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speeds of 116 kt (60 m s−1) on 3 August. Its high 
translation speed (~5–8 m s−1) during intensifica-
tion helped to reduce the ocean cooling during the 
TC life cycle, thus supplying more air–sea flux for 
intensification (Lin et al. 2009). This was the most 
intense storm to strike Saipan, CNMI, in the last 
25 years. Cooling of the surface waters of over 5°C 
was observed under the full track of this typhoon, 
while cooling of the upper ocean layers (TCHP) 
was restricted to between 135° and 150°E.

• Hurricane Patricia (Fig. 4.38d) was the most 
intense tropical cyclone ever recorded in the 
Western Hemisphere in terms of barometric 
pressure, and the strongest ever recorded globally 
in terms of maximum sustained winds of 185 kt 
(95 m s−1; Kimberlain et al. 2016). Patricia started 
as a tropical depression off the coast of Mexico on 
20 October, and developed into a Category 5 storm 
within 66 hours. During its rapid intensification 
the TCHP values were higher than 80 kJ cm−2.

• Hurricane Joaquin (Fig. 4.38e) was an intense TC 
that evolved near the Bahamas on 26 September 
and was one of the strongest storms to affect these 
islands. Joaquin underwent rapid intensification 
and became a Category 3 hurricane on 1 October, 
exhibiting maximum sustained winds of approxi-
mately 135 kt (69 m s−1) on 3 October (Berg 2016). 
The upper ocean conditions were supportive of At-
lantic tropical cyclone intensification (Maineli et al. 
2008). This rapid intensification occurred during 
a short travel time over very high TCHP values 
(> 100 kJ cm−2). The cooling of the ocean waters was 
evident both in the upper layer and at the surface. 

g. Atlantic warm pool—C. Wang
The description and characteristics of the Atlantic 

warm pool (AWP), including its multidecadal vari-
ability, have been previously described (e.g., Wang 
2015). Figure 4.39 shows the extension of the AWP 
time series through 2015 varying on different time 
scales. 

While the AWP in 2015 showed similarities to 
2014, there were some key differences. As in 2014, 
the AWP in 2015 was larger than its climatological 
mean each month, with the largest AWP occurring 
in September (Fig. 4.40a). However, the AWP in 2015 
started in February and lasted through December, 
longer than its normal period of May to October, and 
had an anomalously larger value in November. After 
starting in February, the AWP appeared in the Gulf 
of Mexico in June (Fig. 4.40b). By July and August, the 
AWP was well developed in the Gulf of Mexico and 
Caribbean Sea and reached eastward into the western 

tropical North Atlantic (Figs. 4.40c,d). By September, 
the AWP had further expanded southeastward and 
the 28.5°C isotherm covered nearly the entire tropical 
North Atlantic (Fig. 4.40e). The AWP started to decay 
after October when the waters in the Gulf of Mexico 
began cooling (Fig. 4.40f). In November, the 28.5°C 
isotherm still covered the Caribbean Sea and part of 
the western North Atlantic Ocean (Fig. 4.40g).

The effect of the AWP on TC steering flows and 
tracks has been previously documented (Wang 2015). 
The TC steering flow anomalies were consistent with 
those of other observed large AWP years (Wang et 
al. 2011). The TC steering flow anomalies during the 
North Atlantic TC season are depicted in Fig. 4.41. 
With the exception of June and November, the TC 
steering f low anomalies were unfavorable for TCs 
making landfall in the United States. From July to 
October, the TC steering flow anomalies were mostly 
southward or eastward in the western tropical North 
Atlantic, and northward and northeastward in the 
open ocean of the North Atlantic. This distribution 

FIG. 4.39. The AWP index for 1900–2015. The AWP 
area index (%) is calculated as the anomalies of the 
area of SST warmer than 28.5°C divided by the cli-
matological Jun–Nov AWP area. Shown are the (a) 
total, (b) detrended (removing the linear trend), (c) 
multidecadal, and (d) interannual area anomalies. The 
multidecadal variability is obtained by performing a 
7-year running mean to the detrended AWP index. 
The interannual variability is calculated by subtracting 
the multidecadal variability from the detrended AWP 
index. The black straight line in (a) is the linear trend 
that is fitted to the total area anomaly. The extended 
reconstructed SST dataset is used.
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of these anomalies was consistent with the fact that 
for all TCs that formed in the Atlantic MDR, none 
made landfall in the United States. For the two land-
falling North Atlantic TCs (Ana and Bill), neither one 
formed in the Atlantic MDR (see section 4e2). 

h. Indian Ocean dipole—J.-J. Luo
Year-to-year climate variability in the tropical 

Indian Ocean (IO) is largely driven by local ocean–
atmosphere interactions and ENSO (e.g., Luo et al. 
2010). Among the former, the Indian Ocean dipole 
(IOD) represents one major internal climate mode in 
the IO, which may exert significant climate impacts 
on countries surrounding the IO. The IOD often 
starts to grow in boreal summer, peaks in Septem-
ber–November, and deteriorates rapidly in December 
in association with the reversal of monsoonal winds 
along the west coast of Sumatra. During late boreal 
summer to fall 2015, a positive IOD occurred for the 

first time since the last positive IOD event in 2012 
(Luo 2013). The positive IOD in 2015 is the 10th such 
event since 1981. 

SSTs and upper ocean (0–300 m) mean tempera-
ture in most of the tropical IO were warmer than 
normal throughout the year (Figs. 4.42, 4.43), in 
association with the influence of a strong El Niño 
in the Pacific and a pronounced long-term warming 
trend of the IO SST in recent decades (e.g., Luo et al. 
2012). During December–February 2014/15, surface 
westerly anomalies occurred across the equatorial 
IO, corresponding to the dry–wet contrast between 
the IO and the Maritime Continent–western Pacific 
(Figs. 4.42a, 4.43a). This is consistent with a central 
Pacific–El Niño condition. The westerly anomalies 
across the equatorial IO shallow (deepen) the oceanic 
thermocline in the western (eastern) IO, which helps 
induce cold (warm) SST anomalies in the equatorial 
western (eastern) IO (Figs. 4.42a, 4.43a). From March 
to November, in accordance with a rapid development 
of a strong El Niño in the Pacific (see Fig. 4.3), rainfall 
over the Indonesia–western Pacific decreased due to a 
weakened Walker Cell. Meanwhile, SSTs in the west-
ern IO increased quickly and reached ~0.8°C greater 
than the climatology (1982–2014) during Septem-
ber–November (Figs. 4.42, 4.44). Correspondingly, 
easterly anomalies developed in the IO beginning 
in boreal spring (Figs. 4.43, 4.44). Weak anomalous 
southeasterlies initially appeared along the west coast 

FIG. 4.40. (a) The monthly AWP area in 2015 (1012 m2; 
blue) and the climatological AWP area (red) and the 
spatial distributions of the 2015 AWP in (b) Jun, (c) 
Jul, (d) Aug, (e) Sep, (f) Oct, and (g) Nov. The AWP 
is defined by SST larger than 28.5°C. The black thick 
contours in (b)–(g) are the climatological AWP based 
on the data from 1971 to 2000 and the white thick con-
tours are the 2015 28.5°C SST values. The extended 
reconstructed SST dataset is used.

FIG. 4.41. The TC steering flow anomalies (103 hPa m 
s 1) in the 2015 Atlantic TC season of (a) Jun, (b) Jul, (c) 
Aug, (d) Sep, (e) Oct, and (f) Nov. The TC steering flow 
anomalies are calculated by the vertically averaged 
wind anomalies from 850 hPa to 200 hPa relative to 
the 1971–2000 climalogy. The NCEP–NCAR reanalysis 
field (Kalnay et al. 1996) is used.
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