. 2010, 2015).315

In the eastern region, consistent with results from the western region, none of the oceanic316

parameters is statistically significant for the median intensification threshold (Fig. 3C). Even317

for RI, the anomalous mean TCHP and temperature stratification are not statistically significant318

(Fig. 3D). Note, however, that here we are only examining the subsurface–the anomalous mean319

SST is always significant for RI. The anomalous mean density and salinity stratification are highly320

significant for RI cases (Fig. 3D). On average, the density and salinity stratification are significantly321

higher by about 0.18 kg m−3 and 0.27 psu respectively. In other words, the difference between322

the 100 m depth and surface values for density and salinity are larger. Since the anomalous mean323

temperature stratification is not statistically significant for RI, we can safely attribute the enhanced324

density stratification during RI events to that in salinity.325

The mean intensity of weakly intensifying TCs in the western Atlantic is about 20 kt lower than326

the mean for RI. Hence, mixing is relatively shallow for weakly intensifying TCs. Thus, even in327

the absence of strong stratification, the cooling induced at the surface is minimal and the ocean328

subsurface does not play an important role. On the other hand, at high intensification rates such329
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as RI, the mixing extends considerably deeper. In this situation, without strong stratification that330

can limit mixing, substantial surface cooling tends to occur that can counteract the intensification331

of the storm. The freshwater plume of the Amazon-Orinoco River system enhances water column332

stability, reduces the mechanical mixing induced by TCs, and lowers the cold wake magnitude333

(Balaguru et al. 2012; Grodsky et al. 2012; Reul et al. 2014; Newinger and Toumi 2015; Androul-334

idakis et al. 2016; Yan et al. 2017; Rudzin et al. 2019; Hlywiak and Nolan 2019). The anomalous335

mean SSS is significantly lower by 0.32 psu for RI (Fig. 3D), further supporting the idea that much336

of the salinity stratification encountered during RI is due to the low salinity plume waters at the337

ocean surface. To test the robustness of our results, we performed similar analyses using the SODA338

3.4.2 ocean reanalysis. Consistent relationships were obtained between ocean stratification and TC339

intensification, confirming the data-independence of our main conclusions (Supplementary Fig.340

2).341

To further understand the effect of salinity on TC RI, we perform a suite of idealized numerical342

sensitivity experiments with the PWP one-dimensional ocean mixed layer model. The locations of343

the 20 different profiles of ocean temperature and salinity that were used to initialize the model are344

shown in Fig. 4A. All are in the region 50◦W–70◦W, 10◦N–20◦N, which is in close proximity to the345

Amazon-Orinoco plume. We use profiles during the months of August–October, the climatological346

peak of the Atlantic TC season. An examination of the vertical structure of these profiles reveals347

the significance of salinity for ocean stratification in this region (Fig. 4B). In many cases, the348

mixed layer is confined to a depth of 20-30 m, below which salinity increases rapidly, by as much349

as 3 psu, over a depth of 50-60 m. We subject these profiles to TC winds representing various350

intensification rates, as shown in Figure 4C. Although a three-dimensional ocean model is needed351

to reproduce the full impact of the TC on the ocean, the one-dimensional version of the model352
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can reasonably capture the main effects when an ensemble approach is used (Hlywiak and Nolan353

2019).354

The time evolution of the difference in the ensemble mean SST between the experiments initial-355

ized with and without salinity stratification shows that the impact of salinity on SST increases with356

the intensification rate (Fig. 4D). For the cases with intensification relative to the 60-kt control357

simulation (purple and black curves in Fig. 4D), the inclusion of salinity reduces the TC-induced358

SST cooling by about 0.25–0.3◦C at hour 18. In contrast, for storms with less intensification (blue359

and red curves in Fig. 4D) the salinity-induced reduction in SST cooling is about 0.1–0.15◦C. The360

reduction in cooling caused by salinity stratification is about 0.1◦C stronger for RI cases (black361

curve in Fig. 4D) compared to cases with no intensification (green curve in Fig. 4D), consistent362

with our earlier result (Fig. 2A). These results also indicate that the significance of salinity for RI363

is not due to co-located temperature features. If this were the case, the differences in SST cooling364

between the experiments with and without salinity would be close to zero.365

Statistical RI prediction models have traditionally struggled more in the Atlantic than in some366

other basins (Kaplan et al. 2015). Since these models do not include a predictor based on salinity,367

and in light of the results in this study, we performed binary classification using Logistic Regression368

to evaluate the potential value of salinity for RI prediction. We conducted two sets of experiments.369

First, we used the various predictors included in SHIPS-RII to train the Logistic model and predict370

the occurrence of RI. Next, we repeated this analysis with SSS included as an additional predictor.371

The main idea behind using SSS is to represent the effects of upper-ocean salinity stratification on372

TC-inducedmixing. In the region influenced by the Amazon-Orinoco plume in the western tropical373

Atlantic, SSS primarily determines near-surface salinity stratification. A correlation between SSS374

and salinity stratification along TC tracks for the eastern region based on HYCOM data is about375
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0.9, suggesting that the former is a good indicator of the latter. But to what extent does SSS serve376

as a proxy for ocean density stratification?377

To understand the connection between SSS and density stratification, we plot the correlation378

between the two for various minimum-salinity thresholds (Supplementary Fig. 3A). As the SSS379

threshold increases, the correlation between salinity and stratification decreases. This suggests380

that variations in SSS more accurately reflect those in density stratification for lower values of381

SSS and that SSS is a poor predictor of density stratification at higher values. The transition382

occurs near 36 psu, which approximately represents the boundary of the Amazon-Orinoco River383

plume (Pailler et al. 1999). Thus, considering only SSS values below about 36 psu could possibly384

improve the ability of salinity to separate RI from non-RI. To elucidate this point, we compute the385

means for salinity with and without RI while masking out salinity higher than a certain threshold386

each time. The plot of t-values for statistical significance of the difference between means shows387

that the maximum t-value is achieved near a threshold of 36 psu (Supplementary Fig. 3B). This388

statistical evidence further supports the idea of masking out higher salinity values. Physically, by389

doing this we allow salinity to vary primarily within the region influenced by the Amazon-Orinoco390

plume or other such locations with very fresh surface waters. We now use this masked-SSS along391

with the other SHIPS-RII predictors in the Logistic model. Results reveal that adding SSS to the392

Logistic model significantly improves its skill (Table 1). The addition of SSS enhances the POD393

and AUROC, while lowering the FAR and the BS, reinforcing the value of salinity for RI prediction.394

Similar results are obtained when salinity stratification is used instead of SSS, in agreement with395

the tight relationship between them in this region. Though we have demonstrated improvement in396

RI prediction using salinity from both reanalysis and satellite, the relative merits of each deserve397

further study.398
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4. Summary and Discussion399

The significance of the upper-ocean thermal structure for RI is well-known. Consequently, related400

metrics such as TCHP have traditionally been used to represent the ocean in statistical RI prediction401

models. However, the role of salinity in RI is less clear. In this study, using a suite of observations402

and numerical model simulations, we have shown that salinity plays an important role in RI in the403

eastern Caribbean Sea and the western tropical Atlantic where the surface salinity and upper-ocean404

salinity stratification are heavily constrained by the freshwater plume of the Amazon-Orinoco405

River system. This is unlike the western Caribbean Sea and the Gulf of Mexico where temperature406

features dominate the ocean’s impact on RI. Strong upper-ocean stratification is not particularly407

important for weaker intensification, where significant vertical mixing and sea-surface cooling do408

not occur. On the other hand, stratification plays a pivotal role for RI because a substantial increase409

in mixing and SST cooling are more likely to occur when stratification is weaker. These results are410

supported by simulations with the PWP ocean mixed layer model, where we demonstrate that the411

influence of salinity on RI is independent of that of temperature, and that the relevance of salinity412

for a TC increases with its intensification rate. Finally, we tested the value of surface salinity, a413

reasonable proxy for upper-ocean salinity stratification in the Amazon-Orinoco plume region, for414

RI prediction. Results indicate that the use of SSS may significantly improve models’ abilities to415

forecast RI.416

Efforts to incorporate salinity stratification into metrics of TC-induced SST cooling have been417

made in the past (Price 2009; Shay and Brewster 2010; Vincent et al. 2012; Balaguru et al. 2015),418

and the results from this study emphasize the need for continued progress along these lines. SST and419

sea level derived from satellites are being used for estimation of upper-ocean heat content and RI420

forecasting (Goni and Trinanes 2003; Shay and Brewster 2010). But satellite salinity observations,421
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which have been available for nearly a decade, have not been used in weather forecasting to date.422

Near-continuous measurements of SSS are available from the SMOS satellite since May 2010 and423

from NASA’s Soil Moisture Active-Passive mission since April 2015 (Durack et al. 2016). Surface424

salinity measurements were also available from NASA’s Aquarius mission between August 2011425

and June 2015. Given the strong influence of the Amazon-Orinoco plume in the western Atlantic426

and eastern Caribbean, we advocate the use of satellite salinity in statistical RI prediction models,427

based on its prospects for improved forecasts (Table 1).428

Though ocean reanalyses tend to do well in regions where they can assimilate a lot of in429

situ observations such as Argo profiles, satellite data can help in other regions where in situ430

measurements are relatively sparse (Tranchant et al. 2008; Lagerloef et al. 2010; Vernieres et al.431

2014). For salinity, this is particularly true in regions near the coastline where surface salinity is432

heavily constrained by river runoff (Domingues et al. 2015; Tranchant et al. 2008; Vernieres et al.433

2014). It has been demonstrated that assimilating satellite salinity observations can significantly434

improve estimates of the upper-ocean state (Köhl et al. 2014; Toyoda et al. 2015; Vinogradova435

et al. 2019; Martin et al. 2019) and the climate of the Indo-Pacific region, including El Niño and436

Southern Oscillation (Hackert et al. 2014, 2019). Thus, besides their use in statistical RI models,437

satellite salinity could potentially improve ocean analyses used to initialize dynamical TC forecast438

models. Note that the results from the predictionmodel presented in this study are based on ‘perfect439

predictors’ that are calculated from reanalyses in a ‘hindcast’ mode. Though the results are very440

encouraging, further testing is required using realtime satellite and analysis data that are directly441

used in forecasts. We propose a study, along the lines of a Joint Hurricane Testbed, to further this442

cause and aid in the process of integrating salinity into operational RI forecasts.443
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Table 1. Estimating the significance of salinity for RI prediction in the North Atlantic. Results based

on Logistic Model experiments. The first set of results (rows 1 and 2) are for the period 2004–2015 using SSS

from HYCOM ocean reanalysis. The second set of results (rows 3 and 4) are for the period 2010–2017 using

SSS from SMOS. The domain of analysis is the eastern region. In each set, the first row contains average skill

scores for the model based on the SHIPS-RII predictors only. The second row contains the average scores for the

model with SSS as an additional predictor. Values in bold indicate that the improvement in model obtained by

the addition of salinity is statistically significant at the 95% level based on the respective scores.

606

607

608

609

610

611

612

POD FAR AUROC BS

SHIPS-RII 0.35 0.89 0.58 0.19

SHIPS-RII + SSS (HYCOM) 0.44 0.85 0.62 0.18

SHIPS-RII 0.53 0.77 0.70 0.18

SHIPS-RII + SSS (SMOS) 0.58 0.74 0.71 0.17
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LIST OF FIGURES613

Fig. 1. A) SST (◦C) and B) TCHP (kJ cm −2) on 29 August, and C) SSS (psu) averaged between 19614

and 27 August, with the track of TC Irma (2017), color-coded by its intensity, overlaid. The615

legend shown above (A) corresponds to the strength of Irma based on the Saffir-Simpson616

scale. SST is from the satellite-based REMSS product, TCHP is based on HYCOM, and SSS617

is obtained from SMOS satellite. Along-track D) SST (◦C), E) TCHP (kJ cm −2), and F) SSS618

(psu) for TC Irma. The circles in panels D, E and F represent the 24-hr intensity change at619

various 6-hr locations, with black denoting non-RI and color denoting RI. The legend shown620

above (D) corresponds to the magnitude of 24-hr intensity change experienced by Irma . . . 31621

Fig. 2. A) Anomalous mean pre-storm SST (blue), cold wake (gray), and surface enthalpy flux (red)622

for Atlantic TCs as a function of intensification threshold. Anomalous mean represents the623

mean over all locations where the intensification rate exceeds a value minus the mean over624

all locations. While the total sample size is 2674, sample sizes for various intensification625

thresholds are as follows: 1641 (0 kt 24 hrs−1), 1305 (5 kt 24 hrs−1), 988 (10 kt 24 hrs−1), 709626

(15 kt 24 hrs−1), 493 (20 kt 24 hrs−1), 307 (25 kt 24 hrs−1), 205 (30 kt 24 hrs−1). Concentric627

smaller dark circles indicate significance at the 95% level. B) Coefficient of linear regression628

between density stratification and temperature stratification at a depth of 100 m. C) Same as629

B) except for salinity stratification. Density, temperature, and salinity stratification have been630

normalized by subtracting their respective means and dividing by their standard deviations.631

Dashed contours in C) show the locations of RI. The boxes approximately represent the632

sub-regions used for the analysis shown in Figure 3. SST is from the satellite-based REMSS633

product, enthalpy flux is based on OAFlux, and ocean stratification (density, temperature and634

salinity) is calculated from HYCOM. . . . . . . . . . . . . . . . . 32635

Fig. 3. Anomalous mean TCHP (10 kJ cm −2), temperature stratification (TSTRAT, ◦C), density636

stratification (DSTRAT, kg m−3), salinity stratification (SSTRAT, psu) and SSS (psu) in the637

western region (A and B) and in the eastern region (C and D) for cases where the 24-hr638

intensity change is greater than or equal to 5 kt (A and C) and RI (B and D). Anomalous639

mean represents the mean over all locations where the intensification rate exceeds a value640

minus the mean over all locations. The western region corresponds to 70◦W–100◦W, 10◦N–641

30◦N and the eastern region corresponds to 40◦W–70◦W, 10◦N–30◦N. For each parameter,642

when the mean of the sub-sampled data is statistically different from the total mean at the643

95% level, it is indicated with hatching. TCHP, ocean stratification (DSTRAT, TSTRAT and644

SSTRAT), and SSS are based on HYCOM. . . . . . . . . . . . . . . 33645

Fig. 4. A) Shaded: September mean surface salinity from SMOS. Colored squares: locations of646

Argo temperature and salinity profiles used to initialize the one-dimensional PWP model.647

B) Subsurface salinity from the floats at locations shown in A). C) Zonal wind stress used to648

force the PWP model (meridional wind stress is always zero). For the control experiment,649

a maximum wind speed of 60 kt was used (green). Other colors show profiles for which650

the wind speed was either linearly increased (purple, black) or decreased (blue, red) to reach651

wind speed indicated in the legend at the second radius of maximum wind (see Methods652

for details). D) Results from the model experiments, showing difference in SST cooling653

between the simulations with full salinity and constant salinity (positive values indicate654

reduced cooling due to salinity stratification). The colors correspond to those of the wind655

profiles in C) and shading indicates one standard error of the 20-member ensemble. . . . . 34656
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Fig. 1. A) SST (◦C) and B) TCHP (kJ cm −2) on 29 August, and C) SSS (psu) averaged between 19 and 27

August, with the track of TC Irma (2017), color-coded by its intensity, overlaid. The legend shown above (A)

corresponds to the strength of Irma based on the Saffir-Simpson scale. SST is from the satellite-based REMSS

product, TCHP is based on HYCOM, and SSS is obtained from SMOS satellite. Along-track D) SST (◦C), E)

TCHP (kJ cm −2), and F) SSS (psu) for TC Irma. The circles in panels D, E and F represent the 24-hr intensity

change at various 6-hr locations, with black denoting non-RI and color denoting RI. The legend shown above

(D) corresponds to the magnitude of 24-hr intensity change experienced by Irma
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Fig. 2. A) Anomalous mean pre-storm SST (blue), cold wake (gray), and surface enthalpy flux (red) for

Atlantic TCs as a function of intensification threshold. Anomalous mean represents the mean over all locations

where the intensification rate exceeds a value minus the mean over all locations. While the total sample size

is 2674, sample sizes for various intensification thresholds are as follows: 1641 (0 kt 24 hrs−1), 1305 (5 kt 24

hrs−1), 988 (10 kt 24 hrs−1), 709 (15 kt 24 hrs−1), 493 (20 kt 24 hrs−1), 307 (25 kt 24 hrs−1), 205 (30 kt 24

hrs−1). Concentric smaller dark circles indicate significance at the 95% level. B) Coefficient of linear regression

between density stratification and temperature stratification at a depth of 100 m. C) Same as B) except for

salinity stratification. Density, temperature, and salinity stratification have been normalized by subtracting their

respective means and dividing by their standard deviations. Dashed contours in C) show the locations of RI.

The boxes approximately represent the sub-regions used for the analysis shown in Figure 3. SST is from the

satellite-based REMSS product, enthalpy flux is based on OAFlux, and ocean stratification (density, temperature

and salinity) is calculated from HYCOM.
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Fig. 3. Anomalous mean TCHP (10 kJ cm −2), temperature stratification (TSTRAT, ◦C), density stratification

(DSTRAT, kg m−3), salinity stratification (SSTRAT, psu) and SSS (psu) in the western region (A and B) and in

the eastern region (C and D) for cases where the 24-hr intensity change is greater than or equal to 5 kt (A and C)

and RI (B and D). Anomalous mean represents the mean over all locations where the intensification rate exceeds

a value minus the mean over all locations. The western region corresponds to 70◦W–100◦W, 10◦N–30◦N and the

eastern region corresponds to 40◦W–70◦W, 10◦N–30◦N. For each parameter, when the mean of the sub-sampled

data is statistically different from the total mean at the 95% level, it is indicated with hatching. TCHP, ocean

stratification (DSTRAT, TSTRAT and SSTRAT), and SSS are based on HYCOM.
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Fig. 4. A) Shaded: September mean surface salinity from SMOS. Colored squares: locations of Argo

temperature and salinity profiles used to initialize the one-dimensional PWP model. B) Subsurface salinity from

the floats at locations shown in A). C) Zonal wind stress used to force the PWP model (meridional wind stress is

always zero). For the control experiment, a maximum wind speed of 60 kt was used (green). Other colors show

profiles for which the wind speed was either linearly increased (purple, black) or decreased (blue, red) to reach

wind speed indicated in the legend at the second radius of maximum wind (see Methods for details). D) Results

from the model experiments, showing difference in SST cooling between the simulations with full salinity and

constant salinity (positive values indicate reduced cooling due to salinity stratification). The colors correspond

to those of the wind profiles in C) and shading indicates one standard error of the 20-member ensemble.
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Supplemental material for “Pronounced impact of salinity on rapidly
intensifying tropical cyclones”
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Figure 1: A) SSS (psu) averaged between 17 and 25 September, 2016 from
SMOS with the track of TC Matthew, color-coded by its intensity, overlaid.
B) Along-track SSS (psu) for Matthew. C) SSS (psu) averaged between 2
and 10 October, 2014 from SMOS with the track of TC Gonzalo overlaid.
D) Along-track SSS (psu) for Gonzalo. The circles in panels B and D rep-
resent the 24-hr intensity change at various locations, with black denoting
non-RI and color denoting RI. The legend shown above (A) corresponds
to the strength of the TCs based on the Saffir-Simpson scale. The legend
shown above (D) corresponds to the magnitude of 24-hr intensity change
experienced by the TCs
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Figure 2: Anomalous mean TCHP (kJ cm −2), temperature stratification
(TSTRAT, ◦C), density stratification (DSTRAT, kg m−3), salinity stratifi-
cation (SSTRAT, psu) and SSS (psu) in the western region (A and B) and
in the eastern region (C and D) for cases where the 24-hr intensity change
is greater than or equal to 5 kt (A and C) and RI (B and D). The western
region corresponds to 70◦W–100◦W, 10◦N–30◦N and the eastern region cor-
responds to 40◦W–70◦W, 10◦N–30◦N. For each parameter, when the mean
of the sub-sampled data is statistically different from the total mean at the
95% level, it is indicated with hatching. Analysis based on SODA ocean
reanalysis.
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Figure 3: A) Correlation between SSS and upper-ocean density stratification
for various salinity thresholds. For each value of threshold, data are con-
sidered only where SSS exceeds that value. SSS and ocean stratification are
based on HYCOM. B) t-value for the difference between means of SSS values
for RI and non-RI locations. For each value on the x-axis, SSS values higher
than that value are set to the maximum. SSS from SMOS is used for this
analysis.

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0303.1.




