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ABSTRACT

The authors introduce a three-parameter characterization of the wind speed dependence of the drag co-

efficient and apply a Bayesian formalism to infer values for these parameters from airborne expendable

bathythermograph (AXBT) temperature data obtained during Typhoon Fanapi. One parameter is a multi-

plicative factor that amplifies or attenuates the drag coefficient for all wind speeds, the second is themaximum

wind speed at which drag coefficient saturation occurs, and the third is the drag coefficient’s rate of change

with increasing wind speed after saturation. Bayesian inference provides optimal estimates of the parameters

as well as a non-Gaussian probability distribution characterizing the uncertainty of these estimates. The

efficiency of this approach stems from the use of adaptive polynomial expansions to build an inexpensive

surrogate for the high-resolution numerical model that couples simulated winds to the oceanic temperature

data, dramatically reducing the computational burden of the Markov chain Monte Carlo sampling. These

results indicate that the most likely values for the drag coefficient saturation and the corresponding wind

speed are about 2.3 3 1023 and 34m s21, respectively; the data were not informative regarding the drag

coefficient behavior at higher wind speeds.

1. Introduction

The present work focuses on investigating the behavior

of the drag coefficient at highwind speeds—a regime that

is particularly vexing to observe, and that is critical to

understanding the interplay between tropical cyclones

and oceans. It has been known for some time that the

drag coefficient saturates at highwind speeds (rather than

continuing to increase), and this saturation affects the

rate at which a tropical cyclone loses momentum to the

ocean (Powell et al. 2003; Donelan et al. 2004; French

et al. 2007; Shay and Jacob 2006; Sanford et al. 2007;

Jarosz et al. 2007). The particular wind speed and drag

values at which this transition occurs are not well known

because of scatter in the observational data.

The extreme environmental conditions during trop-

ical cyclones make answering these questions with direct

observations very difficult. This is compounded by the

fact that observations of the upper-ocean temperature

field under high-wind conditions are rare. Fortunately,

however, the intense observational program, Impact of

Typhoons on the Ocean in the Pacific (ITOP), dropped

a large number of airborne expendable bathythermo-

graphs (AXBTs) in the anticipated track of Typhoon

Fanapi 2010. The central objective of the present paper

is to investigate whether the temperature dataset re-

sulting from ITOP’s Fanapi observations can inform us

on the behavior of the drag coefficient. In particular, we

attempt to answer the following questions: What is the

drag coefficient saturation value Cmax
D and at what wind

speed Vmax does it occur? Does the drag coefficient

decrease for wind speeds greater than Vmax or does it

stay constant?

As further described below, we will adopt an inverse

modeling approach toward the objective above. To

this end, we take advantage of recent developments

in uncertainty quantification (UQ) methods, which

make it feasible to probe the sensitivity of complex

and realistic ocean models to uncertain parameters,
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and to assess the amount of information that can be

gained from specific measurements and observations.

Specifically, we will rely on polynomial chaos (PC)

expansions to construct a faithful surrogate of the

response of the large and complex geophysical model

simulations. The availability of the surrogate enables

us to efficiently implement a Bayesian inference for-

malism to the inverse problem, namely, because it

dramatically reduces the cost of sampling the poste-

rior distribution.

PC expansions have been developed and applied in

the engineering community to quantify uncertainties in

numerical simulations; their principal use is in propa-

gating input uncertainties through large, complex, and

nonlinear models to compute the ensuing output un-

certainties. The present authors have been engaged in

investigating the applicability of PC expansions for UQ

in oceanic simulations. Thacker et al. (2012) explored

the impact of uncertainty in southern boundary condi-

tions on the Gulf of Mexico circulation as simulated

by the Hybrid Coordinate Ocean Model (HYCOM).

Srinivasan et al. (2010) applied PC expansions to

quantify the uncertainties in oil droplet size distribu-

tion and oil composition on the oil fate discharged from

the Deepwater Horizon blow out. Alexanderian et al.

(2012) investigated the impact of parametric uncertainty

in the ocean mixed layer parameterization and drag

coefficient on the sea surface temperature (SST) cooling

in the wake of Hurricane Ivan (2004).

Implicit in these aforementioned applications is the

assumption that the input uncertainties and their sta-

tistical distributions are well known when in fact very

little is known about them, and one is often forced to

make practical choices based on the best available in-

formation. Most often, one resorts to the common

choices of Gaussian distributions of the uncertain pa-

rameters, or uniform distributions (commonly referred

to as noninformative priors in the Bayesian literature).

In the present paper we use PC expansions andBayesian

inference to correct the probability distribution of input

uncertainties, and in the process illustrate how obser-

vational data can be effectively incorporated in the UQ

framework.

The inverse problem addressed here relies on indirect

observational data (temperature) to infer quantities of

interest (drag coefficient parameters), and on a forward

model (HYCOM) that can predict the observations

given a set of drag parameters. Numerous methods have

been developed for such inverse modeling (Vogel 2002;

Sivia 2006; Tarantola 2005). Variational techniques akin

to maximizing likelihood have been used to estimate

parameters for numerical models of the ocean and at-

mosphere (e.g., Smedstad and O’Brien 1991; Zedler

et al. 2009, 2012), as have closely related methods such

as the ensemble Kalman filter (e.g., Annan et al. 2005;

Kondrashov et al. 2008; Aksoy et al. 2006a,b; Hu et al.

2010). As the parameters for biological systems are nu-

merous, model specific, and poorly known, their es-

timation from observations receives a great deal of

attention (e.g., Fasham and Evans 1995; Fennel et al.

2001; Losa et al. 2004; Jones et al. 2010; Dowd 2011).

Here we employ the same Bayesian framework for pa-

rameter estimation that these approaches use while re-

ducing the computational burden through the use of PC

expansions. Mattern et al. (2012) have similarly ex-

ploited the virtues of such polynomial expansions for

examining the response of ecosystem models to finite

perturbations of their uncertain parameters, but without

Bayesian inference. Similarly seeking computational

efficiency, Olson et al. (2012) used a Gaussian emu-

lator rather than polynomial expansions, combining a

Bayesian framework with Markov chain Monte Carlo

(MCMC) sampling to estimate the probability densities

that describe the uncertainties in the parameters of

a climate model.

The major hurdle in applying Bayesian inference is

the computational cost associated with sampling the

uncertainty space using a large, complex, and CPU-

intensive model like HYCOM. Here we resort to PC

expansions to build a faithful surrogate (also known as

an emulator) that can be efficiently sampled and used

in lieu of the model during theMCMC phase (Marzouk

et al. 2007; Marzouk and Najm 2009). An ensemble-

like calculation is required to construct the surrogate

and this represents the most CPU-intensive part of

the calculations. In the present work, we rely on an

adaptive approach to construct the surrogate in order

to mitigate the computational cost while minimizing

the surrogate’s approximation errors. Several error

metrics will be presented to ascertain the surrogate’s

validity.

The behavior of the drag coefficient at high wind

speeds over the ocean has been the subject of consid-

erable research. Shay and Jacob (2006) used airborne

expendable current profiler (AXCP) data deployed

during Hurricane Gilbert (1988) to calculate the down-

ward energy flux from the mixed layer into the ther-

mocline and equated it to the applied wind stress; their

calculations show the drag coefficient leveling off at

a value of about 3.2 3 1023 for wind speeds upward

of 30m s21. Sanford et al. (2007) compared SST and

transport measured by profiling floats under Hur-

ricane Frances (2004) to their model counterparts

and concluded that drag parameterizations consis-

tent with drag saturation and decrease produce a better

fit to observations. Chen et al. (2007, 2013) used a fully
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coupled atmosphere–wave–ocean model to explicitly

compute the surface wave-induced stress (form drag),

the most dominant contributor to wind stress in high

wind conditions; it was found that the surface stress

was highly asymmetric around the storm center in

Hurricane Frances (Chen et al. 2013). Jarosz et al.

(2007) estimated the drag coefficient by combining

barotropic linear dynamics over the continental shelf

in the northeastern Gulf of Mexico with in situ current

measurements under Hurricane Ivan (2004); their

analysis produced a quadratic fit to the drag-law de-

pendency that peaks around 2.2 3 1023 at a wind

speed of 32m s21, and that suggests a decrease in the

drag for higher wind speed. Zedler et al. (2009) per-

formed a model sensitivity analysis on the ocean re-

sponse to Hurricane Frances and found that a

constant drag coefficient of 1.23 1023 reduced misfits

between model results and drifter and buoy mea-

surements. More recently, Zedler et al. (2012) con-

ducted a feasibility study of inferring drag parameters

from temperature data in an idealized process-

oriented setting, with the aims of optimizing the ob-

servations’ location and investigating the impact of

measurement errors on the inferred parameters.1

Walsh et al. (2010) simulated the cooling under sev-

eral tropical cyclones with varying drag and enthalpy

coefficients, and mixed layer parameterization. They

concluded that drag formulations with saturation ex-

plain the satellite-observed SST better than those

without saturation.

The layout of the manuscript is as follows. First,

we motivate the UQ problem by discussing the uncer-

tainties of the drag parameters in section 2. Section 3

summarizes the ITOP observational data and their

model counterparts. Section 4 gives a brief overview

of the Bayesian formalism that brings together obser-

vations and model results. Section 5 gives a brief over-

view of the PC expansions that were used to build the

surrogate model. Section 6 describes the main results in

three subsections: first, we present evidence that the

surrogate is a faithful representation of the HYCOM

model; second, we use the surrogate to explore the re-

sponse surfaces of simulatedmodel temperatures, and to

compute their sensitivity to the control parameters; and

third, we present the posterior distribution obtained via

MCMC sampling and contrast it to the prior distribu-

tions. A discussion of our findings and methodology is

presented in section 7.

2. Drag coefficient

The ability to forecast tropical cyclone intensity

changes depends crucially on understanding, and on

modeling realistically, air–sea interactions at high wind

speeds. A key advance in the recent past has been the

recognition that, under the strong winds found in trop-

ical cyclones, the drag coefficient CD ceases to grow

monotonically with increased wind speed; instead, it

reaches a maximum and remains more or less constant

beyond that. This can be qualitatively explained by the

very high wind shearing off the ocean surface waves and

thus limiting the atmosphere’s influence on (and mo-

mentum transfer to) the ocean. The drag saturation is

supported by numerous experimental and observational

data as shown in Fig. 1. However, the different experi-

ments vary in their estimates of the saturation value

Cmax
D and the corresponding wind speed Vmax at which

saturation occurs. Furthermore, the behavior of the drag

coefficient beyond this maximum is not well known, and

only dropsondes (Powell et al. 2003) in Fig. 1 suggest

a decrease in CD beyond Vmax. The aim of the present

paper is to contribute to the discussion of the probable

values of these parameters via an inverse modeling

approach.

The impetus for the present study was a pilot appli-

cation of PC expansions to study parametric uncer-

tainty in ocean models (Alexanderian et al. 2012). Four

FIG. 1. Variations of drag coefficient CD with wind speed. The

thin blue circles refer to aircraft observations (French et al. 2007),

the red lines with symbols refer to laboratory experiments

(Donelan et al. 2004), and the green line refers to dropsonde

measurements (Powell et al. 2003). The blue and black curves il-

lustrate the eight cases determined by setting the control param-

eters to the extremes of their allowed ranges, and which are shown

in blue (a 5 0.4) and black (a 5 1.1) with Vmax set to either 20

or 35m s21 and m to either 23.8 3 1025 or 0. The unperturbed

HYCOM parameterization of CD (Kara et al. 2002) is shown in

magenta (a 5 1, Vmax 5 32.5m s21, and m 5 0).

1Our goals are similar to those of Zedler et al. (2012), but we

have relied on existing observations and on data-assimilated ocean

and atmospheric general circulation models.
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parameters were perturbed in Alexanderian et al.

(2012): 3 K-profile parameterization (KPP) subgrid

mixing parameters and the drag coefficient, and the

impact of these perturbations on SST during the passage

of Hurricane Ivan through the Gulf of Mexico in 2004

was investigated. The analysis showed that the un-

certainty in SST is dominated by the uncertainty in the

drag coefficient (particularly near the hurricane), and

that the KPP subgrid mixing parameters contributed

little despite the unrealistically large ranges explored.

Hence, the present study focuses solely on drag co-

efficient parameters, and fixes the mixed layer parame-

ters to their reference values.

Wind stresses are typically calculated using the drag

law: t 5 raCDVV where ra is the air density, CD is the

drag coefficient, V is the wind velocity vector at 10m

above sea level, andV5 kVk is the wind speed. The drag
coefficient in turn depends on the turbulent exchanges

between the ocean and atmosphere and these effects are

parameterized. In HYCOM this parameterization takes

the following form:

CD 5CD0 1CD1(Ts 2Ta) , (1)

CD05 1023[0:6921 0:071 ~V2 0:0007 ~V
2
] , (2)

CD15 1023[0:0832 0:0054 ~V1 0:000 093 ~V
2
] , (3)

~V5max[Vmin,min(Vmax,V)] , (4)

where Ts and Ta are the sea surface and air tempera-

tures, respectively. The wind speed is limited prior to

applying it to compute the drag coefficient and the result

is ~V; the HYCOM upper and lower bounds are Vmin 5
2.5m s21 and Vmax 5 32.5m s21. The upper limit re-

produces the saturation behavior alluded to earlier.

Equations (1)–(4) are from Kara et al. (2002) and are

a computationally efficient quadratic fit to the Coupled

Ocean–Atmosphere Response Experiment (COARE),

version 2.5, parameterization. The dominant term in

Eq. (1) is CD0 whereas CD1 represents the effect of the

boundary layer stability on CD.

To investigate the behavior of the drag coefficient at

high wind speeds we introduce three control variables

(Zedler et al. 2012) that will allow us to perturb the drag

coefficient according to the following form:

CD
05aCD for V,Vmax , (5)

CD
0 5a[CD 1m(V2Vmax)] for V.Vmax . (6)

Equations (5)–(6) are simple modifications of Kara et al.

(2002)’s parameterization: the parameterVmax is used to

adjust the wind speed at which saturation occurs; the

parameter a is used to adjust the size of the drag co-

efficient, while preserving the shape of the wind speed

dependence; and for speeds greater than Vmax, the pa-

rameter m (slope of drag coefficient after saturation)

allows for the possibility of decreasing drag with in-

creasing wind.2 Table 1 lists the parameter ranges ex-

plored in the present work. The formulation implies a

saturation drag range between 13 1023 and 2.53 1023.

This range covers the low drag value reported in Zedler

et al. (2009) and its upper limit is slightly higher than the

drag value reported in Jarosz et al. (2007).3 The Vmax

range is well within that suggested in Fig. 1 by the ex-

perimental and observational data.4 The linear slope is

varied between a minimum of m(1) 5 23.8 3 1025, as

suggested by the dropsonde data of Powell et al. (2003),

and m(2) 5 0. The perturbed drag coefficient C0
D falls

within the envelope of the experimental data as shown

in Fig. 1.

Finally, in anticipation of the PC expansions, we in-

troduce the three independent, canonical stochastic

variables (jjij # 1, i 5 . . . , 3) that will be used to char-

acterize the three uncertain parameters; they are related

linearly to the drag parameters according to

Vmax5
V

(2)
max2V

(1)
max

2
j1 1

V
(2)
max1V

(1)
max

2
, (7)

m5
m(2) 2m(1)

2
j21

m(2) 1m(1)

2
, (8)

a5
a(2) 2a(1)

2
j31

a(2) 1a(1)

2
. (9)

The stochastic variables (ji, i5 . . . , 3) will be assumed to

be uniformly distributed over [21, 1], and we will use

Bayesian inference to sharpen their distributions.

TABLE 1. Table of parameter ranges for Eqs. (5) and (6).

Parameter Min Max

a 0.4 1.1

Vmax (m s21) 20 35

m 23.8 3 1025 0.0

2 The linear dependence on V is the simplest behavior one can

assume to explore whether CD decreases beyond saturation.
3 It was not possible to extend the CD range to include the high

value reported in Shay and Jacob (2006) because our HYCOM

simulations became unstable in this limit.
4 The aircraft measurements suggest a Vmax around 20m s21

whereas the dropsondes and laboratory experiments suggest aVmax

of about 33m s21.
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3. Fanapi observations and simulations

Before delving into the details of the surrogate con-

struction and the inverse modeling methodologies, we

visit some of the essential ingredients necessary to un-

dertake these tasks, namely, the observational data and

the simulated atmospheric and oceanic fields. We give

a brief overview of the observational dataset available,

follow it with a brief description of the atmospheric

simulations necessary for the high-resolution atmospheric

forcing fields, and finally present a first comparison of a

reference HYCOM simulation with observational data.

a. Fanapi observations

Typhoon Fanapi formed as a tropical storm on

14 September 2010, southeast of Taiwan. It intensified into

a typhoon on 16 September and startedmoving northwest.

By 18 September, Fanapi strengthened into a category 3

typhoon heading toward Taiwan with maximum sustained

wind speeds of 54ms21. Fanapi made landfall early on

19 September at which time it changed direction and

started moving southwest. Later that day, it weakened to

a tropical storm that lasted 9h before becoming a tropical

depression on 20 September and totally dissipating on

21 September. Fanapi’s track—as reported by the Joint

Typhoon Warning Center (JTWC)—is shown in Fig. 2.

Fanapi developed and intensified within the obser-

vational array of a major field campaign ITOP. It is the

best-observed typhoon over the northwest Pacific with

unprecedented airborne observations of the atmosphere

and the ocean from theU.S.Air ForceC-130 aircraft.Our

interest here is in the AXBT data that were collected

along Fanapi’s predicted track from 12 September to

20 September during different C-130 flights. The loca-

tions ofAXBTs during selected flights are shown inFig. 2.

A total of 119 AXBTs were processed and used in the

present work (unfortunately, data collected on the last

day of operations, 19–20 September, were not available).

EachAXBTmeasured the vertical temperature profile at

the drop location; profiles on selected dates are shown in

Fig. 3. The temperature profiles collected before Fanapi’s

intensification on 17 September reveal an SST of 298C,
and a mixed layer depth of about 50m. Data collected on

17–18 September, after the typhoon intensified, show

a cooler SST ranging between 248 and 288C, and a mixed

layer depth that varies between 50 and 100m; it also

shows an increase in the spread of temperatures between

the different observation points.

b. Surface atmospheric forcing

A major hurdle in simulating the oceanic response to

tropical cyclones is the availability of accurate and re-

alistic atmospheric forcing datasets. In situ observations

are limited and sparse in time and space, especially over

the ocean. Global model analysis fields based on both in

situ and satellite observations have relatively coarse

spatial resolution (0.58–1.08), and cannot resolve the

inner-core structure of tropical cyclones, where the

strongest gradients and highest wind speeds are found.

A useful alternative is to run a very high-resolution at-

mospheric model in hindcast mode and attempt to re-

create, as realistically as possible, atmospheric conditions

during Typhoon Fanapi. Here we resort to a triply nested

(12, 4, and 1.3 km) high-resolutionWeatherResearch and

Forecasting Model (WRF) to simulate the atmospheric

conditions during Fanapi’s transit. Details of the model

are presented in the appendix. Storm track and intensity

(as measured by maximum 10-m wind speed and mini-

mum sea level pressure) are useful and commonly used

metrics to evaluate model fidelity against JTWC’s best-

track data.5 These metrics are compared in Fig. 4, and

confirm that the triply nested WRF has reproduced

successfully Fanapi’s intensity and track, except for an

overintensification on 18–19 September.

FIG. 2. Fanapi’s track in 6-h intervals as reported by JTWC

(black curve and circles) and the paths of selected C-130 flights

during the period 13–18 Sep. The yellow circles on the track rep-

resent the typhoon center at 0000 UTC of the day indicated in the

labels. The markers on the flight paths are the locations of the

AXBT drops that totaled 119. The small box is 42 km 3 42 km in

area and is used for the analysis in the results section.

5Note that the best-track data are also subject to measurement

errors, and are best estimates based on available in situ and satellite

observations. For example, the surface wind speed observations

over the ocean are mostly from indirect satellite retrievals (Velden

et al. 2006).
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The high-resolution WRF simulations are adopted to

compute HYCOM’s atmospheric forcing. Most impor-

tantly, theWRF simulations provide the high-resolution

10-m wind speed vectors needed to calculate the wind

stresses using Eqs. (1)–(4). The bottom-right panel of

Fig. 4 shows a strong negative linear correlation between

SST and wind speed at the AXBT locations. The simu-

lated wind speeds range from 2 to 33.2m s21 and thus

cover a substantial portion of the CD range shown in

Fig. 1. This functional relationship forms the basis for

the inverse modeling approach.

c. Comparing simulated and observed AXBTs

As a check on HYCOM’s ability to simulate the

oceanic response realistically, we present here a first

comparison between the AXBT data and their model

FIG. 3. (from left to right) Vertical temperature profiles from AXBTs for selected C-130 flights during Typhoon Fanapi as it intensifies

during 14–18 Sep. The number of data points collected during each C-130 flight is indicated in the panel heading.

FIG. 4. Comparison of Fanapi’s intensity [(top left) maximum wind speed and (top right) minimum sea level

pressure] and (bottom left) track from high-resolutionWRF simulation with JTWC’s best-track data. (bottom right)

SST vs the WRF wind speed at the AXBT locations for different dates.
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counterparts for a reference simulation in which the

drag parameters were set to their default values (a 5 1,

Vmax 5 32.5m s21, and m 5 0). The HYCOM initial

conditions were obtained from the global 1/128 model,

and the wind stresses were obtained from the triply

nested WRF simulation; other HYCOM configuration

settings are listed in the appendix. The scatterplots in

Fig. 5 compare the observations and the HYCOM fields

from 14 to 18 September as Fanapi intensifies. There is

good agreement between the two datasets with no dis-

cernible trends until 17 September, a day after Fanapi

becomes a typhoon. On the last day of flight operations

(17–18 September, right plot in Fig. 5), the observa-

tions show lower temperature in the upper 50m than

HYCOM and a larger scatter in the depth range of

50–200m, with cooler and warmer temperature differ-

ences. The difference between observed and simulated

AXBTs has a maximum of 58C. This difference is re-

flected in the correlation coefficients calculated for all

data points of each day. The variance of the difference

between observed and simulated AXBTs increases as

Typhoon Fanapi intensifies. Bayesian inference, as de-

tailed in the following section, will be used to estimate the

ranges of drag parameters that minimize the scatter be-

tween observed andmodeled ocean temperatures, and to

estimate the variance of the noise in the measured data.

4. Bayesian inference

Let the temperature observations be arranged in

a vector T 5 (T1, T2, . . . , TN); their model-predicted

counterparts byM5 (M1,M2, . . . ,MN) and letH5 fa,
Vmax, mg be the vector of control parameters. Bayes’s

theorem (Berger 1985; Epstein 1985; Berliner et al.

2003; Gelman et al. 2004; Bernardo and Smith 2007) can

be invoked to reverse the conditional probabilities of the

forward problem:

p(H jT)} p(T jH)p(H) , (10)

where p(H) is the prior probability distribution function

(pdf) of H and represents the a priori knowledge about

H (before considering the observation data); p(T jH) is

the likelihood and represents the probability of obtain-

ing the data given the set of parameters H; and finally

p(H jT) is the posterior, which represents the proba-

bility that H is true given the data T.

We adopt the following form for the likelihood func-

tion:

p(T jH)5P
N

i51

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
2(Ti2Mi)

2

2s2

#
, (11)

where we have assumed that the errors between model

and observation, e 5 T 2 M, are uncorrelated and

normally distributed with mean zero and variance s2.

The variance is unknown a priori; thus we treat it as

a hyperparameter and augment the vector of control

parameters toH5 fa,Vmax,m, s2g. While in general s2

depends on the observations, in cases where the error

amplitude is generally small and does not change

throughout space and time, one may use a simplified

model by assuming a spatially uniform s2. Further-

more, the typhoon wind forcing conditions vary sig-

nificantly from one day to another and AXBT data

collected on each day are exposed to different mea-

surement errors; therefore, it is reasonable to use dif-

ferent variances for each day of data collection as

indicated in section 6c.

The specification of the priors should reflect a priori

knowledge about the parameters. In the absence of ad-

ditional information regarding the parameters’ distri-

butions, a uniform prior is a reasonable choice:

p(fa,Vmax,mg)5

8><
>:

1

bi 2 ai
for ai , fa,Vmax,mg# bi ,

0 otherwise,

(12)

FIG. 5. (from left to right) Scatterplots of measured temperature (AXBTs) against their HYCOM counterparts during Typhoon Fanapi

as it intensifies during 14–18 Sep. The data points are colored by the specified depth ranges (z in meters) as indicated in the legend. The

correlation coefficient r and the error variance s2 is indicated on each plot.
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where [ai, bi] denote the parameter ranges defined in

Table 1. The only information we know regarding the

variance is that s2 is always positive; we thus assume

a Jeffrey’s prior (Sivia 2006) which can be expressed as

p(s2)5
1

s2
for s2. 0, 0 otherwise. (13)

Consequently, Bayes’s theorem leads to the following

expression:

p(H jT)}
(
P
N

i51

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
2(Ti 2Mi)

2

2s2

#)

3 p(s2)p(a)p(Vmax)p(m) . (14)

Note that our inference procedure accounts for un-

certainty in the HYCOM drag parameters only, and

does not include other sources of uncertainty such as

HYCOM or WRF errors. As such, one could interpret

the present formulation as a strongly constrained one.

Accounting for model errors, or other sources of un-

certainties such as initial conditions, is possible with the

present methodology, but is beyond the scope of the

present investigation.

Inferring the drag coefficient parameters requires

sampling the posterior. In general, when the space of

the unknown parameters is multidimensional, a suit-

able computational strategy is the MCMC method. We

rely on an adaptive metropolis MCMC (Roberts and

Rosenthal 2009; Haario et al. 2001) to sample the pos-

terior distribution accurately and efficiently. ThisMCMC

phase requires repeated (tens of thousands of) HYCOM

simulations initialized with different values of the un-

certain parameters; this step is prohibitively expensive.

An alternative is to construct a surrogate model that can

be used at a significantly reduced computational cost.

Here we rely on PC expansions (briefly described in the

next section) to build the surrogate, which, in addition,

efficiently provides statistical properties, such as the

mean, variance, and sensitivities.

5. Polynomial chaos expansion

Polynomial chaos expansions—more details of which

can be found in Le Maı̂tre and Knio (2010)—are series-

based methods that have been developed in the en-

gineering community to represent uncertainty in the

output of numerical simulations (Villegas et al. 2012; Lin

and Karniadakis 2009; Xiu and Tartakovsky 2004). Let

R5R(x, t, j) denote an output quantity of interest, such

as temperature or velocity; this quantity depends on the

usual space and time dimensions (x, t), but also on the

uncertain variables j that went into specifying the

model’s input data (such as uncertain initial and

boundary conditions, and parameters). PC expansions

express the dependencies of R on the uncertain input

variables j as a truncated expansion of the following

form:

R(x, t, j)¼: �
P

k50

R̂k(x, t)Ck(j) , (15)

where R̂k(x, t) are unknown coefficients, P is finite and

depends on the truncation strategy adopted, and the

functions Ck(j) form an orthogonal basis of an un-

derlying probability space. This series representation

can be viewed as a spectral expansion of R along the

stochastic dimensions. The Cameron–Martin theorem

(Cameron and Martin 1947) asserts the existence and

convergence of this series whenever R has finite vari-

ance. The series rate of convergence, and hence the

number of terms to retain, depends on the smoothness

of R with respect to j. The series converges spectrally

fast with P when R is infinitely smooth; the convergence

rate becomes algebraic when R has finite smoothness

(Canuto et al. 2006). In practice the series convergence

is monitored via various error metrics; section 6a pres-

ents one possible error analysis for the present problem.

The choice of basis is dictated by the probability

density function of the stochastic variable j, which ap-

pears as a weight function in the stochastic space’s inner

product:

hCk,Cmi5
ð
Ck(j)Cm(j)r(j) dj . (16)

When the basis functions are orthonormal hCk, Cmi 5
dk,m, where dk,m is the Kronecker delta. For Gaussian

distributions the basis functions are hence scaled Her-

mite polynomials whereas for uniform distributions, as

is the case here, they are scaled Legendre polynomials.

For multidimensional problems the basis functions are

tensor products of 1D basis functions. The identification

of the inner product weight function with the probability

distribution of j simplifies the calculations of R’s sta-

tistical moments. Noting that since C0(j) is a constant

that can be normalized to satisfy hC0, C0i 5 1, the ex-

pectation and variance of R can be computed as

E[R]5

ð
Rr(j) dj5 hR,C0i5 R̂0 , (17)

E[(R2E[R])2]5

ð
(R2E[R])2r(j) dj5 �

P

k51

R̂2
khCk,Cki .

(18)
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The series representation in Eq. (15) can thus be seen

as combining approximation and probabilistic frame-

works, a combination that has proven extremely useful

in solving UQ problems.

A number of procedures have been devised to com-

pute the expansion coefficients R̂k. Here we rely on the

nonintrusive spectral projection (NISP) since it does not

require any modification to HYCOM, and only ensem-

ble runs at specified values of the uncertain parameters

are needed. The NISP method is based on minimizing

the L2 norm of the error between R(x, t, j) and its

series representation, on exploiting the orthogonality

of the basis, and on replacing the stochastic integrals

by quadrature to obtain the following:

R̂k(x, t)5
hR,Cki
hCk,Cki

’
hR,CkiQ
hCk,Cki

. (19)

The subscript Q refers to approximating the inner

product integral with quadrature:

hR,Cki5
ð
R(x, t, j)Ck(j)r(j) dj’ hR,CkiQ

5 �
Q

q51

R(jq)Ck(jq)vq , (20)

where jq andvq aremultidimensional quadrature points

and weights, respectively. The computation of the R̂k

can thus be expressed as a matrix-vector product of the

following form:

R̂k(x, t)5 �
q
PkqR(x, t, jq), Pkq 5

Ck(jq)vq

hCk,Cki
, (21)

where Pkq is the projection matrix and R(x, t, jq) is

obtained from an ensemble of HYCOM realizations

with the uncertain parameters set at the quadrature

value jq. The NISP procedure can be carried out as

a postprocessing operation using simple scripting lan-

guages like MATLAB, the only costs being those of the

ensemble calculation and its storage.

The calculation of the R(x, t, jq) is the most expensive

part of the inference procedure; thus, reducing the

number of sampling points while maximizing their ef-

fectiveness is critical for the procedure’s efficiency. The

quadrature order should be commensurate with the

truncation order, and should be high enough to avoid

aliasing artifacts. The choice of quadrature rule is hence

critical to the performance of the PC (in its NISP version

at least). Tensorized Gaussian quadratures are one way

to proceed, but their computational cost increases expo-

nentially with the stochastic dimension of the problem

(curse of dimensionality). An alternative is based on

sparse Smolyak quadratures (Gerstner and Griebel

2003; Petras 2000, 2001, 2003) which require a smaller

ensemble size, and that can be configured in a nested

hierarchical structure so that additional sampling levels

can be added incrementally without discarding pre-

vious calculations. Alexanderian et al. (2012) relied on

Smolyak quadrature in their Hurricane Ivan UQ study.

A level 5 Smolyak quadrature, requiring an ensemble

with 385 members, was deemed necessary to obtain an

accurate surrogate. One drawback in that calculation is

that the space of random variables is sampled isotropi-

cally along all stochastic dimensions, whereas sensitivity

analysis indicated that the drag coefficient uncertainty

dominated the SST variance.

Given that the present HYCOM computational bur-

dens are larger than the Gulf of Mexico simulations in

Alexanderian et al. (2012) (larger domain and longer

integration), we are motivated to adopt a recently de-

velopedmethodology based on adaptive basis refinement

and quadrature (Constantine et al. 2012; Winokur et al.

2013; Conrad and Marzouk 2012, manuscript submitted

to SIAM J. Sci. Comput.). The new methodology uses

a pseudospectral extension of the Smolyak algorithm that

has the virtues of (i) enabling a general nonisotropic re-

finement of the sparse quadrature grid, (ii) steering the

realizations toward the stochastic dimensions producing

the most variance, and (iii) retention of all members of

the PC basis that can be computed with no internal ali-

asing. The current implementation follows the construc-

tion outlined in Constantine et al. (2012), Winokur et al.

(2013), and Conrad and Marzouk (2012, manuscript sub-

mitted to SIAM J. Sci. Comput.) using the nodes of the

Gauss–Patterson quadrature rule. A variance-based cri-

terion was used to adaptively refine the sparse grid, using

the area-averaged SST in the control box (Fig. 6) on

18 September as the quantity of interest. The adaptive

algorithm required 6 refinement steps, resulting in 67 in-

dependent realizations. The adapted grid had more nodes

in the direction of the a parameter due to its larger impact

on the SST variance (see Fig. 6).

6. Results

The results of the forward and inverse problems are

presented and discussed in three sections. First, we

perform an error analysis of the adaptive PC expansion

construction, namely, to establish the validity of the

corresponding surrogate. Second, we perform a sensi-

tivity analysis and rank the impact of the different drag

parameters on the predicted ocean temperature. Finally,
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posterior distributions for the drag parameters are de-

termined and analyzed in light of the available AXBT

data.

a. Error and convergence study

Unless otherwise noted, the results presented in the

present error analysis are based on temperature fields

averaged over the analysis box shown in Fig. 2. The

center of this box (24.48N, 125.78E) coincides with one

of the AXBT data points collected on 18 September

that is close to Fanapi’s track and experiences high

wind speeds; the box size is chosen to include about

seven HYCOM grid cells. Figure 7 shows the evolu-

tion of the area-averaged ocean temperature for the 67

FIG. 6. (left) Contours of SST from a single realization j 5 (0, 0, 0) on 0000 UTC 18 Sep. A control box covering part of the typhoon

track used for the construction of adaptive quadrature is also shown. (middle), (right) Two-dimensional projections of the nodes of the

adaptive quadrature at different refinement levels.

FIG. 7. Evolution of area-averaged ocean temperature for the different realizations at various depths: (top left)

surface, (bottom left) 50m, and (bottom right) 200m. The temperature is color coded according to a values. (top

right) The wind speed experienced at the area center, and the vertical lines in all panels indicate the times when

Fanapi crosses the analysis area.
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realizations obtained using the adaptive PC expansion

truncation. SST, which had been fluctuating around

29.58C due to diurnal heating, cools by an amount that

ranges from 18 to 48C during Fanapi’s passage, with the

temperature drop increasing with a (top-left panel in

Fig. 7). The maximum cooling occurs on 18 September

when the wind speed peaks at 35m s21 as shown in the

top-right panel of Fig. 7. The banded structure of the

SST response is a first indication that the a parameter

has a greater influence than the other two parameters.

The temperature drop at 50-m depth ranges from 08C
for small a to 38C for large a. The 50- and 200-m tem-

peratures experience a warming trend prior to Fanapi’s

passage, with, surprisingly, warmer temperatures for

the higher a values. At 200m, the cooling associated

with Fanapi’s passage is totally absent for small a and

reaches 18C for large a. Note also that the 50- and 200-m

panels display the same banded structure as SST.

To check the consistency of the approximation, in Fig. 8

we compare SST from the realizations with those obtained

from the PC surrogate. The corresponding curves show an

excellent agreement for all times including during high-

wind periods.We define a global (in stochastic space) error

metric to measure the relative normalized root-mean-

square error between the left-hand side function in

Eq. (15) and its PC representation at the sampling points:

E5

"
�
j2S

�����T(j)2 �
P

k50

TkCk(j)

�����
2#1/2

"
�
j2S

jT(j)j2
#1/2 , (22)

where S is the 67-member ensemble. This error metric

calculated over the analysis box is shown in the right

panel of Fig. 8; the largest relative normalized error for

SST is about 0.1% and occurs on 19 September when

Fanapi reaches its maximum wind intensity. Contour

maps of the relative normalized error for the entire

simulation region are shown in Fig. 9 for various depths

and dates to confirm the error trends of the analysis box.

The error is largest after the typhoon intensifies (bottom

row) for all depths. On both days, the maximum error

is located at 50m, which coincides with the depth of

the original mixed layer measured by the AXBT. The

maximum error magnitude recorded is about 1% and

occurs on 18 September. The elevated error region is

located to the right of the storm and extends from the

surface down to 50m, below which the impact of the

input uncertainty decreases substantially. For further

validation, Fig. 10 compares HYCOM vertical temper-

ature profiles with those of selected AXBT observations

on 14, 15, and 17 September. The plots show good

agreement between the simulations and the observa-

tions at different locations and at different times.

Another type of consistency check is concerned with

the convergence of the adaptive procedure used in the

calculation of the PC expansion coefficients, and with

its ability to improve their estimates with increased re-

finement levels. Since changes to the series coefficients

impact the temperature statistical properties, in Fig. 11

we monitor the evolution of the probability density

function of temperature6 as the refinement level is in-

creased. The different curves correspond to increased

adaptive refinement levels (from 3 to 6). The plots in-

dicate that the double-peaked distributions are not well

resolved at level 3 but become weakly insensitive to

FIG. 8. (left) Evolution of the area-averaged SST realizations (blue) and of the corresponding PC estimates (red).

(right) The relative normalized error calculated using Eq. (22).

6 The temperature pdf was calculated by randomly sampling the

input uncertainties j, summing the surrogate to obtain the corre-

sponding temperatures, building a histogram of the ensuing dis-

tribution, and computing the final pdf.
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further refinement starting with level 4; note also that

convergence is faster for the 200-m temperature than for

SST. Figure 11 also includes the pdf obtained using an

unadapted PC expansion series and calculated with an

isotropic Smolyak quadrature with 4 levels (total of 87

realizations). This unadapted pdf is closer to the level 3

adaptive PC expansion but misses many of its details.

Notice that all pdfs exhibit multiple peaks and extended

tails either toward lower temperatures at the surface, or

toward higher temperatures at 50- and 200-m depths.

FIG. 9. Relative normalized error between realizations and the corresponding PC surrogates at different depths: (left) surface, (middle)

50m, and (right) 200m. (top) 0000 UTC 15 Sep and (bottom) 0000 UTC 18 Sep.

FIG. 10. Comparison of HYCOM vertical temperature profiles with AXBT observations on (left) 14, (middle) 15, and (right) 17 Sep.

Temperature averages over the first 50m are shown in the parentheses.
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The various error metrics and model–data compari-

sons presented above provide confidence that with six

refinement levels the adaptive PC expansion is a faithful

model surrogate. They also illustrate the efficiency of

the adaptive approach, and its advantages over isotropic

refinement.

b. Statistical and sensitivity analysis

Wenow exploit the PC surrogate to study the statistics

of the temperature, and to quantify its sensitivity to the

uncertain input parameters and thus to anticipate their

impact on the inverse problem. In doing so, it is em-

phasized that no additional HYCOM simulations were

needed to obtain the information presented below;

rather, this information is obtained either directly from

the coefficients of the PC surrogate or by sampling the

corresponding representations for different values of j.

The left panel of Fig. 12 shows the evolution of

the analysis box-averaged SST and its two standard de-

viations bounds. The standard deviation is insignificant

during the first few days of the simulation but increases

as the intensifying typhoon approaches the analysis area.

The temperature drop is clearly observed after Fanapi’s

passage. To quantify the contribution of each uncertain

parameter to the variance in SST, we calculate the total

sensitivity index using the PC coefficients (Alexanderian

et al. 2012; Sudret 2008; Crestaux et al. 2009). The total

sensitivity index of each of the uncertain parameters is

shown in the right panel of Fig. 12. Throughout the

simulation, the multiplicative drag factor a is dominant

and contributes most to the SST variance comparedwith

the two other drag parameters. The saturation wind

speed Vmax exhibits a small sensitivity index before the

typhoon intensifies and the drag coefficient slope (after

saturation) m appears to be an insignificant contributor

to the variance.

The same picture emerges when one examines the

temperature statistics below the surface. The left panel

of Fig. 13 shows the time evolution of the PC-mean

vertical temperature profile, and reveals a mixed layer

depth of about 50m and an average cooling of about 28C
once Fanapi arrives. The right panel shows the associated

standard deviation and the confinement of the uncer-

tainties to the upper 50m. The total sensitivity indices

FIG. 11. Temperature pdfs using adaptive and isotropic PC refinement, as indicated. Plots are generated for 0000 UTC 18 Sep, and

different depths: (left) surface, (middle) 50m, and (right) 200m.

FIG. 12. (left) Evolution of area-averaged SST bounded by two standard deviations. (right) Evolution of the total

sensitivity indices of the three uncertain parameters. Fanapi’s passage over the analysis area is indicated by the two

vertical lines.
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(not shown) indicate that a contributes most to the un-

certainty in temperature throughout the upper 50m.

The area-averaged SST dependence on a and Vmax

(for fixedm5 0) on 17, 18, and 19 September is shown in

Fig. 14, which displays the SST response surfaces as

contour plots. The most striking features are the rela-

tively flat horizontal contours on 17 and 18 September,

indicating that SST depends only mildly on Vmax even

during peak winds; unsurprisingly, these contours turn

completely flat on 19 September (and afterward) when

the winds dip below 10m s21. On the other hand, a ex-

erts a strong influence on SST even under mild wind

conditions. This influence is relatively weak for the lowa

range and increases substantially for higher a as evi-

denced by the packed contours. The temperature re-

sponse at 50- and 200-m depths (not shown) exhibits

roughly the same structure as at the surface, with milder

dependence on Vmax even during the peak winds of

18 September.

c. Inferring drag coefficient parameters

We now exploit the surrogate model in the Bayesian

inference of the drag coefficient parameters. As men-

tioned in section 4, an adaptive MCMC method is used

to sample the posterior distributions (Roberts and

Rosenthal 2009; Haario et al. 2001) and consequently

update the drag parameters’ distributions in light of the

AXBT data. This sampling, demanding tens of thou-

sands of forward simulations, would have been pro-

hibitively expensive in the absence of the surrogate

because the generation of each sample would have re-

quired an independent HYCOM realization. The sur-

rogate provides a computationally efficient alternative,

and requires only summing the PC expansion for dif-

ferent values of the seed j. The setup of the Bayesian

inference problem, MCMC chains for the input drag

parameters and the corresponding posterior distribu-

tions are presented and discussed in this section.

The AXBT data provided on different days (12–17

September) and at different depths were used in the

likelihood function [Eq. (11)] to update the input pa-

rameters. Because the data collected on each day are

exposed to different measurement errors, the variance

between the data and the model were assumed to be

different for each set of AXBT data. MCMCs of 100 000

iterations are obtained for the drag parameters: a, Vmax,

and m as well as for the variance s2 on different days.

Figure 15 (top row) shows the drag parameters’ sample

FIG. 13. Contours of (left) mean temperature and (right) its standard deviation.

FIG. 14. SST response surface as function of a and Vmax, with fixed m 5 0. Plots are generated on different days, as indicated.
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chains for different iterations of the MCMC algorithm.

The top-left panel shows a well-mixed chain for a. The

Vmax chain appears to be concentrated in the higher

end of the parameter range, with values between 25 and

35m s21. Finally, the chain for m spans the entire range

of the prior, and so it appears that the observations are

not informative concerning this uncertain input. The

chains for the variances at selected days are also shown

in Fig. 15 (bottom row) and appear to be well mixed.

The computed MCMC chains can be readily used to

determine the posterior distribution; kernel density es-

timation (KDE) is used for this purpose (Parzen 1962;

Silverman 1986). (The first 1500 iterates, associated with

the burn-in period, are discarded.) The resulting poste-

rior pdfs of the drag parameters are shown in Fig. 16

(top row). As expected from the chains shown in Fig. 15,

the posterior pdf of Vmax exhibits a well-defined peak,

with a maximum a posteriori (MAP) estimate around

34m s21; an extended tail toward the lower velocity

values is also observed. Note that the MAP occurs near

the edge of the assumed prior of Vmax, which as pre-

viously noted represented our best estimate of the range

of variability of the saturation wind speed before con-

ducting the analysis. However, as shown in Fig. 6 (mid-

dle), the MAP coordinates are effectively bracketed by

members of the sparse grid. Also note that the MAP

value is slightly higher than the 32.5m s21 used opera-

tionally in HYCOM. In contrast, the posterior pdf of m

appears to be fairly flat and similar to the prior. This is an

indication that the observational data were not useful to

refine our prior knowledge ofm. This could be explained

by the fact that winds at the AXBT locations peaked at

maximum speeds of 33.2m s21 (Fig. 4, bottom right),

lower than the inferred Vmax whereas m affects CD for

wind speeds higher thanVmax. It thus appears that in the

present setting, nonlocal effects of the high winds ex-

perienced within the domain do not seem to affect

the temperature profiles at the AXBT locations, and

that, consequently, direct measurements at higher wind

speeds would be desirable. Finally, thea posterior shows

a clear localization compared with the prior, and the

distribution appears to be normal and centered at a 5
1.026. This stretching of the drag curve relative to the

operational HYCOM one may be related to the fact

that, over the period in which AXBT data are available,

the simulated wind speeds are slightly below the ob-

servedwind speeds (Fig. 4). The posterior distribution of

the variance is also shown in Fig. 16 (bottom row) for

selected dates. The variances corresponding to theMAP

estimates of the parameters are lower than those ob-

tained with the HYCOM operational values (listed in

Fig. 5): 0.6741 versus 0.765 on 15–16 September and

1 versus 1.26 on 17–18 September. Thus, theMAP values

have reduced the discrepancies between simulated and

observed temperature. The square root of the MAP

variances—the temperature standard deviation—is a

FIG. 15. (top) Chain samples for (left) a, (middle) Vmax, and (right) m. (bottom) Chain samples for s2 generated on different

days, as indicated.
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reflection of the mismatch between model and AXBT

data. This mismatch grows slowly from 0.758C on

14 September to about 18C on 17 September.

The Kullback–Leibler (KL) divergence is a statistical

measure that quantifies the distance between two proba-

bility distributions p and q (Kullback 1959); it is defined as

DKL(pkq)5
ð‘
2‘

p(x) ln
p(x)

q(x)
dx . (23)

The variable DKL satisfies most of the intuitive notions

of a distance (i.e., it is nonnegative, it is zero if p and q

are identical, and increases as p and q grow further

apart), except that it is not symmetric in p and q and does

not satisfy the triangle inequality. When p and q are

identified with the posterior and prior distributions of

a Bayesian inference problem, DKL becomes a useful

measure of the information gain contributed by the new

data to the prior knowledge. The KL information gains

due to the AXBT observations for a, Vmax, and m are

3.5, 1, and 0.087, respectively. The largest gain is thus

associated with a, followed by saturation wind speed;

the present AXBT data appears to be largely unin-

formative concerning the drag coefficient slope after

saturation, m. These values reflect the intuitive notions

suggested by Fig. 16 whereby the posterior and prior of

m are very similar whereas those of a and Vmax are

substantially different.

With the MCMC chains computed, we can now con-

struct the joint posterior distributions of the parameters

using KDE. Since the posterior of m is close to the

prior, we show in Fig. 17 the joint posterior distribu-

tions of a and Vmax (left panel), and of a and a2 on

17–18 September (right panel). These pdfs clearly show

a single peak located at a 5 1.026 and Vmax 5 34ms21,

and that can be identified with the MAP estimates from

the marginalized pdfs. The right panel also clearly shows

a tight estimate for a with little spread around it. Setting

m 5 0 (default HYCOM value), and substituting the

MAP estimates for Vmax and a in Eq. (5), we obtain the

‘‘optimal’’ (most likely) curve describing the drag co-

efficient CD’s dependence on wind speed; this curve is

shown in Fig. 18. In addition to decreasing the variance

between simulations and observations, the impact of the

MAP values on temperature can be assessed with the

help of the surrogate. The results for the area-averaged

SST and mixed layer depth (other quantities of interest

can be treated similarly) are displayed in Fig. 19. The

default drag parameters underestimate the cooling by

0.58C and the mixed layer depth by as much as 15m; note

that the mixed layer depth feels the impact of the in-

creased drag from 18 to 20 September, otherwise, the two

curves overlap.

7. Discussion and conclusions

The present study relied on AXBT data and on

Bayesian inference to improve our understanding of drag

parameterization at high wind speeds. It concentrated

on three uncertain parameters: a multiplicative factor

FIG. 16. (top) Prior and posterior distributions for the drag parameters and (bottom) posterior distributions of the variance between

simulations and observations on different dates. MAP values of the posterior distributions are also indicated.
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modulating the drag coefficient’s magnitude a, the

maximumwind speed at which saturation occurs (Vmax),

and the slope of the drag coefficient after saturation (m).

The implementation of our research program hinged on

a number of critical ingredients including (i) the ITOP

that yielded the AXBT data; (ii) the WRF hindcasts to

provide the high-resolution realistic atmospheric forc-

ings for the ocean model; (iii) a robust and realistic

ocean model, HYCOM, with a reliable mixed layer pa-

rameterization and realistic initial conditions for the

forwardmodel; and (iv) the adaptive PC expansions that

produced a faithful and efficient surrogate at the modest

cost of a 67-member HYCOM ensemble, and that made

the Bayesian inference feasible. The main outcomes of

this effort are the identification of the following MAP

estimates for the drag parameters: that the drag co-

efficient saturates at about 2.3 3 1023 with a saturation

wind speed of at least 34m s21, and that the available

AXBT data was not informative with regard to the po-

tential drop in the drag coefficient beyond saturation.

Furthermore, the posterior probability density dis-

played a sharp localization for a with a Gaussian-like

profile that decayed very fast away from its maximum,

whereas the Vmax posterior was skewed, decaying very

fast for values greater than 34m s21 but slowly for

smaller values.

A number of recommendations can be made con-

cerning the collection of AXBT data, and their influence

on the drag parameters’ posterior distributions. First,

the inferred MAP value for Vmax abuts the edge of the

interval explored, and the situation is exasperated by the

lack of AXBT data with wind speeds higher than

33.2m s21; this value is substantially smaller than the

maximum speeds recorded in the best-track data

(54m s21) and in the WRF simulation (60m s21). It

would thus be extremely useful if future observational

programs are able to dropAXBTs at locations where the

wind speed exceeds 35m s21; future inverse modeling

would also do well to consider a wider prior provided

that data at higher speeds is available. Second, temper-

ature measurements near the surface are more valuable

than those at depth since the wind stress influence on

temperature is weak at depths below 100m (Fig. 13).

The PC expansion and Bayesian inference methodolo-

gies can be configured to investigate the optimal de-

ployment of AXBT data (i.e., targeted observations) so

as to maximize the information gain with respect to

specific questions (Huan and Marzouk 2013).

The present study highlights a number of advantages

to relying on Bayesian inference to solve the inverse

modeling problem. These include no a priori assump-

tions on the model’s differentiability as would be re-

quired by adjoint and optimization methods, and no

restriction on the statistics of the input and output as

would be required in a Kalman filter approach. The

Bayesian approach yields posterior probability distri-

butions that encapsulate all statistical information about

FIG. 17. (left) Joint posterior distribution of a and Vmax. (right) Joint posterior of a and s2, generated for 17–18 Sep.

FIG. 18. Optimal drag coefficient CD using MAP estimate of the

three drag parameters. The symbols refer to AXBT data used in

the Bayesian inference.
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the parameters at hand. The availability of prior and

posterior probabilities permits us to quantify the in-

formation gain, as measured by the KL divergence,

brought in by the AXBT data. Finally, it is important to

point out that the PC expansion approach allows us to

probe the dependency of output uncertainties on input

uncertainties and to construct explicitly their response

surfaces, thus yielding important insights into the in-

verse problem.

The present study does not address a number of issues

relevant to tropical cyclones and ocean modeling. Chief

among those is the reliance on an ocean-only model to

carry out the forward modeling even though the air–sea

interaction problem is intrinsically a coupled one re-

quiring the use of, at least, coupled ocean–atmosphere

models, if not ocean–wave–atmosphere models. It was

deemed best, however, for the purposes of the present

initial exploration, to defer running expensive coupled

models to a later stage once the approach’s potential was

demonstrated in a relatively simpler context. The pres-

entUQ and inverse analysis considered onlymomentum

coupling between the ocean and atmosphere and did not

include the heat flux exchange between the two systems

as mediated by the enthalpy coefficient. The heat flux

exchange (and the behavior of the enthalpy coefficient)

at high wind speeds, and in the presence of sea spray, is

the subject of heated debate among tropical cyclone

scientists, particularly concerning its role in modulating

intensity changes and how to represent it realistically in

hurricane models (Emanuel 1995; Andreas and Emanuel

2001; Emanuel 2003; Drennan et al. 2007; Haus et al.

2010; Andreas 2011; Jeong et al. 2012; Bell et al. 2012).

This type of inquiry is best carried out using a coupled

atmosphere–ocean model where the impact of the heat

flux uncertainty on tropical cyclone intensity can be ad-

dressed directly.
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APPENDIX A

Atmospheric Model Configuration

Realistic atmospheric forcing fields are required to

accurately simulate the oceanic response to tropical

cyclones. Present global atmospheric or coupled ocean–

atmosphere models run by major operational centers

have coarse space–time resolutions, and as such, cannot

capture the dynamically relevant small-scale wind stress

gradients in tropical cyclones; an alternative is to use

high-resolution hindcasts to improve the representa-

tion of relevant dynamical features. WRF, version 3.2.1

(Skamarock et al. 2008), was used in a triply nested

domain configuration to simulate the atmospheric con-

ditions during Typhoon Fanapi.

The horizontal grid spacings were 12, 4, and 1.3 km

and had 600 3 445, 301 3 301, and 301 3 301 points,

respectively. The outer domain spanned the region 38S–
478N, 978E–1808, and was centered at 23.58N, 1408E; the
two inner nests were storm-following moving domains,

FIG. 19. Comparison of the area-averaged (left) SST and (right) MLD evolution during Fanapi using HYCOM

default drag parameters and inferred optimal parameters.
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similar to Davis et al. (2008). The model had 36 vertical

levels with the lowest level at 17m from the surface, and

10 levels within the lowest 1 km. The moist convection

is explicitly represented using the WRF single-moment

5-class (WSM5) microphysical scheme with rain, snow,

cloud water, cloud ice, and water vapor as prognostic

variables (Hong and Chen 2004) on the two inner do-

mains, while the Kain–Fritsch cumulus parameterization

scheme (Kain and Fritsch 1993) is used on the outer

domain. The Yonsei University (YSU) boundary layer

scheme (Hong et al. 2006) was used with wind-dependent

surface roughness based on Donelan et al. (2004) and

surface heat exchange coefficients based on Garratt

(1992).

WRF was initialized with National Centers for Envi-

ronmental Prediction (NCEP) analysis fields. SST was

updated daily using the NCEP SST analysis field

throughout the WRF simulation of Typhoon Fanapi.

Also, 6-hourly nudging of zonal and meridional winds

was performed using the NCEP analyses on the outer

domain to ensure that the large-scale steering flow for

Fanapi is as close to reality as possible, and that, there-

fore, the track of the simulated storm is close to that of the

best-track data. The simulation period was from 0000UTC

11 September to 0000 UTC 21 September. The outer

domain was used for the first four days to spin up the

precursor of Fanapi. The two inner-moving domains

were used from 0000 UTC 15 September to 1800 UTC

20 September at which point the stormmade landfall in

China.

APPENDIX B

HYCOM Configuration

The HYCOM (Bleck 2002; Chassignet et al. 2003,

2007; Halliwell 2004) computational domain is essen-

tially a nested subregion of the operational Global

HYCOM (Chassignet et al. 2009), spanning the western

North Pacific Ocean, 18210300–438805100N, 10981603500–
1708403500E. Its horizontal grid resolution is 1/128 at the
equator with a total of 761 3 583 grid points (;6.5-km

spacing on average). The model is configured with 27

layers with s2 target densities of 28.10, 28.90, 29.70,

30.50, 30.95, 31.50, 32.05, 32.60, 33.15, 33.70, 34.25, 34.75,

35.15, 35.50, 35.80, 36.04, 36.20, 36.38, 36.52, 36.62, 36.70,

36.77, 36.83, 36.89, 36.97, 37.02, and 37.06. The top model

layer thickness is fixed to 3m. The bottom topography

is based on a quality controlled 2.5-minute gridded

elevations/bathymetry for the world (ETOPO2.5) data-

set with the western and northern edges land masked

and islands clipped. The subgrid-scale parameteriza-

tion adopted for the ocean mixed layer is K-profile

parameterization (KPP; Large et al. 1994; Halliwell

2004). The three KPP parameters that were perturbed

in Alexanderian et al. (2012) were held fixed at their

reference values of 0.25 for the critical Richardson

number, and at 1024 and 1025m2 s21 for the background

viscosity and diffusivity, respectively.

HYCOM was initialized from a 10 September 2010

global HYCOM analysis state and run in a one-way

nested (but free running) mode. Baroclinic velocities,

salinity, potential temperature, and layer interfaces

were relaxed to the global HYCOM solution in a buffer

zone while the barotropic components were allowed

to enter and exit the computational domain according

to their wave propagation characteristics. The surface

fluxes of momentum and heat were calculated from bulk

formula that relied on various atmospheric fields, in-

cluding 10-m winds, 2-m air temperature, 2-m water

vapor mixing ratio, precipitation, and incoming solar

radiation. These atmospheric fields were obtained from

WRF, which dynamically downscaled the NCEP anal-

ysis fields.
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