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a b s t r a c t

The method of polynomial chaos expansions is illustrated by showing how uncertainties in boundary
conditions specifying the flow from the Caribbean Sea into the Gulf of Mexico manifest as uncertainties
in a model’s simulation of the Gulf’s surface elevation field. The method, which has been used for a vari-
ety of engineering applications, is explained within an oceanographic context and its advantages and dis-
advantages are discussed. The method’s utility requires that the spatially and temporally varying
uncertainties of the inflow be characterized by a small number of independent random variables, which
here correspond to amplitudes of spatiotemporal modes inferred from an available boundary
climatology.

� 2011 Elsevier Ltd. All rights reserved.
2 Chaos within this context should not be confused with its more modern usage to
indicate sensitivity to small perturbations (Lorenz, 1963).
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1. Introduction

The object of this paper is to point out how uncertainties of
oceanographic simulations might be explored using the method
of polynomial chaos expansions. This method was first introduced
by Wiener (1938), who addressed the question of efficiently esti-
mating uncertainties of a dynamical simulation stemming from
uncertainties in its defining parameters. He realized that, in princi-
ple, a probability density describing the uncertainty of the param-
eters might be propagated dynamically to provide distributional
information about any aspects of the simulation, but there was
the issue of how to do it in practice. By using polynomial expan-
sions to express the simulation’s dependence on the uncertain
parameters, he reduced the problem of propagating uncertainties
to the task of determining expansion coefficients. The phrase
‘‘polynomial chaos’’, which has become popular in the engineering
literature, stems from Wiener’s referring to uncertainty as ‘‘chaos’’
ll rights reserved.
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and from his use of a polynomial expansion.2,3 When the outputs of
a simulation are well-approximated by polynomials of the inputs,
polynomial expansions are appropriate, but when they are not, the
expansions may converge slowly or may not converge at all.4 The
‘‘chaos’’ part of the method relates to the choice of the polynomial
basis: as the probability density function describing the uncertainty
of the inputs appears in all expectation integrals, it is best to choose
polynomials that are orthogonal when weighted by that density.

The method certainly should be of interest, as oceanographic
simulations have many uncertain inputs.5 For example, they de-
pend on initial values of temperature, salinity, and other state vari-
ables at each point within the model’s domain, on temporally
varying values characterizing forcing fluxes everywhere on the
For an introduction to the engineering literature see the reviews by Xiu (2009)
and Najm (2009).

4 While the Cameron–Martin theorem (Cameron and Martin, 1948) guarantees
convergence for any finite variance process, in practice convergence is tested by
checking the impact of retaining more terms in the expansion.

5 Other approaches to oceanographic uncertainty can be found in the books of
Bennett (2002), Evensen (2009), and Wunsch (2006). For discussions of uncertainty in
fields other than oceanography, see the article in the special issue of Journal of
Computational Physics (Karniadakis and Glimm, 2006) in which Lermusiaux (2006)
presents his view of oceanographic uncertainties to a wider audience.
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7 When there is more than one uncertain parameter of interest, x in Eq. (1) becomes
a vector, as do x0 and n, while x1 becomes a matrix.

8 When constructing software that might be used for a variety of applications, it is
useful to standardize n so that it has zero for its central value and a spread of unity.

9 Another approach to polynomial chaos expansion (e.g. Knio and Le Maître, 2006;
Le Maître and Knio, 2010) does require that the uncertainty of all evolving state
variables be computed. In that case the polynomial chaos expansions for all state
variables, each similar to Eq. (2), are inserted into the dynamical equations and the
condition that the residuals be small in a statistical sense produces a system of
equations for the expansion coefficients similar to but more complicated than the
original dynamical system. As this would require software at least as demanding to
construct as that already existing for the numerical model, this option was not
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air-sea boundary, on values used for a variety of transport coeffi-
cients, and when there are open lateral boundaries on the details
of their specification. Quantitative information about the impacts
of their mis-specification could be quite valuable. Not only would
it reveal the limitations of the utility of a simulation, it would also
suggest which inputs must be better known to achieve a more useful
simulation. It is important to recognize that the method of polyno-
mial chaos expansions, like all methods for dealing with uncertainty,
suffers from what Bellman (1957) called the ‘‘curse of dimensional-
ity’’, namely the inescapable fact that computational complexity
increases geometrically with increasing numbers of uncertain
parameters. Thus, in practice, the method is used to examine the
consequences of a limited number of uncertain inputs.

As Kalman filtering (e.g. Evensen, 2009) is better known to
oceanographers, especially within the context of data assimilation
where its role is to characterize the dynamically evolving uncer-
tainties of the model state, comparing it with the method of poly-
nomial chaos expansions can be instructive. The Kalman filter
owes much of its utility to its characterization of the uncertainties
using only an evolving mean state and an evolving matrix of covar-
iances characterizing the state’s uncertainty. The curse of dimen-
sionality manifests in the size of the error-covariance matrix,
which is unmanageably large, so much effort has been devoted
to its approximation. For example, the ensemble Kalman filter
approximates it using covariances inferred from a manageable
number of simulations chosen to sample important aspects of
the state’s uncertainty. The method of polynomial chaos expan-
sions as illustrated here also uses an ensemble of simulations to
characterize the input uncertainties. However, the purpose of the
ensemble is to provide quadrature information needed for evaluat-
ing the expansion coefficients, so the ensemble members are cho-
sen to optimize the accuracy of the coefficients. The resulting
expansions provide not just means and covariances but provide
complete distributional information about the model’s outputs.

It is also useful to note that Monte Carlo methods (e.g. Gilks
et al., 1996), which also seek general distributional information
about outputs, generally require a much larger ensemble of simu-
lations to achieve the same accuracy that might be obtained from
polynomial chaos expansions with a small quadrature ensemble.
Polynomial interpolation between simulations in effect provides
additional implicit sampling. While large Monte Carlo ensembles
are unachievable for computationally intensive simulations, smal-
ler quadrature ensembles might be affordable using today’s com-
putational resources.

If alternative choices for the uncertain parameters are regarded
as perturbations of the favorite choice, then this method might be
regarded as a perturbation method. However, as there is no
requirement that the perturbations be small, the method of poly-
nomial chaos expansions can accommodate information about
large but unlikely perturbations. Within the context of automatic
differentiation, propagation of infinitesimal perturbations is
accomplished using the forward method and tangent-linear codes
for accomplishing this can be generated automatically, but unfor-
tunately they have to be run once for each perturbed input (e.g.
Griewank and Corliss, 1991). On the other hand, sensitivities of a
single output to infinitesimal perturbations of all uncertain inputs
can be computed with automatically generated codes that imple-
ment the reverse or adjoint method.6

To illustrate the method of polynomial chaos expansions, we
examine how uncertainties in the inflow through the Yucatan
Straits manifest in the Gulf of Mexico’s surface-elevation field
and in the behavior of the Loop Current. Because of the Gulf’s
6 Adjoint codes are typically used to compute the gradient of a cost function for use
in algorithms seeking to optimize the choice of a model’s uncertain input parameters.
semi-enclosed geography with the Loop Current being the princi-
pal dynamical feature, we thought that the consequences of mis-
specifying the inflow should be interesting. Our challenge was to
find a way to reduce the uncertainties of the spatially and tempo-
rally varying inflow to a few parameters, as we could find no pub-
lished example of a similar problem. As the circulation in the Gulf
is simulated using a high-resolution numerical model, the major
computational expense is the ensemble of simulations needed to
evaluate the coefficients of the polynomial expansions; the cost
of evaluating the coefficients and using them to examine the out-
put uncertainties is trivial in comparison.

Section 2 describes the methodology. After describing the
numerical model used to simulate the Gulf’s circulation, Section 3
explains our approach to reducing the inflow uncertainties to two
random parameters. Section 4 discusses how the expansions are
truncated and the ensemble of simulations needed for evaluating
the coefficients of the polynomials. Then Section 5 presents the
mean and standard deviation of the surface elevation field result-
ing from assumed distribution of possible boundary conditions
and discusses surface-elevation covariances. By showing probabil-
ity densities characterizing the non-Gaussian nature of the model’s
response, Section 6 illustrates how the polynomial expansions can
be used to emulate the numerical model. And section 7 examines
the convergence of the polynomial expansion. Finally, Section 8
concludes with comments about what the method might offer
for oceanographic applications.
2. The methodology

The objective of the method is to assess how uncertainties of in-
puts of a dynamical system manifest in its outputs. To see how it
works, consider the simple case of only a single uncertain input
x, as generalization to two or more is relatively straightforward.7

To express its uncertainty quantitatively, x can be expressed in terms
of a central value x0, which when not accounting for uncertainty
would be used as input, and a spread x1 characterizing the likely
range of values around x0:

x ¼ x0 þ x1n; ð1Þ

where n is a standardized random variable with probability density
function p(n).8 For most problems we might have some idea what
values to use for x0 and x1, but there may be little empirical basis
for our choice of p(n). When there are no fixed bounds on the range
of x, the probability density might be taken as Gaussian. That was in
fact the choice made by Wiener (1938), and that will also be ours,
but other, possibly empirical, densities might be used.

Again for simplicity it is useful to focus on a single output
y = y(n), which might be thought of as the surface elevation at a
particular space–time point.9 The method centers on the assump-
tion that output y can be efficiently described by series of polynomi-
considered for this study. Finette (2006) has proposed this approach for studying
uncertainties of underwater acoustics, Ge et al. (2008) for nonlinear shallow-water
equations, and Shen et al. (2010) for the Lorenz (1984) model. Somewhat similarly,
Sapsis and Lermusiaux (2009) have suggested using a temporal evolving set of basis
functions rather than a fixed polynomial basis.



Table 1
The first few Hermite polynomials Pn and their normalization factors Nn, which are
appropriate when n has a standard normal probability density
pðnÞ ¼ ð1=

ffiffiffiffiffiffiffi
2p
p

Þ expð�n2=2Þ.

n Hn(n) Nn

0 1 1
1 n 1
2 n2 � 1 2
3 n3 � 3n 6
4 n4 � 6n2 + 3 24
5 n5 � 10n3 + 15n 120
6 n6 � 15n4 + 45n2 � 15 720
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als of the input x, or equivalently by polynomials of the standardized
input n:

yðnÞ ¼
XK

k¼0

ykPkðnÞ þ �KðnÞ; ð2Þ

where P0(n) = 1, P1(n) = n, and Pk for k > 1 are orthogonal polynomi-
als of degree k and yk are coefficients that must be determined; K
indicates where the series is truncated and �K represents the trun-
cation error. Rearranging could cast the expansion as a power series,
but the polynomial grouping is preferred in order to exploit the
orthogonality of the polynomials when evaluating expectation
integrals:Z

PjðnÞPlðnÞpðnÞdn ¼ Nkdj;k; ð3Þ

where Nk is a normalization constant. The probability density p(n)
governs the choice of polynomials to be used for the expansion.
For example, a Gaussian density requires Hermite polynomials,
the first few of which are listed in Table 1 together with their nor-
malization constants. Similarly, a uniform density on a finite inter-
val would require Legendre polynomials. And polynomials for an
empirical density might be constructed using a Gram–Schmidt pro-
cedure (Witteveen and Bijl, 2006).

Before addressing the issues of how many terms are needed and
how their coefficients can be determined, consider how the poly-
nomial expansion (2) can be used to examine the uncertainty of
model outputs. First, it allows statistics of the uncertain output y
to be computed in a straightforward manner. For example, the
mean of y for all possible values of x is simply the first term of
the expansion y0:

hyi ¼
Z

yðnÞpðnÞdn ¼
XK

k¼0

yk

Z
PkðnÞpðnÞdnþ

Z
�KðnÞpðnÞdn ¼ y0;

ð4Þ

where the truncation error term vanishes because it could have
been represented by extending K to 1. Thus, the mean is indepen-
dent of the number of terms retained in the expansion. Note that
the mean output is generally not the same as the output corre-
sponding to the mean input: y0 – y(n0). The variance of y involves
all coefficients except y0:

hðy� y0Þ
2i ¼

X1
k;l¼1

ykyl

Z
PkðnÞPlðnÞpðnÞdn

¼
XK

k¼1

Nky2
k þ truncation error: ð5Þ

As the estimate for variance reflects the number of retained terms,
it can be used to monitor convergence.10 And, for a second output
variable z, perhaps the surface elevation at another space–time
point, which would have expansion coefficients zk, the covariance
is provided by a similar series:

hðy� y0Þðz� z0Þi ¼
XK

k¼1

Nkykzk þ truncation error: ð6Þ

Higher statistical moments can be computed in a similar fashion.
Second, the expansion (2) can also be used to generate an out-

put for any desired input without the need for solving the dynamic
system: just neglect the truncation error �K and evaluate y(n) for
the value of n corresponding to the desired input x.11 Thus, knowing
10 Because each term in the expression (5) is positive, truncating the expansion
necessarily underestimates the variance.

11 In this regard polynomial chaos expansions resemble the Bayesian emulator of
Conti and O’Hagan (2010).
the expansion coefficients yk allows you to synthesize an ensemble
of outputs and thus to build a histogram characterizing the likeli-
hood of any given value. The major cost of this convenience is in
the evaluation of the expansion coefficients. The accuracy with
which the outputs can be evaluated depends on the degree to which
the polynomial expansion has converged. There appears to be no a
priori way to know how many terms are required, so an a posteriori
examination of the impact of the last retained term will be needed.
Clearly, for high-resolution ocean modeling, computational re-
sources limit the number of terms that can practically be considered.

Now turn to the issue of evaluating the coefficients. Rather than
following the original approach of Wiener (1938), which requires
first deriving and then solving a coupled set of equations for the
temporally evolving expansion coefficients, we take the simpler
approach suggested by Le Maître et al. (2002) of determining them
from a specifically designed ensemble of simulations that sample
the possible inputs.12 After multiplying (2) by Pk(n)p(n) and integrat-
ing, orthogonality of the polynomials provides expressions for the
coefficients:

yk ¼
1

Nk

Z
yðnÞPkðnÞpðnÞdn: ð7Þ

If y(n) were known at sufficiently many values nq, then the coeffi-
cients could be evaluated by quadrature:
Z

yðnÞPkðnÞpðnÞdn ¼
X

q

yðnqÞPkðnqÞwq þ quadrature error; ð8Þ

where wq is the weight associated with quadrature point nq and the
summation is over all quadrature points (e.g. Abramowitz and
Stegun, 1970). Computing the expansion coefficients zk for a second
output variable z requires little additional expense, as exactly the
same quadrature points nq can be used and the values z(nq) can be
obtained simultaneously with y(nq). The major computational
expense of examining all outputs of an ocean circulation model is
the storage of their values for each quadrature point.

As obtaining the value of y(nq) for each quadrature point would
require solving the dynamical system for the corresponding input
xq = x0 + x1nq, when the coefficients are determined by quadrature,
the polynomial chaos method might be regarded as a special type
of Monte Carlo method. However, a distinction can be drawn based
on the number of ensemble members needed for accurately por-
traying the statistics of y. When the expansion (2) for y(n) con-
verges rapidly, the number of quadrature points needed for
accurate evaluation of the coefficients is also small, requiring con-
siderably fewer model integrations than would be needed to
achieve the same accuracy with Monte Carlo methods.

Quadrature presents the issues of how many points are needed
and where they should be located so that they efficiently evaluate
the integrals for the expansion coefficients. The presence of the
12 Tatang et al. (1997) have suggested a similar approach for studying uncertainties
of radiative forcing in atmospheric models and Webster and Sokolov (2000) for
quantifying uncertainties in climate projections.



Table 2
Quadrature points nq and weights wq for Hermite–Gauss integration with n points.

n nq wq

2 ±1.000000 0.5000000
3 0 0.6666667

±1.732044 0.1666667
4 ±0.741964 0.4541241

±2.334414 0.0458758
5 0 0.5333335

±1.355626 0.2220757
±2.869694 0.0112574

6 ±0.616706 0.4088287
±1.889176 0.0886155
±3.324257 0.0025558

7 0 0.4571431
±1.154406 0.2401230
±2.366760 0.0307574
±3.750439 0.0005484
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probability density p(n) in the integrand can be exploited by Gauss-
ian quadrature to guarantee that Q quadrature points approximate
the integral exactly when the rest of the integrand is a polynomial
of degree 2Q � 1 or less. It is the product of a polynomial of degree
K or less with the output, so the coefficients y0,y1, . . . ,yK can be
computed exactly using K + 1 Gaussian quadrature points as long
as the output is a polynomial of degree K or less. If the neglected
terms are small, y is almost a polynomial of degree K, so K + 1
quadrature points should give good approximations for the inte-
grals. In practice, as the rate of convergence of the polynomial
expansion is a priori unknown, computational costs limit the num-
ber of model runs and thus the number of the quadrature points
that can be used, limiting the accuracy of the expansion coeffi-
cients. Confirming the convergence of the quadrature integrals, like
confirming the convergence of the polynomial expansion, requires
an a posteriori analysis.

When the probability density p(n) is Gaussian, the best locations
for the points are those appropriate for Hermite–Gauss quadrature
(Abramowitz and Stegun, 1970). These locations depend on the
number of points used. Table 2 shows the locations and weights
when the number of points range from 2 to 7. So the decision of
where they should be located reduces to that of how many to
use to get accurate evaluations of the integrals.13

Because practicality dictates that the consequences of only a
few uncertain inputs can be analyzed, it is important to be clear
about exactly which are to be propagated. For this study the
dynamical system is the circulation of the Gulf of Mexico as de-
scribed by a numerical model based on the partial-differential
equations of fluid dynamics, and the focus is on the uncertainties
of the inflow through the Yucatan Straits, which will be character-
ized in Section 3 below using two uncertain parameters. To a lesser
extent practicality also limits the number of outputs that can be
analyzed.14 Here, they are limited to the evolving surface elevation
field sampled at 15-day intervals.
3. Modeling the Gulf of Mexico and its inflow

The flow in the Gulf of Mexico (Fig. 1) is simulated using the Hy-
brid Coordinate Ocean Model, which is commonly known as HY-
COM.15 The configuration used here is the same as that being used
operationally by the US Navy for ocean prediction.16 The computa-
tional domain is open along portions of its southern and eastern
boundaries, where values are generally provided by a lower-resolu-
tion (1/12� vs. 1/25�) simulation of HYCOM configured for the Atlan-
tic Ocean (similar to Chassignet et al., 2007). As boundary conditions
were available for the period from September 9, 2004 through
December 31, 2007, that period was chosen for demonstrating the
method of polynomial chaos expansions. To illustrate the method
of polynomial chaos expansions, we ask how uncertainties associ-
ated with flow from the Caribbean manifest within the Gulf.
13 These quadrature points and weights are appropriate when the integrands
involve the normal density ð1=

ffiffiffiffiffiffiffi
2p
p

Þ expð�n2=2Þ. Tabulated values are often for
integrands having instead a factor exp(�n2) with the points shifted by a factor

ffiffiffi
2
p

and
the weights larger by a factor

ffiffiffiffi
p
p

.
14 For our example, the outputs comprise the hydrodynamic and thermodynamic

fields at all points within the model’s domain as they evolve in time as well as
Lagrangian quantities such as centers of eddies or the maximum northward extent of
the Loop Current.

15 HYCOM’s distinguishing feature is a generalized vertical coordinate system that
optimizes the distribution of vertical computational layers by making them isopycnic
in stratified regions, terrain-following in shallow coastal regions, and isobaric in the
unstratified mixed layer (Bleck, 2002). It serves a large community, who use it for a
variety of applications. More information about HYCOM can be found at http://
www.hycom.org.

16 Details of the surface forcing, mixing parameterizations, etc. can be found in the
paper of Prasad and Hogan (2007).
We are immediately faced with the issue of how uncertainties
in these boundary conditions might be quantified. Ideally, they
would be taken from a large ensemble of Atlantic simulations care-
fully prepared by varying all inputs over their likely values, but
unfortunately no such ensemble exists. What was available was a
‘‘climatology’’ of the open boundary conditions (Kourafalou et al.,
2009), and its spatial and temporal variability provides a proxy
for the statistics of the uncertainties of the boundary conditions.
Without having empirical evidence of the nature of the boundary
uncertainty, it seems best to guarantee that they have a similar
spread and co-variability as the boundary fields themselves, so that
alternative boundary conditions produce reasonable flows.

The next issue is reducing the boundary climatology to just a
few parameters that might be propagated using the method of
polynomial chaos expansions. These few parameters should char-
acterize the uncertainties of each of the model’s state variables at
every point on the open southern boundary. In addition there is
the issue of characterizing how these uncertainties change with
time. Even if the deviation of the boundary state at a given time
might differ from the favorite boundary conditions for that time,
its deviation at another time is not likely to be the same, but it
should be related. So there is the need to account for temporal vari-
ations in the uncertainty without unduly increasing the number of
random parameters.

Our solution was to analyze the boundary climatology into a
sum of products of spatial patterns and time series using singu-
lar-value decomposition. The spatial patterns are multivariate
empirical orthogonal functions (EOFs), i.e. eigenvectors of the
boundary-data correlation matrix, the times series are the corre-
sponding principal components, i.e. linear combinations of the
boundary variables, and the singular values indicate the amounts
of variability associated with each spatiotemporal mode. If the first
few singular values are sufficiently large, then most of the bound-
ary climatology’s multivariate spatial and temporal co-variability
can be described by just a few modes, and these modes of co-var-
iability can be used to model the uncertainties of the boundary
conditions.

So a class of reasonable boundary conditions can be generated
by adding to the favorite boundary conditions some amounts of
each of these modes, with a probability density governing how
much of each mode is reasonable. The density’s central values
would be zero, so that the favorite boundary conditions would be
the most likely boundary conditions, and the multidimensional
spread could be estimated from the singular values, which are
related to the fraction of variance of each mode occurring in
the climatology. Thus, if X0 is a matrix containing data for the
favorite boundary conditions, with each column corresponding to

http://www.hycom.org
http://www.hycom.org
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a particular time and each row to a particular variable at a point on
the open boundary, then other possible boundary conditions could
be represented by a similar matrix X:

X ¼ X0 þ a
XN

j
njkjcjrT

j; ð9Þ

where the column vectors cj are the EOFs, the row vectors rT
j are the

principal components, kj are the singular values, N is the number of
modes used to characterize the boundary variability, nj are unit-
variance random amplitudes reflecting the uncertainty of the
boundary values.17,18,19 The coefficient a controls the spread of
likely boundary values relative to the boundary’s climatological var-
iability; we use a = 1 for the examples discussed here, but if we had
considered our favorite boundary conditions to be more reliable, a
smaller value would have been be more appropriate.

Because the principal components are uncorrelated, their ran-
dom amplitudes should also be uncorrelated, and their multivari-
ate probability density function pN should be the product of
univariate densities p:
17 When computing the singular-value decomposition, the boundary data were first
standardized by removing each variable’s mean and dividing by its standard
deviation, so that all could be represented on a common scale. The components of
the EOFs cj were then multiplied by the corresponding standard deviations to restore
their units.

18 The climatological boundary data were available bi-weekly for 26 weeks, and as
means had been removed, there were 25 non-zero singular values.

19 It is interesting to compare Eq. (9) with its univariate counterpart (1). X, which
represents all variables at all points on the open southern boundary at all times, is the
multivariate generalization of the single uncertain input x, and X0 is the generaliza-
tion of the central value x0. While the many elements of X are all uncertain, their
uncertainties are not independent, as they are tied to the N parameters nj, the
multivariate generalizations of the standardized parameter n in (1). The spread x1

generalizes to the matrix products akjcj rj assigning a spread to each boundary
variable for each of the parameters nj. If the matrices X and X0 are all unfolded into
column vectors x and x0, and if the parameters are regarded as elements of a (shorter)
column vector n, then when unfolded the spread matrices akjcjrj can be organized as
columns of a grand spread matrix X1, and Eq. (9) can be rewritten in a form analogous
to (1): x = x0 + X1n.
pNðn1; n2; . . . ; nNÞ ¼
YN

j
pðnjÞ: ð10Þ
And because the principal components reflect the variance of the
climatology about its mean, the univariate densities can be taken
to be standard normal densities.

The singular values kk are shown in Fig. 2. Their squares are pro-
portional to the fraction of variance of the climatology represented
by the linear combinations of the boundary variables correspond-
ing to each mode. As the first these eight modes account for 90%
of the variance, it would be good to use these eight modes to model
the uncertainty of the boundary conditions. However, because
computational costs increases geometrically with each additional
uncertain parameter, we have chosen to use only the first two,
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Fig. 2. Singular values kj of the boundary climatology. As the climatology provides
bi-weekly values and the means have been removed, there are only 25 non-zero
singular values.



21 For practical purposes these weights might be taken to be zero and the
simulations corresponding to the four most unlikely members of the ensemble could
be avoided. The two-dimensional array of quadrature points does not appear to be
optimal for sampling likely situations and other approaches to two- and higher-
dimensional quadrature might be more cost-effective.
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which together account for 42% of the variance, as that is sufficient
to illustrate the method. Thus, Eq. (9) becomes:

X ¼ X0 þ an1k1c1rT
1 þ an2k2c2rT

2: ð11Þ

The lower-left panel of Fig. 3 shows the first two principal compo-
nents r1 and r2, which characterize the temporal behavior of the two
modes of southern-boundary variability. The upper two panels
show the corresponding spatial patterns of meridional velocity.
These patterns, along with those for zonal velocity, temperature,
salinity and pressure which are not shown, are contained in the col-
umn vectors c1 and c2. For comparison, the mean meridional veloc-
ity is shown in the lower-right panel.

4. Quadrature ensemble

With two random inputs the polynomial chaos expansion in-
volves polynomials of two variables. Because the parameters n1

and n2 are, by construction, uncorrelated over the one-year interval
for which there were data to define them, they can be regarded as
statistically independent. Consequently, the bi-variate probability
density describing their distribution is the product of two univar-
iate densities p(n1) and p(n1), in this case standard Gaussians, and
the expansion polynomials can be chosen as products of Hermite
polynomials Pk1 ðn1Þ and Pk2 ðn2Þ. Thus, the polynomial expansion
for a single output becomes:

yðn1; n2Þ ¼
Xk1þk26K

k1 ;k2

yk1 ;k2
Pk1 ðn1ÞPk2 ðn2Þ þ �Kðn1; n2Þ; ð12Þ

where triangular truncation retains polynomials of total degree no
greater than K = 6.20 Exploiting orthogonality of the polynomials as
in section 2 expresses the expansion coefficients as double integrals:

yk1 ;k2
¼ 1

Nk1
Nk2

ZZ
yðn1; n2ÞPk1 ðn1Þpðn1Þdn1Pk2 ðn2Þpðn2Þdn2; ð13Þ

which can be evaluated by Gauss–Hermite quadrature one integral
at a time:ZZ

yðn1; n2ÞPk1 ðn1Þpðn1Þdn1Pk2 ðn2Þpðn2Þdn2

�
X

q1

X
q2

yðnq1
; nq2
ÞPk1
ðnq1
Þwq1

Pk2
ðnq2
Þwq2

: ð14Þ

The quadrature points q1 and q2 and weights w1 and w2 (Table 2)
are for integrating over n1 and n2, respectively.

Now comes the question of how many quadrature points to use.
First, should the same number be used for both integrations? If the
polynomial expansion converges faster for one uncertain input
than for the other, the output is more nearly a low-order polyno-
mial of that variable and fewer quadrature points may suffice.
However, as the rates of convergence are not known a priori, it
seems best to use the same number for both. With the two uncer-
tain variables treated symmetrically, the locations of the quadra-
ture points needed for one integration are the same as for the
other, just along a different axis; because the quadrature approxi-
mates a double integral, the points are not confined to the axes but
are spread over the plane (Fig. 4). So if Q points are needed for each
one-dimensional integral, then Q2 pairs ðnq1

; nq1
Þ are need for the

double integral. As truncation ignores polynomials of degree
k > 6, it is reasonable to use Q = 7 quadrature points in each direc-
tion or 49 in all, each requiring a separate run of the HYCOM mod-
el. And as the model has a horizontal resolution of roughly 4 km,
20 Because the principal components are uncorrelated, so are their sums and
differences. So the expansions equally well might have been in polynomials of
n� ¼ ðn1 � n2Þ=

ffiffiffi
2
p

, which if truncated at degree K would contain terms involving n2K
1

and n2K
2 . Triangular truncation K1 + K2 6 K better respects the isotropy of the random

variables and regards the products K1 + K2 > K as being of higher order.
the 64 runs needed for Q = 8 would tax our available computa-
tional resources, so we chose to proceed with 7 quadrature points
in each direction.

Fig. 4 shows the locations of the 49 quadrature points relative to
contours of the bi-variate normal density function. There is a 90%
probability that an open southern boundary conditions corre-
sponds to points (n1,n2) within the smallest circle. The next larger
circle encloses an additional 9% of the possible boundary condi-
tions, and each larger circle adds a smaller fraction, leaving only
0.0001% outside the largest circle. Note that many of the quadra-
ture points correspond to boundary conditions that are highly un-
likely. Thus, the ensemble of HYCOM runs providing values at the
quadrature points includes what might be regarded as quite ex-
treme events. Monte Carlo methods would require an ensemble
of 1,000,000 randomly drawn boundary conditions to have a rea-
sonable chance of sampling beyond the largest circle where the
much smaller quadrature ensemble has four points. Note however
that each of these remote cases has a quadrature weight of only
3.0074 � 10�7.21

Each of the 49 quadrature points provides a different specifica-
tion of the open southern boundary. And with initial conditions,
surface forcing, mixing parameters and all other inputs being the
same, the boundary conditions determine an ensemble of 49 HY-
COM simulations. Fig. 5 illustrates how the sea-surface-elevation
field differs across the members of this ensemble. Because even
the quadrature points within the inner circle of Fig. 4 correspond
to significant departures from the favorite boundary conditions,
the red contours do not cluster around the thicker black contour.
With the other members of the quadrature ensemble correspond-
ing to rather unlikely boundary conditions, it appears that the
boundary ensemble does not provide much direct information
about the consequences of more likely situations; instead, that sort
of information might be obtained from the polynomial chaos
expansions once the coefficients have been evaluated using the
quadrature ensemble. Nevertheless, one thing is immediately
clear: the variability after 15 days is much less than that after a
longer time. The reason is that all members of the ensemble start
from the same initial conditions, which did not reflect previous
uncertainties in the flow through the open southern boundary.
There is a transient period during which the uncertainties develop,
and only after this period can the consequences of the boundary
uncertainty be fully appreciated. However, because natural
dynamical variability is also present, the ensemble of simulations
evolve in time even after the uncertainties are fully developed.
5. Means, standard deviations, and covariances of surface
elevation

For this study the surface elevation for each grid cell was saved
at 15-day intervals, and we focused on just six of these days.22 For
each grid cell there were 49 values of surface elevation on each of
those days, one value from each member of the quadrature ensem-
ble, which were used to evaluate the coefficients of the polynomial
expansions for each cell’s surface elevation.23 Once the expansion
Subsurface variables might also have been saved in order to avoid redoing the
ensemble of simulations in case uncertainties of some aspects of subsurface
circulation might be a focus of future interest.

23 Note that coefficients for all outputs need not be computed at once. The
appropriate strategy is first to compute the coefficients needed to get the statistics
you think might be the most useful; if other statistics are subsequently desired, then
more coefficients can be computed at that time.
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open boundary. The inserts show the bathymetry at the open southern boundary.
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locations of the Gauss–Hermite quadrature points, with red dots corresponding to
relatively likely, blue less likely, green unlikely, and magenta highly unlikely
boundary conditions. (For interpretation of the references in color in this figure
legend, the reader is referred to the web version of this article.)

24 With triangular truncation at 6th degree, there are (1 + 2 + . . . + 7)/2 = 28 terms
retained in the polynomial expansion and thus 27 terms contributing to the variance.
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coefficients for surface elevation have been computed, computing
mean and variance is straightforward as the generalization of Eqs.
(4) and (5) to the case of two uncertain inputs is obvious: the mean
is given by the constant term in the expansion, and the variance is
approximated by the sum of the squares of the coefficients of the
other terms.

Fig. 6 shows the mean surface elevation for each grid cell at six
different times. These means are averages over the uncertainties in
the boundary conditions as characterized by the two boundary
modes. The plots look much like those of the central member of
the ensemble at the corresponding times, but somewhat less sharp.
Notice that 15 days after the boundary uncertainty was initiated,
when each member of the ensemble retains much of their common
heritage of the same initial conditions, gradients of the mean sur-
face elevation are stronger than they are in the other panels, where
sufficient time has passed for the cumulative effect of past uncer-
tainties to be felt.

While each output’s mean can be estimated from a single
expansion coefficient, estimates of its variance involve all the
remaining coefficients and are thus subject to truncation error.24

Fig. 7 shows estimates of the standard deviations of each grid cell’s
surface elevation at the same times as the means were shown in
Fig. 6. These standard deviations reflect the uncertainties in the posi-
tions of the Loop Current and its rings in the HYCOM simulation
stemming from the uncertainties in the flow from the Caribbean into
the Gulf. The fact that the uncertainties are smaller for day 15 illus-
trates again the fact that boundary uncertainties predating the quad-
rature simulations were not reflected in the common initial
conditions. The fact that the magnitudes of the standard deviations
of surface elevation are comparable in size to the means of Fig. 6 re-
flects the choice a = 1 in Eq. (9), which characterizes uncertainties in
the inflow comparable to its climatic range. A smaller value of a
more appropriate for a situation where the inflow is relatively well
known could have led to smaller values of standard deviation.

Estimates of covariances of two outputs are computed from
sums of products of their expansion coefficients. Fig. 8 shows plots
of covariance of surface elevation for a target cell at the coordinates
(86�E, 24.1�N), with that of all grid cells. That target cell, which is
marked by a white star, was chosen because it appears to be at the
center of variability of the Loop Current circulation. Just as in the
plots for the means and standard deviations, the spin-up of uncer-
tainty is evident. To de-emphasize the magnitude of the uncer-
tainty, plots of correlation coefficients (not shown) could also be
drawn; they would be expected to show a maximum at the target
point and a similar general structure with high correlations over
the region for which the Loop Current penetrates.



Fig. 5. Locations of the Loop Current and its eddies from the 49 HYCOM quadrature runs as indicated by 17 cm sea-surface-height contours. The panels, from upper left to
lower right, show the contours at 15, 150, 300, 450, 600, and 750 days after the boundary uncertainties were initiated. The colors of the contours correspond to the colors of
the dots in Fig. 4 with the thick black contour indicating the central member of the ensemble.
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expansion at 15, 150, 300, 450, 600, and 750 days after the boundary uncertainties
were initiated.
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The covariances of Fig. 8 represent a subset of all covariances
that might be estimated. If all variables could be saved during
the quadrature runs, then it would be possible in principle to
estimate the evolving covariance matrix for the complete model
state. As a covariance matrix quantifying the spread of uncer-
tainty of the model state is central to statistical methods for
assimilating data, it is useful to consider whether those esti-
mated from polynomial chaos expansions might be useful for
that task. While the covariances of Fig. 8 characterize only the
uncertainties attributable to uncertainties associated with the
specification of the open southern boundary, their counterparts
needed for assimilating data should account for all sources of
uncertainty. On the other hand, because the covariances associ-
ated with all sources of uncertainty are not known, much of
the art of assimilation is in their approximation. Perhaps uncer-
tainties from other sources, e.g. wind stress or mixing parame-
ters, when propagated give similar patterns of co-variability,
indicating that dynamical evolution causes uncertainties to for-
get their origins and to manifest in patterns reflecting the likely
state of the system. If so, then polynomial chaos expansions
might offer a way to explore useful approximations to the
error-covariance matrix.

6. Emulation and kernel density estimates for surface elevation

A great advantage of the method of polynomial expansion is
that it allows for a detailed view of the distributions of the outputs
of the dynamical system. Once an output’s expansion coefficients
have been evaluated, then the expansion in Eq. (12) can be used
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to emulate possible values of the output y without the need for
additional expensive simulations.

Fig. 9 illustrates how emulated values can provide information
about the consequences of different boundary conditions for any
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the surface elevation for the cell at the point (86�E, 24.1�N) marked by the white
star. The panels correspond to the same days as those in Figs. 6 and 7.

same as those of Fig. 4, indicate that the extreme values are highly unlikely.
output. It shows the response of surface elevation at (86�E,
24.1�N) as a function of n1 and n2. Recall from Fig. 4 that the likely
boundary conditions are near the center of the plots, so the re-
sponses within the innermost circle are generally more useful.
Note that the response does not necessarily vary monotonically
with n1 and n2; instead it can exhibit maxima and minima consis-
tent with its assumed polynomial nature. Note also that, for extre-
mely unlikely boundary flows as indicated by the circular contours,
the response can be extremely large, while the range of responses
for more likely boundary flows is quite reasonable.

Emulated values of surface elevation from a large ensemble of
randomly generated (n1,n2) pairs can be used to construct a histo-
gram that can be smoothed to provide an approximate probability
density. An example for surface elevation at the same location
(86�E, 24.1�N) is shown in Fig. 10. The histograms correspond to
50,000 randomly drawn (n1,n2) pairs, each determining a different
boundary condition that is propagated through the Gulf by emula-
tion, as an ensemble of numerical simulations of this size is clearly
unfordable. The range of emulated data actually range from �2.20
to 3.25 m, but as there are very few extreme values, the plots have
been restricted to a more reasonable range. For comparison, there
are ticks marking the 49 simulated values from the quadrature
ensemble. Kernel density functions are superimposed in red as
estimates of the probability densities. The densities are clearly
evolving. The small spread at day 15 is another reflection of the
memory of the common initial conditions shared by all members
of the quadrature ensemble, and the evolving shape of the density
is a consequence of the different responses to surface forcing of the
different ensemble members. For reference, superimposed in black,
are Gaussian densities with means and standard deviations given
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by the polynomial expansions, which agree quite closely with their
counterparts estimated from the data comprising the histograms.
The kernel densities are clearly not Gaussian; note their narrower
peaks, their skewness, and at day 300 an indication of bi-modality.

7. Convergence

One method for assessing convergence of polynomial chaos
expansions is by examining the convergence of variance. This can
be done by examining the fraction of variance associated with
the polynomials of highest degree that are retained:

fK ¼
r2

K � r2
K�1

r2
K

; ð15Þ

where r2
K is the variance at the Kth level of truncation. Note that the

number of terms contributing to the numerator increases with
increasing K; with triangular truncation used here there are K + 1
terms with total degree K. Nevertheless, if the series is converging,
then fK should decrease with increasing K.

The upper panels of Fig. 11 shows contour plots of f5 and f6 for
the terminal fraction of the variance of surface elevation in each
grid cell for day 750. The left panel, which shows the fraction of
variance associated with the 5th-degree terms when 6th-degree
and higher terms are dropped. Similarly, the right panel shows that
associated with the 6th-degree terms, which are the highest that
we computed. Overall, the terminal fraction of variance is seen to
decrease, but there are a few small regions where, although the
fraction is small at both truncations, it can be seen to increase. This
is an indication that, if they could be afforded, more terms should
be used.
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Another method for assessing convergence is the incremental
contribution of the terms of highest degree to the standard devia-
tion. As each term in the expansion for variance is positive, the
incremental contribution to the standard deviation is necessarily
positive, and it should be seen to decrease to indicate convergence.
The lower panels of Fig. 11 indicate that the contributions to the
standard deviation of surface elevation are generally smaller when
going from 5th to 6th degree, but this is not the case everywhere.
These small increases again suggest that more terms might be
needed in the polynomial expansions for surface elevations in
some parts of the Gulf. However, as retaining polynomials of high-
er degree requires a larger quadrature ensemble and increases the
computational costs, the benefits of greater convergence must be
balanced against the imprecision with which the boundary uncer-
tainties can be quantified. For practical purposes convergence
might be regarded as being adequate almost everywhere.

A third way to judge convergence is by how well the polynomial
expansions reproduce values computed during the 49 quadrature
runs. For example, Fig. 12 shows the errors in surface elevation
at (86�E, 24.1�N) when the polynomial chaos expansions are trun-
cated to exclude terms with polynomials of total degree greater
than six. The low-probability boundary conditions, which were
associated with unreasonable extremes of surface elevation in
Fig. 9 are also associated with the largest errors. In order to focus
on the more likely boundary conditions, the color scale was limited
to errors of ±20 cm. Errors at all quadrature points within the inner
circle indicating the region of 90% most likely boundary conditions
are within the limits of the color scale, as are most of those within
the 99% annulus. The larger disagreements at the quadrature
points corresponding to unlikely boundary conditions is another
indication that more terms are needed for convergence, while the
reasonable agreement at the central points suggests that conver-
gence is sufficient for practical use.
8. Discussion and conclusions

The objective of this paper has been to introduce to the ocean-
ographic community the method of polynomial chaos expansions
for propagating uncertainties through a dynamical system. In
particular, we wanted to demonstrate that it could be used with
state-of-the-art numerical models such as HYCOM. The examples
illustrated how uncertainties in the specification of the flow from
the Caribbean Sea into the Gulf of Mexico manifest as uncertainties
in surface elevation as characterized by the mean and standard
deviation at each grid cell, by their covariances, and by estimates
of their probability density functions.

The novel aspect of the paper is its treatment of the uncertain-
ties of the open boundary conditions. Because practicality limits
the number of parameters characterizing the uncertainties that
are to be propagated, it was essential to reduce the spatially and
temporally varying multivariate description of the inflow to a
small number of random variables. The solution presented here
has been to assume first that the patterns of uncertainty are similar
to the patterns of variability of a climatology of the boundary flow
and second that they can be approximated by the first two terms of
a modal decomposition. As the two modes are uncorrelated, their
random amplitudes could be assumed to be statistically indepen-
dent and the joint probability density function for the amplitudes
could be the product of individual densities. Furthermore, as the
modal decomposition partitions climatological variance about the
mean, it seemed most appropriate to take the individual densities
to be Gaussians.

This treatment of the boundary uncertainties is simply one of
convenience necessitated by the lack of a quantitative understand-
ing of the actual uncertainties of the specification of the evolving
state of the inflow. Conceptually, a similar but better treatment
would be based not on the available climatology but on a large
ensemble of runs of the outer model, which provides the boundary
conditions for the Gulf model, with each member of that ensemble
reflecting uncertainties in the outer model’s specification. A modal
decomposition of the boundary conditions provided by that
ensemble would reflect the uncertainties of the actual flow. Unfor-
tunately, such computations are prohibitively expensive. The avail-
able climatology provided a proxy for that ideal ensemble of
simulations.

The uncertainties in the boundary conditions were propagated
as though the initial conditions were perfectly known, even though
uncertainties in earlier flow through the open boundary would
have contributed to the uncertainties of the initial conditions. Con-
sequently, there was an initial period during which the effect of the
boundary uncertainties accumulated within the Gulf. If the hypo-
thetical large ensemble of outer-model simulations of the previous
paragraph had been initiated much earlier to allow for an uncer-
tainty spin-up, then there would be uncertainties in the interior
of the Gulf that would be compatible with those at the open
boundary, and a modal decomposition might reduce this larger
set of data to a few parameters that could characterize both the
open boundary and the initial conditions. In the absence of that
hypothetical ensemble, it seemed appropriate to spin-up the inte-
rior uncertainties from a completely certain initial state.

The polynomial expansions are most valuable when they con-
verge rapidly. Here, the issue of convergence of the polynomial
expansions has been illustrated by showing how retaining more
terms impacts the variance of the surface elevation. The results
indicated that convergence was adequate everywhere within the
Gulf of Mexico, given the paucity of information about the nature
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of the uncertainties of the inflow and the computational cost of
achieving higher precision.

The method of polynomial chaos expansions can be regarded as
occupying the middle ground between Monte Carlo methods and
Kalman filtering (Evensen, 2009). Like Monte Carlo methods, poly-
nomial chaos expansion attempt to obtain complete information
about the statistical distributions of the outputs of a dynamical
system, whereas Kalman filtering presumes those distributions
can be characterized adequately by an error-covariance matrix.
But while Monte Carlo methods require a very large ensemble of
solutions to the dynamical system, polynomial expansions need a
much smaller ensemble to provide values for evaluating expansion
coefficients.

The essential difficulty faced by all methods is the curse of
dimensionality: the computational burden grows geometrically
with increasing number of uncertain parameters. While Kalman
filtering treats each state variable as being uncertain, for oceano-
graphic applications where models have huge numbers of uncer-
tain inputs, the focus is on finding computationally efficient ways
to capture important aspects of the uncertainties using as few
parameters as possible. The ensemble Kalman filter, for example,
uses an ensemble of simulations comparable in size to the quadra-
ture ensemble used in this study, but the appropriate composition
of the ensemble is still a matter of study.

One question that was not explored here is that of the conver-
gence of the quadrature approximations of the integrals. This be-
comes increasingly important as the number of uncertain inputs
increases. Here we illustrated how two-dimensional quadrature
requires the square of the number of simulations needed for the
individual one-dimensional quadratures, which is simply another
manifestation of the curse of dimensionality. In the future we plan
to explore the use of sparse quadrature methods for handling sev-
eral uncertain parameters and to take a closer look at convergence
in quadrature.
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