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somewhat dissipated (see the partial reversal of the 
Atlantic Index, Fig. 4.35b), reducing the subsidence 
forcing on the Brazilian coast and hence helping ex-
plain the more favorable rainfall pattern in the second 
half of the year. The historical interplay of the SST 
gradient between the South and the North Atlantic 
is well depicted by the aforementioned Atlantic Index 
(Fig. 4.35b), which shows a predominance of negative 
conditions (unfavorable for convection within the 
South Atlantic ITCZ) over the last few years.

h. Atlantic warm pool—C. Wang
The Atlantic warm pool (AWP) is a large body 

of warm water in the lower latitudes of the North 
Atlantic Ocean, comprising the Gulf of Mexico, 
the Caribbean Sea, and the western tropical North 
Atlantic (Wang and Enfield 2001, 2003). Previous 
studies have shown that the AWP plays an important 
role in Atlantic TC activity, and provides a moisture 
source for North America, and thus affects rainfall 

in the central United States (Wang et al. 2006, 2008a, 
2011; Drumond et al. 2011). Unlike the Indo-Pacific 
warm pool, which straddles the equator, the AWP is 
normally north of the equator. Another unique fea-
ture of the AWP is that it does not exist in the boreal 
winter if the AWP is defined by SSTs warmer than 
28.5°C (Wang and Enfield 2001). In addition to the 
large seasonal cycle, AWP variability occurs on both 
interannual and multidecadal timescales and has ex-
hibited a long-term warming trend (Wang et al. 2006, 
2008b). Figures 4.36a,b depict the long-term total 
and detrended June–November (JJASON) AWP area 
indices. The multidecadal and interannual variations 
of the AWP are displayed in Figs. 4.36c,d respectively.

The multidecadal variability (Fig. 4.36c) shows 
that the AWPs were larger during the period 1930–60, 
as well as after the late 1990s; and smaller during 
1905–25 and 1965–95. The periods for large and small 

FIG. 4.33. Spatial distribution of average global sea 
surface temperature anomalies (°C, Reynolds et al. 
2002) during 2013.

FIG. 4.34. TRMM tropical South America precipitation 
anomalies (mm hr-1) with respect to 1998–2012 for (a) 
Jan–May 2013 and (b) Jun–Dec 2013.

FIG. 4.35. (a) Atlantic ITCZ position inferred from out-
going longwave radiation during Mar 2013. The colored 
thin lines indicate the approximate position for the 
six pentads of Mar 2013. The black thick line indicates 
the Atlantic ITCZ climatological position. The SST 
anomalies (Reynolds et al. 2002) for Mar 2013 based 
on the 1982–2012 climatology are shaded. The two 
boxes indicate the areas used for the calculation of the 
Atlantic Index in 4.35b; (b) Monthly SST anomaly time 
series averaged over the South American sector (SA 
region, 5°S–5°N, 10°–50°W) minus the SST anomaly 
time series averaged over the North Atlantic sector 
(NA region, 5°–25°N, 20°–50°W) for the period 2010–
13 forming the Atlantic Index. The positive phase of 
the index indicates favorable conditions for enhanced 
Atlantic ITCZ activity. 
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SIDEBAR 4.1: THE 2013 ATLANTIC HURRICANE SEASON: BLIP OR 
FLIP?—C. T. FOGARTY AND P. KLOTZBACH

The 2013 Atlantic hurricane season threw a few “curve 
balls” for forecasters and was the “wild pitch” that trig-
gered lengthy discussions among weather and climate 
scientists. What was predicted to be a very active season 
with at least seven hurricanes (about one-third of those 
projected to be major hurricanes) turned out to produce 
only two Category 1 hurricanes and just 20% of the pre-
dicted ACE. It was the quietest Atlantic hurricane season 
since 1994 in terms of major hurricanes (none), since 1983 
in terms of ACE, and since 1968 for lowest peak intensity 
of the season’s strongest storm.

Signals that convinced long-range forecasters to an-
ticipate a very active season included anomalously-warm 
SSTs in the MDR, the absence of El Niño conditions, 
below-normal sea level pressures in the tropical Atlan-
tic, and persistence of the positive phase of the AMO 
(Schlesinger and Ramankutty 1994) early in 2013, among 
other predictors. During neutral or negative phases of 
ENSO, upper-level wind shear in the tropical Atlantic is 
generally relatively weak. Neutral ENSO conditions were 
correctly predicted to be present by most forecast models 
during the 2013 hurricane season. The expectation that 
neutral ENSO conditions and a positive phase of the AMO 
would continue was key to the prediction of at least three 
major hurricanes—a relationship described by Klotzbach 
and Gray (2008).

The big question coming out of the season was “why 
so little activity when most standard pre-season predic-
tors indicated favorable storm formation conditions?” 
The primary clue was found over the eastern tropical 
Atlantic and within the MDR where the peak of the season 
was characterized by enhanced subsidence. Additionally, 
SSTs evolved in an unusual manner with little warming 
in the MDR during the spring and first half of summer 
when surface water should be warming. While tropical 
Atlantic SSTs were warmer than normal, cool anomalies 
were evident in the subtropical eastern Atlantic during 
the early part of the hurricane season (Fig. SB4.1b). This 
area has been shown in several studies including Klotzbach 
(2011), to be a critical area for Atlantic hurricane activity. 
Cold anomalies in this region tend to generate stronger-
than-normal baroclinicity, thereby contributing to cold 
upper-level lows, which enhance African easterly wave 
recurvature in the eastern part of the basin.

A similar pattern evolved in the higher latitudes of the 
North Atlantic. This evolution signalled what would be 
a short-term reversal of the longer-term positive phase 
of the AMO since the mid-1990s. These observations, 

however, raise more questions. Were the enhanced 
subsidence in the MDR and the “flat-lined” SST (see Fig. 
SB4.2) related? It certainly appears that way, given that 
the trade winds strengthened during that period which 
in turn arrested the usual warming of surface waters 
necessary to promote convective cloud formation. Dry air 
from the Saharan region was also advected into the MDR 

FIG. SB4.1. NOAA/NESDIS 50-km mean weekly SST 
anomaly (°C) for (a) 14 Mar, (b) 25 Jul, and (c) 02 Dec 
2013.
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FIG. SB4.3. Apr–Jun (AMJ) mean of the AMO and season-total 
ACE anomaly from 1948 to 2013. Five-year running mean in-
dicated with bold lines. 

by the enhanced trade winds. Another source of dry air 
(and wind shear) appeared to be from numerous cyclonic 
eddies diving southward during a commensurate reversal 
of the North Atlantic Oscillation (NAO) from negative 
to positive. Enhanced subsidence implies weaker easterly 
waves in the eastern Atlantic and a reduced likelihood of 
TC formation. Although convection was plentiful over 
the western part of the basin, above-normal vertical wind 
shear squelched the development of many storms that at-
tempted to form there. Mid-tropospheric subsidence was 
also detected over the MDR (see http://typhoon.atmos 
.colostate.edu/).

From August to October the SST anomaly and 
AMO states returned to their early spring pattern 
almost as quickly as they deviated early in the year 
(the similarity between SST anomaly structures in 
Fig. SB4.1a and c is quite remarkable); however, 
it appears there was a lagged storm-suppressing 
impact that affected the MDR during the midst of 
the season. This intraseasonal change is a reminder 
that sometimes predictability may be limited to 
a shorter timeframe, and in the future sudden 
changes to the AMO cycle (or perhaps even the 
NAO) may serve as a shorter-term predictor 
within the season.

Two important questions remain: (1) Does 
potential exist to anticipate these sudden changes 
in the AMO? (2) Could the behavior in 2013 simply 
be a harbinger of a “flip” in the phase of the AMO 

from the current positive state to a negative one? The 
last time such a quiet season occurred was in 1994, at 
the end of the previous long-term negative phase of the 
AMO. There can be occasional “blips” in the phase or 
magnitude of the oscillation as seen in Fig. SB4.3. In 1968 
there was a sharp drop in storm activity corresponding 
to a “dip” in the AMO index during that generally active 
era; however, the following year was extremely active. 
Data covering the past ~150 years of hurricane activity 
in the North Atlantic indicate that a period of ~60 years 
can be expected between peaks of hurricane activity, so 
the current active phase is more likely than not to persist 
for at least a few more years.

In summary, while many of the large-scale conditions 
typically associated with active TC seasons in the Atlantic 
were present (e.g., anomalously warm tropical Atlantic, 
absence of El Niño conditions, anomalously low tropical 
Atlantic sea level pressures), very dry midlevel air com-
bined with midlevel subsidence and stable lapse rates to 
significantly suppress the 2013 Atlantic hurricane season. 
These unfavorable conditions were likely generated by 
a significant weakening of the strength of the AMO/
Atlantic thermohaline circulation during the late spring 
and into the early summer. This very dry midlevel air is 
well-illustrated in figure 27 from last year’s TC forecast 
verification report that shows the relative humidity 
anomalies at 600 hPa; that report is available at http://
hurricane.atmos.colostate.edu/Forecasts/2013/nov2013 
/nov2013.pdf.

FIG. SB4.2. CIRA/RAMMB area-averaged SST through-
out the MDR during 2013. Climatological values shown 
in black and observed shown in blue. Note the anomaly 
reversal from May to Jul.
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AWPs coincide with the warm and cool phases of the 
Atlantic multidecadal oscillation (AMO; Delworth 
and Mann 2000; Enfield et al. 2001). That is, AWP 
variability is tied to simultaneous alterations of SST 
in the high latitudes of the North Atlantic in a mode 
that operates primarily on a multidecadal timescale. 
Wang et al. (2008b) showed that the influences of 
the AMO on TC activity and climate might operate 
through the atmospheric changes induced by the 
AWP. The interannual AWP variability reflects both 
the local oceanic/atmospheric processes and the re-
mote delayed influence of Pacific ENSO. The JJASON 
AWP interannual index of Fig. 4.36d is significantly 
correlated with the prior December–February (DJF) 
Niño3 region of SST anomalies, indicating a delayed 
ENSO effect on the AWP (Wang et al. 2008b). A recent 
study showed that the equatorial Amazon rainfall 
during the austral summer is negatively related to 
the following boreal summer’s AWP SST, manifesting 
the remote ENSO impact on the AWP SST through 

its modulation of the Amazon rainfall (Misra and 
DiNapoli 2013). However, the contemporaneous 
correlation of the JJASON Niño3 SST anomalies and 
JJASON AWP index is not statistically significant. 
This reflects the facts that (1) large/small AWPs in 
the summer  and fall have no clear relation to con-
temporaneous El Niño/La Niña development, and 
(2) by the summer and fall of the following year the 
Pacific El Niño/La Niña anomaly has almost always 
disappeared.

The AWP was larger than its climatological mean 
each month in 2013, with the largest AWP occurring 
in September (Fig. 4.37a). The AWP usually appears 
in May and peaks in September; however, the 2013 
AWP variation was unique as it appeared early in 
March with a second peak in April. A new study 
demonstrates that the onset date of the AWP during 
1979–2012 ranged from late April to early August 
(Misra et al. 2014). This indicated that the early on-
set of the 2013 AWP in March was the earliest onset 
during the recent decades. Because SSTs were warmer 
than 28.5°C in the equatorial western Atlantic from 
March 2013 (Fig. 4.37c), the AWP started to appear in 
March. In April, the warmer water in the equatorial 
western Atlantic further developed and merged with 
the warmer water in the equatorial eastern Atlantic 
(Fig. 4.37d). By May, the warmer water decayed in the 
equatorial western Atlantic (Fig. 4.37e). As in previous 
years, the AWP started to develop in June between the 
Gulf of Mexico and Caribbean Sea with the 28.5°C 
SST almost overlapped with the climatological AWP 
(Fig. 4.37f). By July and August, the AWP was well 
developed in the Gulf of Mexico and Caribbean Sea 
and reached eastward to the western tropical North 
Atlantic (Fig. 4.37g,h). By September, the AWP had 
further expanded southeastward and the isotherm 
of 28.5°C covered almost the entire tropical North 
Atlantic (Fig. 4.37i). The AWP started to decay after 
October when the waters in the Gulf of Mexico began 
cooling (Fig. 4.37j,k).

Previous studies have shown that AWP variability 
affects the Atlantic hurricane tracks (Wang et al. 
2011). An eastward expansion of the AWP tends to 
shift the focus of cyclogenesis eastward, therefore 
decreasing the probability for hurricane landfall in 
the southeastern United States. A large AWP also 
weakens the North Atlantic subtropical high and 
produces the eastward TC steering flow anomalies 
along the eastern seaboard of the United States. Due 
to these two mechanisms, hurricanes are generally 
steered toward the north and northeast during a large 
AWP year. The TC steering flow anomalies in 2013 

FIG. 4.36. The AWP index from 1900–2013. The AWP 
area index (%) is calculated as the anomalies of the 
area of SST warmer than 28.5°C divided by the cli-
matological Jun–Nov AWP area. Shown are the (a) 
total, (b) detrended (removing the linear trend), (c) 
multidecadal, and (d) interannual area anomalies. The 
multidecadal variability is obtained by performing a 
seven-year running mean to the detrended AWP index. 
The interannual variability is calculated by subtracting 
the multidecadal variability from the detrended AWP 
index. The black straight line in (a) is the linear trend 
that is fitted to the total area anomaly. The extended 
reconstructed SST data set is used.
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FIG. 4.37. (a) The monthly AWP area in 2013 (1012 m2; 
blue) and the climatological AWP area (red) and the 
spatial distributions of the 2013 AWP in (b) Feb, (c) 
Mar, (d) Apr, (e) May, (f) Jun, (g) Jul, (h) Aug, (i) Sep, 
(j) Oct, and (k) Nov. The AWP is defined by SST larger 
than 28.5°C. The black thick contours in (f)–(k) are the 
climatological AWP based on the data from 1971–2000 
and the white thick contours are the 2013 28.5°C SST. 
The extended reconstructed SST data set is used.

were consistent with those of the observed large AWP 
years (Wang et al. 2011).

During the 2013 Atlantic TC season, the TC 
steering f low anomalies were characterized by an 
anomalous cyclone and an anomalous anticyclone 

(Fig. 4.38). Associated with these patterns were mostly 
the eastward and southeastward flow anomalies in the 
western tropical North Atlantic, and the northward 
and northeastward flow anomalies in the open ocean 
of the North Atlantic. An exception was in November 
during which the TC steering flow anomalies were 
westward in the hurricane MDR (Fig. 4.38f), but only 
one storm, Melissa, formed southeast of Bermuda 
during that month. The distribution of the 2013 
TC steering flow was unfavorable for TCs to make 
landfall in the southeastern United States. While a 
large AWP is consistent with the fact that no storms 
made landfall in the southeastern United Stated in 
2013 (either by decaying or moving northward or 
northeastward), the AWP had no apparent enhancing 
effect on the number of TCs for the North Atlantic TC 
season (section 4d2) as a large AWP typically results 
in more TCs (Wang et al. 2006).

i. Indian Ocean dipole—J.-J. Luo
Interannual climate variability in the tropical 

Indian Ocean (IO) is driven either by local ocean-
atmosphere interactions or by the Pacific ENSO in 
the presence of interbasin interactions (e.g., Luo et 
al. 2010). The Indian Ocean dipole (IOD) is one ma-
jor internal climate mode in the IO that may induce 
considerable climate anomalies in many countries 
surrounding the IO. The IOD normally starts in 
boreal summer, peaks in Northern Hemisphere fall, 
and declines rapidly in early boreal winter. During 
May–September 2013, a negative IOD (nIOD) event 
occurred, characterized by anomalous SST warming 
in the tropical eastern IO and cooling in the west. 
Compared to previous events in 1990, 1992, 1996, 
1998, 2001, 2005, and 2010 (Luo 2011), the 2013 nIOD 
was short-lived and weak with warm ing anomalies 
in the eastern IO of <0.5°C and a maximum cooling 
anomaly in the west of about −0.4°C in July (Fig. 4.39). 
The east warming/west cooling SST dipole structure 
is linked with stronger-than-normal surface wester-
lies in the central equatorial IO (Ucio) as noted in Fig. 
4.39b; and this is reminiscent of the canonical air-sea 
coupled feature of nIOD. Note that this nIOD signal 
occurred along with a weak cooling condition in the 
Pacific. Such co-occurrence of IOD and ENSO has 
been found often in the historical records.

SSTs in major parts of the tropical IO during 2013 
were warmer than normal except the western IO 
during June–August (Fig. 4.40). This may be partly 
due to the rapid rise of the IO SST over past decades 
in response to increasing greenhouse gas emissions 
(Hoerling et al. 2004). The fast surface warming in 


