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ABSTRACT

This is the second part of a three-part paper on North American climate in phase 5 of the CoupledModel Intercomparison Project (CMIP5)

that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate.

Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing

observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability,

almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought

over Central America. Themultimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among

themodels.On the other hand, the coarse resolution of themodelsmeans that tropical cyclone frequencies are underpredicted in theAtlantic and

eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North

American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and

connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its

influence on continental temperature andWestCoast precipitation but lesswell for thewintertimeprecipitation. The spatial representation of the

Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced.

Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the

models, suggesting that observed changes are linked to natural variability.
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1. Introduction

This is the second part of a three-part paper on

phase 5 of the Coupled Model Intercomparison

Project (CMIP5; Taylor et al. 2012) model simulations

for North America. This second part evaluates the

CMIP5 models in their ability to replicate the ob-

served variability of North American continental and

regional climate, and related climate processes.

Sheffield et al. (2013, hereafter Part I) evaluate the

representation of the climatology of continental and

regional climate features. The third part (Maloney et al.

2013, manuscript submitted to J. Climate hereafter Part

III) describes the projected changes for the twenty-first

century.

The CMIP5 provides an unprecedented collection

of climate model output data for the assessment of

future climate projections as well as evaluations of

climate models for contemporary climate, the attri-

bution of observed climate change, and improved

understanding of climate processes and feedbacks. As

such, these data contribute to the Intergovernmental

Panel on Climate Change (IPCC) Fifth Assessment

Report (AR5) and other global, regional, and national

assessments.

The goal of this study is to provide a broad evaluation

of CMIP5 models in their depiction of North American

climate variability. It draws from individual work by

investigators within the CMIP5 Task Force of the U.S.

National Oceanic and Atmospheric Administration

(NOAA) Modeling Analysis and Prediction Program

(MAPP) and is part of a Journal of Climate special

collection on North America in CMIP5. We draw from

individual papers within the special issue, which provide

more detailed analysis that can be presented in this

synthesis paper.

We begin in section 2 by describing the CMIP5,

providing an overview of the models analyzed, the

historical simulations, and the general methodology for

evaluating the models. Details of the main observa-

tional datasets to which the climate models are com-

pared are also given in this section. The next five

sections focus on different aspects of North American

climate variability, organized by the time scale of the

climate feature. Section 3 covers intraseasonal vari-

ability with focus on variability in the eastern Pacific

Ocean and summer drought over the southern United

States and Central America. Atlantic and east Pacific

tropical cyclone activity is evaluated in section 4. In-

terannual climate variability is assessed in section 5.

Decadal variability and multidecadal trends are assessed

in sections 6 and 7, respectively. Finally, the results are

synthesized in section 8.
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2. CMIP5 models and simulations

a. CMIP5 models

We use data from multiple model simulations of the

‘‘historical’’ scenario from the CMIP5 database. The

CMIP5 experiments were carried out by 20 modeling

groups representing more than 50 climate models with the

aim of further understanding past and future climate

change in key areas of uncertainty (Taylor et al. 2012). In

particular, experiments have been focused on un-

derstanding model differences in clouds and carbon feed-

backs, quantifying decadal climate predictability and why

models give different answers when driven by the same

forcings. TheCMIP5 builds on the previous phase [phase 3

of CMIP (CMIP3)] experiments in several ways. First,

a greater number of modeling centers and models have

participated. Second, the models are more comprehensive

in terms of the processes that they represent and are run at

higher spatial resolution, therefore hopefully resulting in

better skill in representing current climate conditions and

reducing uncertainty in future projections. Table 1 provides

an overview of the models used. The specific models used

vary for each individual analysis because of data avail-

ability at the time of this study, and so themodel names are

provided within the results section where appropriate.

b. Overview of methods

Data from the historical CMIP5 scenario are evalu-

ated, which is a coupled atmosphere–ocean mode

simulation that is forced by historical estimates of

changes in atmospheric composition from natural and

anthropogenic sources, volcanoes, greenhouse gases,

and aerosols, as well as changes in solar output and land

cover. Historical scenario simulations were carried out

for the period from the start of the industrial revolution

to near present: 1850–2005. Our evaluations are generally

carried out for the last 30yr of the simulations, depending

on the type of analysis and the availability of observa-

tions. For some analyses the only, or best available, data

are from satellite remote sensing which restricts the

analysis to the satellite period, which is generally from

1979 onward. In other cases the observational data are

very uncertain for particular regions and time periods (e.

g., precipitation in high latitudes in the first half of the

twentieth century) and this is noted in the relevant sub-

section. For other analyses, multiple observational data-

sets are available and are used to capture the uncertainty

in the observations. The observational datasets are sum-

marized in Table 2 and further details of the datasets and

data processing are given in the relevant subsections and

figure captions. Where the comparisons go beyond 2005

(e.g., 1979–2008), data from the model representative

concentration pathway 8.5 (RCP8.5) future projection

scenario simulation (as this is regarded as closest to the

business as usual trajectory) are appended to the model

historical time series. About half the models have multi-

ple ensemble members, but we select the first ensemble

member for simplicity and discuss the variability in the

results across the ensemble where appropriate.

3. Tropical intraseasonal variability

a. MJO-related variability over the eastern Pacific
and adjoining regions

It has been well documented that convection over the

eastern Pacific (EP) ITCZ and neighboring areas is

FIG. 1. Taylor diagram for summer-mean (May–September) rainfall over the eastern Pacific (58S–
308N, 1508–808W) simulated in CMIP5 GCMs. The rainfall observations are based on TMPA data.
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characterized by pronounced intraseasonal variabil-

ity (ISV) during boreal summer (e.g., Knutson and

Weickmann 1987; Kayano and Kousky 1999; Maloney

and Hartmann 2000a; Maloney and Esbensen 2003,

2007; de Szoeke and Bretherton 2005; Jiang andWaliser

2008, 2009; Jiang et al. 2011). ISV over the EP exerts

broad impacts on regional weather and climate phe-

nomena, including tropical cyclone activity over the EP

and the Gulf of Mexico, the summertime gap wind near

the Gulfs of Tehuantepec and Papagayo, the Caribbean

low-level jet and precipitation, the midsummer drought

over Central America and Mexico, and the North

American monsoon (e.g., Maga~na et al. 1999; Maloney

and Hartmann 2000b,a; Maloney and Esbensen 2003;

Lorenz and Hartmann 2006; Serra et al. 2010; Martin

and Schumacher 2011).

Here, model fidelity in representing ISV over the EP

and intra-American sea (IAS) region is assessed by an-

alyzing daily output of rainfall and 850-hPa winds from

18 CMIP5 models. Figure 1 displays a Taylor diagram

for summer-mean (May–September) precipitation from

the CMIP5 models over the EP domain (58S–308N,

1508–808W) compared to the TMPA precipitation (see

Table 2 for expanded dataset names). While the two

HadGEM models (HadGEM2-CC and HadGEM2-ES;

see Table 1 for expanded model names) display the

FIG. 2. Spatial distribution of (a) amplitude and (b) phase of the CEOF1 based on 30–90-day bandpass filtered Tropical Rainfall

Measuring Mission (TRMM) rainfall during boreal summer (June–September) over the eastern Pacific. To make the spatial phase

patterns of the CEOF1 based on the observations and simulations comparable to each other, the spatial phase of CEOF1 for each dataset

is adjusted by setting the domain-averaged value to be 0 over a small box region of 108–158N, 1108–1008W. Contours are only displayed

where the local variance explained by CEOF1 exceeds 8%. (c) On the x axis, pattern correlation coefficients of the CEOF1mode between

TRMM observations and CMIP5 GCM simulations; on the y axis, relative amplitudes of CEOF1 in model simulations to their observed

counterparts. Both pattern correlations and amplitudes are derived by averaging over the area of 58–258N, 1408–808W where the active

ISV is observed. The black star represents the TMPA observations.
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FIG. 3. Summertime (June–September) MSD strength (mmday21) for three observational estimates: (top) (left)TRMM 3B43 and

(right) UNAM, and (middle left) GPCP. (middle right) The CMIP5 MME mean for 23 models (see Table 3). (bottom) (left) The MME

standard deviation and (right) histogram of the pattern correlations between individual models and theMMEmean.All model output and

observational data were regridded onto a common 0.58 grid.
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highest pattern correlations (;0.93), the MRI-CGCM3

show the smallest RMS because of its better skill in

simulating the spatial standard deviations of summer-

mean rainfall over the EP. In addition, four models

(MPI-ESM-LR, CSIROMk3.6.0, CanESM2, and CNRM-

CM5) also exhibit relatively better pattern correlations

than other models.

The leading ISV modes over the EP based on ob-

served and simulated rainfall fields are identified using

a complex empirical orthogonal function (CEOF) ap-

proach (Maloney et al. 2008). CEOF analyses were ap-

plied to 30–90-day bandpass filtered daily rainfall

anomalies and the spatial amplitude and phase for the

first CEOF mode (CEOF1) based on TMPA are illus-

trated in Figs. 2a,b. A single ensemble member was used

for each model for 1981–2005. The TMPA data are

available for a shorter time period (13 yr), but the sen-

sitivity of the results to different sample sizes (based on

data from a selected model) was found to be small.

Similar to Maloney et al. (2008), the maximum ampli-

tude of the observed rainfall CEOF1 occurs over the far

eastern part of the EP. Figure 2b illustrates the pattern

of spatial phase of observed rainfall CEOF1. In agree-

ment with previous studies, the observed leading ISV

mode associated with the CEOF1 largely exhibits an

eastward propagation, while a northward component is

also evident (e.g., Jiang andWaliser 2008;Maloney et al.

2008; Jiang et al. 2011).

Next, the fidelity of the CMIP5 models in simulating

the leading EP ISV mode is assessed by calculating pat-

tern correlations of the simulated rainfall CEOF1 against

observations. To increase sampling, spatial patterns of

rainfall anomalies associated with the CEOF1 based on

both observations and model simulations are derived at

two quadratic phases by multiplying the CEOF1 ampli-

tude by the cosine and sine of spatial phase at each grid

point, respectively. The pattern correlations are then

calculated at both of these two quadratic phases. A final

pattern correlation for a particular model is derived by

averaging these two pattern correlation coefficients.

Figure 2c illustrates pattern correlations in depicting the

CEOF1 rainfall pattern for each model simulation versus

domain-averaged CEOF1 amplitude relative to obser-

vations, which provide measures of model performance

of variability in space and time, respectively. A majority

of the CMIP5 models tend to underestimate the ampli-

tude of the leading EP ISV mode associated with the

rainfall CEOF1, except CNRM-CM5, MIROC5, MPI-

ESM-LR,HadGEM2-CC, and HadGEM2-ES. Among

the 18 models examined, 8 models exhibit relative

higher pattern correlations (.0.75).

The models with relative better skill in representing the

leading EP ISV mode also largely exhibit better skill for

summer-mean rainfall (cf. Figs. 1, 2c) and 850-hPa wind

patterns (not shown). A common feature among the more

skillful models is the presence of westerly or very weak

easterly mean low-level winds over the EP warm pool

region, as in the observations. Most of the models with

relatively lower skill exhibit a stronger easterly summer-

mean flow (.4ms21). This suggests that realistic repre-

sentation of the mean state could be crucial for improved

simulations of the EP ISV, which is in agreement with

a recent study by Rydbeck et al. (2013), and has also been

discussed for Madden–Julian oscillation (MJO) simula-

tions over the western Pacific and Indian Ocean (e.g., Kim

et al. 2009). One hypothesis is that a realistic mean state

produces the correct sign of surface flux anomalies relative

to intraseasonal precipitation, which helps to destabilize

the local intraseasonal disturbance (e.g., Maloney and

Esbensen 2005). Extended analyses of the EP ISV in

CMIP5 models are given in Jiang et al. (2012).

b. Midsummer drought over Central America

The rainy season in Central America and southern

Mexico spans roughly May through October. For most

of the region, the precipitation climatology features

maxima in June and September and a period of reduced

rainfall during July–August known as the midsummer

drought (MSD; Portig 1961; Maga~na et al. 1999). The

MSD is regular enough to be known colloquially and

plays an important role in farming practices (Osgood

TABLE 3. Spatial correlation of the MSD between the CMIP5

models and the MME mean, calculated for 1850–2005.

Model R

BCC-CSM1.1 0.45

CanCM4 0.37

CanESM2 0.42

CCSM4 0.17

CNRM-CM5 0.49

CSIRO Mk3.6.0 0.51

GFDL CM3 0.29

GFDL-ESM2G 0.48

GFDL-ESM2M 0.27

GISS-E2-H 0.35

GISS-E2-R 0.34

HadCM3 0.75

HadGEM2-CC 0.79

HadGEM2-ES 0.81

INM-CM4.0 0.14

IPSL-CM5A-LR 0.40

IPSL-CM5A-MR 0.34

MIROC5 0.71

MIROC-ESM 20.04

MIROC-ESM-CHEM 20.04

MPI-ESM-LR 0.61

MRI-CGCM3 0.33

NorESM1-M 0.14

1 DECEMBER 2013 SHEFF I ELD ET AL . 9255



et al. 2009). A previous assessment of CMIP3 model

performance at simulating the MSD and future pro-

jections (Rauscher et al. 2008) suggested that many

models are capable of simulating the MSD despite an

overall dry bias and that theMSD is projected to become

stronger with an earlier onset. In this section, the CMIP5

performance at simulating summertime precipitation and

the MSD is evaluated. We evaluate 23 CMIP5 models

against the TMPA, GPCP, and UNAM observational

datasets. A simple algorithm for detecting and quantify-

ing the climatological MSD is used that does not assume

a priori which months are maxima and which months

constitute the MSD (Karnauskas et al. 2012).

Figure 3 shows the observational and CMIP5 esti-

mates of the MSD and highlights the large uncertainties

in its spatial distribution among observational datasets.

The CMIP5 multimodel ensemble (MME) does rea-

sonably well at representing the essence of the MSD

over much of the inter-Americas region. The maxi-

mum strength of the MSD in the MME is found just

offshore of El Salvador and represents a midsummer

precipitationminimum that is;2.5mmday21 less than the

early and late summer peaks. Significant differences in the

location and strength of the MSD between the various

observational datasets preclude a definitive evaluation of

the CMIP5 MME, but it is clear that the strength of the

MSD is underestimated in some regions, including along

the Pacific coast of Central America, the western Carib-

bean, the major Caribbean islands, and Florida. Figure 3

also shows theMME standard deviation and a histogramof

FIG. 4. (left) Storm track density and (right) mean strength for ERA-Interim and seven CMIP5 models (CanESM2, CCSM4, GFDL-

ESM2M, HadGEM2-ES, MIROC5, MPI-ESM-LR, and MRI-CGCM3) on facing pages. Tracks are based on 6-hourly 850-hPa relative

vorticity smoothed to T42 spatial resolution to better capture the synoptic features of the vorticity field.
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the spatial correlations of individual models with theMME

mean. The largest uncertainties are collocated with the re-

gions of largestmagnitude of theMSD indicating thatmuch

of the model disagreement is in the magnitude. Several

models stand out as outliers in representing the spatial

distribution of the MSD relative to the MME mean

(Table3), suchasMIROC-ESMandMIROC-ESM-CHEM,

while the Hadley Centre models do particularly well.

4. East Pacific and Atlantic tropical storm track
and cyclone activity

a. Tropical storm track

The density of traveling synoptic-scale disturbances

across the tropics, referred to in the literature as the

tropical storm track (e.g., Thorncroft and Hodges 2001;

Serra et al. 2008, 2010), is examined in this section. These

systems serve as precursors to a majority of tropical

storms and hurricanes in the Atlantic and eastern North

Pacific and their frequency at 850hPa overAfrica and the

eastern Atlantic has been shown to be positively corre-

lated with Atlantic hurricane activity (Thorncroft and

Hodges 2001). As global models better resolve these

systems than tropical cyclones, they provide an advantage

over direct tracking of tropical cyclones to assess model

tropical storm activity (see section 4b). As in Serra et al.

(2010), the tropical storm track density is calculated

based on the method of Hodges (1995, 1999) using

smoothed, 6-hourly, 850-hPa relative vorticity. Only

positive vorticity centers with a minimum threshold of

0.5 3 1026 s21 that persist for at least 2 days and have

FIG. 4. (Continued)
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tracks of at least 1000 km in length are included in the

analysis. This method primarily identifies westward

moving disturbances such as easterly waves (e.g., Serra

et al. 2010), although more intense storms that could

potentially reach hurricane intensity are not excluded.

We analyze a single ensemble member from nine

CMIP5 models and compared the track statistics to the

ERA-Interim (Fig. 4, left). These models were selected

based on whether the 6-hourly pressure level data were

available at the time of the analysis. Mean track

strength, the mean of the smoothed 850-hPa vorticity

along the track, is also examined (Fig. 4, right).

The multimodel mean track density is in good agree-

ment with ERA-Interim; however, significant differ-

ences are seen with the individual models. The most

apparent discrepancies are with the BCC-CSM1.1,

CanESM2, and CCSM4 models, which strongly over-

estimate activity across the eastern Pacific and suggest

a more longitudinally oriented track (CanESM2 and

CCSM4) shifted south from what is observed. BCC-

CSM1.1, HadGEM2-ES, and MIROC5 underestimate

tracks in the west Atlantic, while GFDL-ESM2M un-

derestimates tracks throughout the region except near

1308W.MPI-ESM-LR also underestimates tracks across

the region as well as shifts their location southward. The

track density maximum off the west coast of Mexico is

best captured by HadGEM2-ES, while the overall

smallest magnitude differences are seen with CNRM-

CM5. The multimodel mean track strength maximum in

the eastern Pacific lies along the west coast of Mexico

similar to ERA-Interim; however, it is broader in scale

and of larger magnitude than the observations (Fig. 4,

left). On the other hand, the multimodel mean strength

in the Gulf of Mexico and western Atlantic along the

East Coast of the United States is strongly under-

estimated compared to ERA-Interim. Unlike for track

density, these biases are fairly consistent among the

models, with the exception of BCC-CSM1.1, which

strongly overestimates mean strength across the region.

To better understand the biases in mean track den-

sity and strength, we examine the spatial correlations of

850- and 500-hPa winds and heights, as well as track

density and strength with ERA-Interim. While all nine

models have relatively good spatial correlations in the

wind components and heights at 500 hPa (not shown),

there is a wide spread in performance at the 850-hPa

level that corresponds reasonably well with the rank-

ings for the combined track density and strength cor-

relations (Table 4). In particular, the top two models for

the combined 850-hPa wind and height correlations

(CNRM-CM5 and HadGEM2-ES) are also among the

highest ranked for the combined track density and strength

correlations. On the other hand, CanESM2 has a high

ranking in the combined 850-hPa index but is one of the

poorer models with respect to track density and spatial

correlations, suggesting that there are other important

factors contributing to the track statistics than just the

large-scale low-level heights and winds across the region.

b. Tropical cyclones in the North Atlantic and eastern
North Pacific

It is well known since the 1970s that climate models

are able to simulate tropical cyclone-like storms (e.g.,

Manabe et al. 1970; Bengtsson et al. 1982), which are

generally formed at the scale of the model grid when

conditions are unstable enough and other factors, such

as vertical wind shear, are favorable. As the resolution

of the climate models increases, the modeled storm

characteristics become more realistic (e.g., Zhao et al.

2009). Analysis of CMIP3 models showed that the

tropical cyclone-like storms produced still had many

biases common of low-resolution models (Walsh et al.

2010). Therefore, various dynamical and statistical

techniques for downscaling tropical cyclone activity us-

ing only the CMIP3 large-scale variables have been

employed (Emanuel et al. 2008; Knutson et al. 2008).

Recent studies suggest that when forced by observed

SSTs and sea ice concentration, a global atmospheric

model with a resolution ranging from 50 to 20 km can

simulate many aspects of tropical cyclone (TC)–

hurricane frequency variability for the past few decades

during which reliable observations are available (e.g.,

Oouchi et al. 2006; Bengtsson et al. 2007; Zhao et al.

2009). The success is not only a direct evaluation of

model capability but also an indication of the dominant

role of SST variability on TC–hurricane frequency var-

iability. When assuming a persistence of SST anomalies,

TABLE 4. Spatial correlations of model fields with ERA-Interim

for the months indicated and for 1979–2005. Correlations of the

850-hPa wind components and geopotential height have been

combined into one index R_ZUV850, while 850-hPa track density

and strength correlations have been combined into a second index

R_TRK850 to simplify the comparisons. Values in boldface are the

upper 25th percentile of the nine models shown.

May–October

R_ZUV850

May–November

R_TRK850

BCC-CSM1.1 0.76 0.69

CanESM2 0.83 0.63

CCSM4 0.77 0.57

CNRM-CM5 0.90 0.84

GFDL-ESM2M 0.75 0.77

HadGEM2-ES 0.85 0.90
MIROC5 0.82 0.86

MPI-ESM-LR 0.82 0.85

MRI-CGCM3 0.79 0.86
75th percentile 0.83 0.86
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some of the models were also shown to exhibit signifi-

cant skill in hurricane seasonal forecast (e.g., Zhao et al.

2010; Vecchi et al. 2011).

Tropical storms and cyclones in this study are identified

using the tracking method of Camargo and Zebiak (2002),

which uses low-level vorticity, surface winds, surface

pressure, and atmospheric temperature and considers only

warm core storms. The method uses model-dependent

(and resolution) thresholds and storms have to last at least

2 days.Only a subset of the tropical disturbances examined

in the previous section will intensify enough to be identi-

fied by this tracking method and the percentage that this

occurs will vary among differentmodels. As will be shown,

the CMIP5 standard models have trouble simulating the

number of tropical cyclones, which can be attributed in

part to their coarse resolution. Therefore, we also show

results from the GFDL high-resolution model.

TC-type structures were tracked in five models for

1950–2005. We compare with observations from best-

track datasets of the National Hurricane Center (Fig. 5).

The number of TCs in all models is much lower than in

observations, which is common to many low-resolution

global climate models (e.g., Camargo et al. 2005, 2007).

The HadGEM2-ES has the largest low bias, and the

FIG. 5. Tracks of tropical cyclone-like storms in the CMIP5 historical runs in the period 1950–2005 [GFDL-ESM2M (1 ensemble

member), HadGEM2 (1 ensemblemember),MPI-ESM-LR (3 ensemblemembers), MRI-CGCM3 (5 ensemblemembers), andMIROC5

(1 ensemble member)] and in observations for the same period. The number of storms in each case is given in the bottom-right corner of

each panel. One ensemble member is used for each model.
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MPI-ESM-LR model has the most realistic tracks in

the Atlantic basin. The MRI-CGCM3 model tracks in

the Atlantic are mostly in the subtropical region, with

very few storms in the deep tropics. In contrast, in the

eastern North Pacific the MRI-CGCM3 has storm ac-

tivity too near the equator. In the eastern North Pacific,

very few storms (in all models) have westward tracks.

The models seem to have an easier time in producing

storms that are in the northwestward direction parallel

to the Central American coast.

Figure 6 shows themean number of TCs permonth for

the North Atlantic and eastern North Pacific. In some

cases, the models produce too many storms in the off-

season, while all models produce too few storms in the

peak season. The bottom panels show the spread of the

number of storms per year, emphasizing the low number

of storms per year in all models. The highest-resolution

model MRI-CGCM3 (1.18 3 1.18) has the least bias

relative to the observations and the highest bias is for the

coarsest-resolution model (GFDL-ESM2M; 2.58 3 2.08).
However, resolution cannot explain the rankings for all

models, with the HadGEM2-ES and MPI-ESM-LR

models having relatively large and small biases, respec-

tively, despite both having intermediate resolutions. The

model dynamical core, convection scheme and their in-

teractions are other factors that have been shown to be

important (Camargo 2013). Examination of variability

across ensemble members in producing tropical cyclones

FIG. 6. Mean number of TCs per month in models [GFDL-ESM2M, HadGEM2-ES (in the figure HGEM2), MPI-ESM-LR, MRI-

CGCM3, and MIROC5] and observations in (top left) the North Atlantic and (top right) eastern North Pacific, using only ensemble 1 for

MRI-CGCM3. Number of TCs per year in the period 1950–2005 in models and observations for (bottom left) the North Atlantic and

(bottom right) the eastern North Pacific. The blue box shows the 25th–75th percentile range, with the median shown as a red line. The

whiskers and red crosses show the data outside of middle quartiles.
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was carried out for five member runs of the MRI-

CGCM3 model (not shown) but was much less than

among different models.

Figure 7 shows results for the GFDL-C180-HIRAM

model, which has a higher resolution (;50 km) than the

standard coupledGFDLCM3model and differs in some

aspects of the physics such as the convection scheme.

The model was run for a CMIP5 timeslice experiment

forced by observed interannually and seasonally varying

SSTs and sea ice concentration from HadISST (I. M.

Held et al. 2013, unpublished manuscript). The tracking

algorithm of Zhao et al. (2009) was used to identify TCs

with near-surface wind speed reaching hurricane in-

tensity. The model reproduces the observed statistics

with the ratio of observed to model variances of in-

terannual variability in both the North Atlantic and

eastern Pacific not statistically different from one, ac-

cording to an F test at the 5% significance level that

FIG. 7. (top) Comparison of observed andC180-HIRAM(one realization) simulated hurricane tracks for theNorthAtlantic and eastern

Pacific for 1981–2008. (middle) Comparison of observed and C180-HIRAM simulated annual hurricane count statistics. Blue boxes show

the 25th–75th percentile range, with the median shown as a red line and the mean shown as a red star. The whiskers show the maximum

and minimum values. The annual statistics are computed based on a 3-member ensemble mean for 1981–2008. (bottom) Observed and

model simulated seasonal cycle (number of hurricanes per month) for (left) the North Atlantic and (right) eastern Pacific from the

3-member ensemble mean (1 5 January; 12 5 December).
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assumes that the annual frequencies are normally dis-

tributed. Figure 7 also shows that the model captures the

observed seasonal cycle in both the North Atlantic and

eastern Pacific. The model can also reproduce the ob-

served seasonal cycle in the North Atlantic and eastern

Pacific as well as the observed year-to-year variation of

annual hurricane counts and the decadal trend for both

basins for this period (Zhao et al. 2009; I. M. Held et al.

2013, unpublished manuscript). The quality of the

model’s present-day simulation increases our confi-

dence in the future projections, although the uncertainty

in the projections is dominated by uncertainty in pro-

jected changes in SST boundary conditions across the

CMIP5 standard-resolution models (Part III). Although

not analyzed here, MIROC4h has a similar spatial res-

olution (0.568) to C180-HIRAM. Evaluations by

Sakamoto et al. (2012) show that MIROC4h can re-

produce the global number of TCs, in part because of

realistic SSTs, but severely underestimates the fre-

quency in the North Atlantic, suggesting that higher

model resolution is necessary but not sufficient to re-

produce observed frequencies.

5. Interannual to decadal variability

a. ENSO

The El Ni~no–Southern Oscillation (ENSO) is the

most important driver of global climate variability

on interannual time scales. It impacts many regions

worldwide through climate teleconnections (Ropelewski

and Halpert 1987), which link the tropical Pacific to

higher latitudes through shifts in midlatitude weather

patterns. The impact of ENSO on North American cli-

mate is felt most strongly in the wintertime, with El Ni~no

events bringing warmer temperatures to much of the

northern part of the continent and wetter conditions in

the southern United States and northern Mexico. La

Ni~na events tend to bring drier weather to the southern

United States. Evaluation of the ability of CMIP5

models to simulate ENSO is carried out for several

aspects of ENSO variability and for teleconnections

with North American climate.

1) EVALUATION OF ENSO TELECONNECTIONS

We examine how well the historical simulations of

CMIP5 models reproduce the composite near-surface

air temperature (SAT) and precipitation patterns over

North America during El Ni~no and La Ni~na episodes. In

both model and observed data, we define ENSO epi-

sodes similarly to the Climate Prediction Center (CPC).

A monthly ENSO index is calculated from detrended

and high-pass filtered SSTs over the Ni~no-3.4 region

(58S–58N, 1708–1208W) from ERSST.v3b observations

and CMIP5 models. An El Ni~no (La Ni~na) episode is

defined as any sequence of months where the 3-month

running mean Ni~no-3.4 SST is .0.58C (,20.58C) for at
least 5 consecutive 3-month running seasons.

In observations, approximately 90% of El Ni~no and

89% of La Ni~na episodes feature peak amplitudes in fall

or winter. In the CMIP5 ensemble of the historical

simulations, however, only 68% of El Ni~no and 65% of

La Ni~na episodes have peak amplitudes in fall or winter,

although several of the models (CanESM2, CNRM-

CM5, HadCM3, and NorESM1-M) do have fall–winter

peak frequencies exceeding 80% for both El Ni~no and

La Ni~na episodes. This finding suggests that CMIP5

models do not fully reproduce the phase locking of

ENSO to the seasonal cycle, a deficiency noted in

CMIP3 models as well (Guilyardi et al. 2009). The fol-

lowing analysis focuses on those episodes that do peak in

fall or winter. In the ensemble mean, the frequency of

ENSO episodes and the mean peak amplitude are sim-

ilar to observed values (not shown).

Because the dynamics of extratropical ENSO tele-

connections are tied to upper-tropospheric processes

and because these teleconnections are strongest during

boreal winter, we examine how well CMIP5 models

reproduce the December–February (DJF) composite

300-hPa geopotential height patterns in the NCEP–

NCAR reanalysis. In addition, we attempt to identify what

characteristics distinguish higher from lower performance

models, where performance is based on the El Ni~no (La

Ni~na) composites of all height fields for which the de-

trended Ni~no-3.4 SST anomaly is .0.58C (,20.58C). The
high performance models are defined as those with a pat-

tern correlation that exceeds 0.6 and anRMSdifference less

than 13m between the model and observed composites for

both El Ni~no and La Ni~na (Fig. 8). This subjective parti-

tioning is used as a means of discerning general properties

that distinguish higher from lower performance models.

Overall, 10 (11) models are characterized as high (low)

performance based on these criteria.

Figure 9 shows the composites of 300-hPa geo-

potential height, SAT, precipitation, and tropical SST

for El Ni~no. The corresponding composites for La Ni~na

(not shown) are quite similar but of opposite sign. The

higher performance ensemble performs rather well in

capturing the basic El Ni~no geopotential height, SAT,

and precipitation teleconnections over the North Pacific

and North America, with the exception being the failure

to capture the negative precipitation anomaly in the

Tennessee and Ohio valleys. The lower performance

ensemble features a much weaker teleconnection pat-

tern and an Aleutian low anomaly that is shifted about

108 too far west. The composite El Ni~no SST anomalies

(Figs. 2k,l), however, are quite similar.
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To gain insight into possible reasons for the discrep-

ancies between the higher and lower performance en-

semble, Fig. 10a shows composite differences in tropical

precipitation. The higher performance ensemble ex-

hibits much higher precipitation anomalies in the central

and eastern equatorial Pacific Ocean, which suggests

that the enhanced convection in these regions could help

to explain the stronger and eastward shifted tele-

connection pattern relative to the lower performance

ensemble. This enhanced convection may be explained

in part by stronger SST anomalies in the higher perfor-

mance ensemble (Fig. 10b), but most of the large precip-

itation differences actually occur where the SST anomaly

differences are quite small. Instead, a more significant

difference appears to be the difference in SST clima-

tology, as the lower performance ensemble exhibits cli-

matological SSTs more than 18C cooler than the high

performance ensemble over the eastern Pacific cold

tongue region (Fig. 10c). Indeed, the lower performance

ensemble features a negative SST climatology bias of

more than 1.58C in the equatorial central Pacific (Fig. 10e),

where the El Ni~no convection anomalies generally are

strongest. The bias for the higher performance ensemble

in this region (Fig. 10d) is much weaker. Thus, in the lower

performance ensemble, the convection anomalies in the

eastern Pacific likely are too insensitive to ENSO SST

anomalies because the climatological SSTs are too low.This

finding suggests that simulation of ENSO teleconnections

in some climate models might benefit from improving cli-

matological SSTs rather than interannually varying ENSO

SST anomalies. As discussed in Li and Xie (2012), tropical

SST biases in CMIP models are linked to model errors

in cloud cover and ocean dynamics, with equatorial cold

tongue biases closely tied to errors in thermocline depth

and upwelling.

2) EAST PACIFIC–CENTRAL PACIFIC ENSO
AND TELECONNECTIONS WITH U.S. WINTER

SURFACE AIR TEMPERATURE

It has been increasingly recognized that different

types of ENSO occur in the tropical Pacific (e.g., Wang

and Weisberg 2000; Trenberth and Stepaniak 2001;

Larkin and Harrison 2005; Yu and Kao 2007; Ashok

et al. 2007; Kao and Yu 2009; Kug et al. 2009). Two

particular types that have been emphasized are the EP

type that produces SST anomalies near the South

America coast and the central Pacific (CP) type that

produces anomalies near the international date line.

While the EP ENSO is the conventional type of ENSO,

the CP ENSO has gradually increased its occurrence

during the past few decades (e.g., Lee and McPhaden

2010). Recent observational studies have indicated that

the impacts produced by these two types of ENSO on

North American climate can be different (e.g., Mo 2010;

Yu et al. 2012; Yu and Zou 2013). Here the ENSO tele-

connection over the United States simulated in the

FIG. 8. Taylor diagrams for (a) El Ni~no and (b) La Ni~na composite 300-hPa geopotential patterns over the region from East Asia to

North America. Higher performance [pattern correlation. 0.6 and RMS difference, 13m in both (a) and (b)] models are indicated in

red, whereas lower performance models are indicated in blue. In (a) HadCM3, which falls outside of the plot, has a pattern correlation of

20.3 and RMS difference of 17.6m. The points labeled ens in red, blue, and green represent the higher performance, lower performance,

and total ensemble, respectively. The composites are normalized by the Ni~no-3.4 SST amplitude to focus on pattern differences in-

dependent of ENSO amplitude differences. The observational reference is based on the NCEP–NCAR reanalysis for 1950–2010, whereas

the CMIP5 calculations are based on the full historical period (1850–2005) for one run of each model.
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CMIP5 models are further examined according to the

ENSO type. Following Kao and Yu (2009) and Yu and

Kim (2010), a regression-EOF analysis is used to iden-

tify the CP and EP types from monthly SSTs. The SST

anomalies regressed with the Ni~no-112 SST index were

removed before the EOF analysis was applied to obtain

the spatial pattern of the CP ENSO. Similarly, we sub-

tracted the SST anomalies regressed with the Ni~no-4

SST index before the EOF analysis was applied to

identify the leading structure of the EP ENSO. The

principal components of the leading EOF modes

represent the ENSO strengths and are defined as the CP

ENSO index and the EP ENSO index. The observed

winter (DJF) SAT anomalies regressed to these two

indices are different over the United States (Fig. 11)

with a warm northeast to cold southwest pattern for the

EP El Ni~no and a warm northwest to cold southeast

pattern for the CP El Ni~no. Adding these two impact

patterns together results in a pattern that resembles the

well-known warm north–cold south pattern of El Ni~no

impact. The robustness of these two different impact

patterns has been examined in Yu et al. (2012) using

FIG. 10. Composite DJF El Ni~no (a) precipitation (mmday21) and (b) SST (8C) difference
between the high and low performance CMIP5 ensemble described in Fig. 8. Stippling indicates

differences that are statistically significant at the 5% level. (c) DJF SST climatology difference

(8C) between the high and low performance ensemble and (d) high and (e) low performance

SST climatology bias (8C) for the 1951–2000 period.
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numerical model experiments and case studies. They

showed that impact patterns similar to those shown in

Fig. 11 can be reproduced in two ensemble AGCM ex-

periments forced separately by the EP and CP ENSO

SST anomalies (see their Fig. 1). The regressed impact

patterns can also be identified in U.S. winter tempera-

ture anomalies during the four strongest EP El Ni~no

events (i.e., 1997/98, 1982/83, 1972/73, and 1986/87) and

three of the four strongest CP El Ni~no events (i.e., 2009/

10, 1957/58, and 2002/03).

We repeated the EOF and regression analyses to

evaluate how well the CMIP5 models reproduce the

different U.S. impacts to the two types of ENSO, while

recognizing the uncertainty in the observational impacts

due to the limited number of events in the observational

record. The regressed winter SAT anomaly patterns cal-

culated from 22 CMIP5 models are shown in Fig. 11. The

observed patterns arewell simulated by somemodels, such

as theMIROC5 andMRI-CGCM3 for the EP ENSO and

the NorESM1-M and HadGCM2-ES for the CP ENSO.

However, some models show an impact pattern that is

almost opposite to that observed, such as HadCM3 for the

CP ENSO and INM-CM4.0 for the EP ENSO. To quan-

tify how well the impact patterns are simulated, pattern

correlation coefficients were calculated between the

model regressed patterns and the NCEP regressed pat-

terns. As shown in Fig. 12a, there is a cluster of 11 CMIP5

models (CSIRO Mk3.6.0, GFDL CM3, GFDL-ESM2G,

GFDL-ESM2M, HadGEM2-CC, HadGEM2-ES, IPSL-

CM5A-MR MIROC5, MPI-ESM-LR, MPI-ESM-P, and

FIG. 11.U.S.winter surface air temperature regressed on the (left)EPand (right)CPENSO indices fromobservations and theCMIP5models on

facing pages. Observational air temperature data are from the NCEP–NCAR reanalysis and SSTs are from the ERSST dataset for 1950–2010.
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NorESM1-M) that have higher pattern correlation

coefficients for both the EP ENSO and the CP ENSO

than the rest of the models. This group of the CMIP5

models is considered as the models whose regressed

U.S. winter temperature patterns are close to the ob-

served patterns for the two types of ENSO. We also

examine in Fig. 12b the intensities of the simulated EP

and CP ENSO events, which are determined using an

EOF-regression method (Yu and Kim 2010; Kim and

Yu 2012). Models with realistically strong events are

identified using the lower limit of the 95% confidence

interval of the observed intensities (using an F test) as the

criteria (0.788C for EP and 0.518C for CP). Based on these

criteria, 10 of the 22 models simulate both EP and CP

ENSO events with realistically strong intensities. In-

terestingly, 9 of thesemodels are also among the 11models

that realistically produce U.S. winter temperature pat-

terns for the two types of ENSO. Therefore, at least

9 out of 22 models can more realistically produce the

two types of ENSO with higher intensities and their

different impacts on U.S. winter temperatures: GFDL

CM3, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-

CC, HadGEM2-ES, MIROC5, MPI-ESM-LR, MPI-

ESM-P, and NorESM1-M.

3) ENSO WARM–COLD EVENTS ASYMMETRY

ENSO asymmetry refers to the fact that the two

phases of ENSO are not mirror images of each other

(Burgers and Stephenson 1999). The asymmetry shows

up in both the surface and subsurface fields (Rodgers

et al. 2004; Schopf and Burgman 2006; Sun and Zhang

2006; Zhang et al. 2009). Causes for such an asymmetry

FIG. 11. (Continued)
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are not yet clearly understood, but accumulating evi-

dence suggests that it is likely a consequence of non-

linearity of ocean dynamics (Jin et al. 2003; Sun 2010,

Liang et al. 2012). Asymmetry is also linked to the time-

mean effect of ENSO (Sun and Zhang 2006; Schopf and

Burgman 2006; Sun 2010; Liang et al. 2012).Understanding

the causes and consequences of ENSO asymmetry may

hold the key to understanding decadal variability in the

tropics and beyond (Rodgers et al. 2004; Sun and Yu 2009;

Liang et al. 2012). Figure 13 shows the sum of the SST

anomalies between the warm and cold phases of ENSO

from HadISST observations and CMIP5 models. The

threshold value used for defining the warm and cold phase

anomalies is set as 10.58 and 20.58C, respectively. This
sum has also been called the SST anomaly residual and has

been a common measure of the ENSO asymmetry in the

SST field. All models underestimate the observed positive

SST residual (and therefore the asymmetry) over the

eastern Pacific. Measured by the skewness of Ni~no-3 SST

anomalies (which is a more customary measure of

FIG. 12. (a) Scatterplot of pattern correlations between the regression patterns from the

CMIP5 models and those from the observations (NCEP–NCAR reanalysis and HadISST da-

taset) for EP vs CP ENSO. (b) Scatterplot of the intensities of the EP–CP ENSO from the

CMIP5 models and the observation (ERSST). The values shown are the maximum standard

deviations of the EOF patterns of the two types of the ENSO calculated using a regression-

EOF method. The blue dashed lines indicate the lower limit of the 95% confidence interval of

the observed ENSO intensities based on an F test.
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FIG. 13. The sum of the composite SST anomalies between the two phases of ENSO from the HadISST observations and CMIP5

coupled models. The definition of the warm phase and cold phase of ENSO follows that of Zhang et al. (2009). The length of data used in

the calculation is 50 yr for all the models and observations (1950–99).
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asymmetry), all the models also underestimate the ob-

served ENSO asymmetry (Fig. 14). The figure also shows

that the stronger variability of ENSO (measured by vari-

ance) does not guarantee a stronger asymmetry in ENSO

(measured by skewness).

Lack of ENSO asymmetry remains a common bias in

climate models that has continued since CMIP3 (van

Oldenborgh et al. 2005) with implications for simulating

tropical decadal variability. The causes are of current

debate, but recent results indicate that it is related to the

mean state and the excessive cold tongue in the models

(D.-Z. Sun 2013, unpublished manuscript), which was

also noted in CMIP3 models (Y. Sun et al. 2013), al-

though there is evidence that the mean state could in

turn be determined by the statistics of ENSO via non-

linearities in the system (Sun and Zhang 2006; Sun 2010;

Liang et al. 2012; D.-Z. Sun et al. 2013, manuscript

submitted to J. Climate; Ogata et al. 2013). On other

hand, both the bias in the mean state and the bias in the

asymmetry may be a consequence of a more funda-

mental reason: a weak thermal forcing relative to the

dissipation (Sun 2000; Liang et al. 2012). Together, these

results raise the question whether the coupled tropical

system in the models is in a different dynamical regime

to reality (Sun and Bryan 2010).

b. Persistent droughts and wet spells over Great
Plains and the southern-tier states

Persistent dry and wet summers are features of the

U.S. Great Plains and southern United States. We

evaluate how the CMIP5 models describe the processes

that cause such persistent anomalies in terms of low-level

FIG. 14. The (top) standard deviation and (bottom) skewness of monthly Ni~no-3 SST anomalies from

observations and CMIP5model simulations. The length of data for computing the standard deviation and

skewness is 50 yr for the observations (1950–99). For the model, the standard deviation and skewness

were calculated for a 50-yr moving window over 100 yr of the model run for a total of 601 samples. The

figure shows the mean of the samples and the standard deviation across the samples. Data used are the

same as for Fig. 13.
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FIG. 15. Summertime wet and dry circulation patterns for the central United States from the NCEP–NCAR reanalysis. Summertime

precipitation anomalies (contours) in (a) wet and (b) dry years in reference to the Great Plains precipitation and the vertically integrated

moisture fluxes from the surface to the top of the troposphere (arrows). (c) The differences between (a) and (b). The corresponding

850-hPa geopotential height (contours) and 925-hPa wind anomalies (arrows) for the (d) wet and (e) dry summers. (f) Summary of

differences between (d) and (e).
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circulation and moisture flux anomalies by comparing

with the NCEP–NCAR reanalysis. This complements

the evaluations of the average seasonal circulation in

the region, such as the low-level southerly jet as shown in

Part I. Persistent wet and dry summers are defined by

June–August (JJA) precipitation anomalies averaged

over theGreat Plains region from 908 to 1058Wand from

308 to 508N during 1971–2000. Wet (dry) summers are

identified as having normalized JJA precipitation larger

(smaller) than 0.6 (20.6) standard deviation. The re-

analysis data identify 8 wet and 7 dry summers in 1971–

2000, and the models identify between 7 and 12 wet or

FIG. 16. As in Fig. 15, but for CCSM4 simulation results.
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dry events, depending on the model. We show the

composites of vertically integrated moisture from the

surface to top of the troposphere, the 850-hPa geo-

potential height, and near-surface winds at 925hPa for

the wet and dry summers and their differences for the

reanalysis (Fig. 15) and for a single model, CCSM4, as

an example (Fig. 16).

Comparison of the two figures indicates some simi-

larities but also very different processes causing the

persistent wet or dry summers. The integrated moisture

fluxes in both datasets indicate high moisture in an av-

eraged cyclonic rotation in the troposphere in persistent

wet summers (Figs. 15a, 16a) but anticyclonic rotation in

dry summers (Figs. 15b, 16b) in the Great Plains.

However, the sources of the moisture and the low-level

dynamic structure are quite different. For the reanalysis,

the convergence of moisture in the central Great Plains

during wet summers results from southerly flow anom-

alies in the enhanced subtropical high pressure system in

the North Atlantic and northerly flow anomalies in low

pressure anomalies centered in the Midwest (Fig. 15d).

These anomalies suggest a frontal system along the de-

pression from the Midwest to the Southwest. A nearly

reversed pattern of flow anomalies is shown during the

dry summers (Figs. 15e,f). The model simulations show

a different pattern of flow anomalies (Figs. 16d,e). In wet

summers, the moisture is primarily from the east along

the easterly and southeasterly quadrants of a high

pressure anomaly center in the Great Lakes areas, in-

stead of from the south as in the reanalysis result

(Fig. 16a versus Fig. 15a). In dry summers, the model

shows dry flows from the Mexican plateau off the Sierra

Madre Oriental in Mexico. These contrasts are shown in

Fig. 16f. The other CMIP5 models also simulate differ-

ent tropospheric circulation patterns from those in the

reanalysis for both wet and dry summers in the Great

Plains.

Although the integrated moisture fluxes in the models

resemble those in the reanalysis estimates in wet and dry

summers, the sources of moisture differ considerably,

suggesting that the models are not correctly represent-

ing the mechanisms that force variability in the Great

Plains. Controls on summertime Great Plains pre-

cipitation have been found to depend strongly on

moisture transport from the Gulf of Mexico via the

Great Plains low-level jet (GPLLJ; e.g., Ruiz-Barradas

and Nigam 2006; Cook et al. 2008; Weaver and Nigam

2008) whose variability in turn may be related to remote

SST forcing in the Pacific (e.g., Schubert et al. 2004;

Ruiz-Barradas and Nigam 2010; McCabe et al. 2008)

FIG. 17. PDO SST patterns in observations and CMIP5 models. Linear regression of SST on the PDO index in

(a) observations and (b) the CMIP5 ensemble and (c) the CMIP5minus observed PDO regression. Observations are

from the HadISST dataset for the period between 1870 and 2009. For the CMIP5 models, the analysis period begins

as early as 1850 and extends to 2005, and a single realization is used for each model. The contour interval is 0.28C in

(a),(b) and 0.18C in (c), with the zero contour omitted. Stippling in (c) indicates where the differences are statistically

significant at the 5% significance level based on a two-sided t test. (d) Standard deviation of the PDOSST regressions

within the ensemble. Contour interval is 0.058C.
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and Atlantic (e.g., Enfield et al. 2001; Sutton and

Hodson 2005; McCabe et al. 2008) with contrasting

anomalies in each basin associated with extreme con-

ditions in the Great Plains (e.g., Hoerling and Kumar

2003; Schubert et al. 2009). Some of the models have

shown improvement, compared to the CMIP3 models,

in simulating the GPLLJ and the seasonal transitions

(see Part I), a result largely attributable to the higher

spatial resolution of CMIP5 models, but most models

struggle to represent observed teleconnections between

precipitation and Atlantic SSTs (see section 6). Even so,

the transport of moisture transport is not the whole story

and local dynamic processes (e.g., Veres and Hu 2013),

as well as land–atmosphere feedbacks (Ruiz-Barradas and

Nigam2006), are important to initiate and further organize

regional circulations that can transform the moisture into

TABLE 5. Error statistics for the CMIP5 PDO regressions on North American seasonal SAT (8C) and precipitation (mm day21). Pattern

correlations lie above the RMS difference. Regression differences at each grid point are evaluated with a two-sided t test, for which the

effective degrees of freedom are adjusted for the lag-1 autocorrelation in the residuals, as in Santer et al. (2000). Boldface values indicate

regression pattern differences that are statistically significant at the 5% level basedon a false discovery rate field significance test (Wilks 2006).

Model

DJF

SAT

DJF

precipitation

MAM

SAT

MAM

precipitation

JJA

SAT

JJA

precipitation

SON

SAT

SON

precipitation

BCC-CSM1.1 0.90 0.33 0.67 0.20 0.48 0.07 0.05 0.06

0.18 0.07 0.12 0.05 0.08 0.10 0.16 0.07

CanESM2 0.63 0.31 0.76 0.24 0.45 0.04 20.11 20.07

0.19 0.06 0.10 0.05 0.07 0.06 0.12 0.07

CCSM4 0.85 0.44 0.69 0.23 0.29 20.15 0.10 0.11
0.16 0.06 0.20 0.06 0.09 0.08 0.29 0.10

CNRM-CM5 0.54 0.30 0.64 0.20 0.31 20.04 0.44 20.02

0.22 0.07 0.18 0.06 0.11 0.07 0.09 0.08

CSIRO Mk3.6.0 0.70 0.11 0.51 20.05 0.31 20.01 0.30 0.16

0.19 0.07 0.20 0.11 0.14 0.19 0.18 0.12

FGOALS-s2 0.72 0.02 0.41 0.09 0.26 0.00 0.34 20.08

0.16 0.08 0.15 0.06 0.10 0.06 0.14 0.07

GFDL CM3 0.53 0.24 0.19 20.11 0.22 0.01 0.19 0.10

0.20 0.07 0.18 0.06 0.10 0.06 0.14 0.06

GFDL-ESM-2G 0.82 0.06 0.53 20.01 0.28 20.06 0.28 0.14

0.25 0.07 0.23 0.07 0.12 0.09 0.18 0.09

GFDL-ESM-2M 0.52 0.26 0.22 20.17 0.35 0.03 0.01 0.07

0.30 0.08 0.22 0.08 0.11 0.11 0.14 0.09

GISS-E2-R 0.70 0.41 0.57 0.18 0.04 20.04 0.11 20.04

0.17 0.06 0.16 0.06 0.12 0.10 0.11 0.08

HadGEM2-CC 0.76 0.52 0.55 0.26 0.37 20.03 0.42 0.19

0.16 0.06 0.20 0.06 0.11 0.08 0.09 0.06

HadGEM2-ES 0.39 0.20 0.62 0.10 0.26 20.09 0.07 0.08

0.22 0.08 0.19 0.07 0.09 0.11 0.12 0.09

HadCM3 0.73 0.30 0.75 0.28 0.21 0.04 0.27 0.20

0.20 0.07 0.13 0.05 0.11 0.08 0.14 0.08

INM-CM4 0.15 0.13 0.14 20.14 0.05 20.02 0.20 0.05

0.25 0.07 0.19 0.07 0.10 0.07 0.09 0.06

IPSL-CM5A-LR 0.87 0.21 0.40 20.13 0.14 20.14 0.19 0.09

0.15 0.09 0.23 0.08 0.10 0.07 0.13 0.07

IPSL-CM5A-MR 0.74 0.18 0.42 20.09 0.11 20.10 0.42 20.06

0.17 0.09 0.17 0.07 0.10 0.07 0.11 0.07

MIROC5 0.65 0.23 0.69 0.26 0.29 0.00 0.05 20.02

0.19 0.11 0.14 0.06 0.10 0.08 0.15 0.09

MIROC-ESM 0.48 20.07 0.13 20.22 0.33 20.11 0.31 0.05

0.21 0.07 0.17 0.06 0.07 0.06 0.09 0.06

MPI-ESM-LR 0.77 0.20 0.34 20.03 0.00 0.00 0.20 0.10

0.18 0.07 0.18 0.07 0.13 0.08 0.14 0.08

MRI-CGCM3 20.47 0.11 0.09 0.10 0.14 20.04 20.64 20.04

0.34 0.08 0.24 0.08 0.08 0.08 0.21 0.08

NorESM1-M 0.76 0.14 0.52 20.01 0.39 20.07 20.05 20.09

0.24 0.08 0.17 0.06 0.09 0.07 0.16 0.07

MME mean 0.91 0.47 0.63 0.10 0.37 20.06 0.22 0.14

0.11 0.06 0.13 0.05 0.07 0.06 0.10 0.06
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FIG. 18. December–February PDOSATand precipitation regression patterns overNorthAmerica. Regressions ofDJF (a),(c) SAT and

(b),(d) precipitation on the PDO index in (a),(b) observations and (c),(d) the CMIP5 ensemble. (e),(f) The differences between the

regression patterns (CMIP5 minus observations). The contour interval is 0.18C for the SAT regressions in (a),(c),(e) and 0.05mmday21

for the precipitation regressions in (b),(d),(f). Stippling in (e),(f) correspond to differences that are significantly different at the 5%

significance level based on a two-sided t test with adjustment of the effective degrees of freedom for the lag-1 autocorrelation in the

residuals (Santer et al. 2000). To focus on multidecadal variability, a Butterworth 10-yr low-pass filter is applied to each PDO index time

series, which is then restandardized and detrended. The SAT and precipitation anomalies are then regressed on the filtered index for each

season. The observations are the CRU TS3.1 temperature and precipitation datasets.
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precipitation. Notably, previous studies focused on climate

models find that they tend to overestimate the role of re-

cycled precipitation over advected moisture (e.g., Ruiz-

Barradas and Nigam 2006) for the Great Plains with

implications for the modeled precipitation variability.

6. Decadal variability

a. PDO and its influence on North American climate

On interdecadal time scales, variability in the tropical

and extratropical North Pacific, particularly that of the

Pacific decadal oscillation (PDO), has significant physi-

cal and ecological impacts over North America (Mantua

et al. 1997; Higgins et al. 2000; Meehl et al. 2013). We

examine the PDO and its relationships with North

American temperature and precipitation for 21 CMIP5

models. We define the PDO as the leading empirical

orthogonal function of extended winter (November–

April) monthly-mean SST anomalies in theNorth Pacific

poleward of 208N (Zhang et al. 1997; Mantua et al. 1997)

for 1900–93 and subtract the monthly global mean SST.

We then calculate the PDO index by projecting monthly

North Pacific SST anomalies onto the PDO pattern for

all available months and then standardizing the resulting

time series. Figure 17 illustrates the PDO patterns in

both observations and the CMIP5 ensemble (see Table 5

for a list of models) obtained by regressing the unfiltered

monthly SST anomalies onto the PDO index for all cal-

endar months. As in the CMIP3 models (Oshima and

Tanimoto 2009; Furtado et al. 2011), the CMIP5 models

reproduce the basic PDO horseshoe SST pattern. The

most notable difference is the westward shift of the

North Pacific center of action in models with respect to

observations (Fig. 17c). The regions with the largest

differences also correspond with regions of relatively

high intermodel variability (Fig. 17d).

For each set of seasonal temperature and precip-

itation regressions, we calculate the centered pattern

correlations and RMS differences between the observed

and CMIP5 model regressions (Table 5). Despite fairly

FIG. 19. The JJASON AMO index in CMIP5 models compared to observations for (a) the

time series and (b) autocorrelations. The AMO index is defined as the 11-yr running mean of

the detrended North Atlantic SST during the Atlantic hurricane season of JJASON from the

equator to 608N and from 758 to 58W. SST observations are from the ERSST dataset.
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low pattern correlations in many cases, for most models

and most seasons the differences in the regression pat-

terns are not statistically significant. This may be due to

a combination of small effective sample size, large un-

certainty in the regression coefficients, a relatively

modest impact of the PDO on seasonal SAT and pre-

cipitation, and the ability of the models to capture the

general PDO behavior during the winter and spring

when the PDO impacts are strongest. In particular, the

full ensemble performs well in capturing the winter and

spring PDO SAT patterns, but substantial differences

in the precipitation regressions are evident, particularly

in spring.

Figure 18 shows the DJF SAT and precipitation re-

gressions in observations and the CMIP5 ensemble. The

CMIP5 models do rather well in capturing the PDO

influence on North American SAT, with positive (neg-

ative) SAT anomalies in northwestern (southeastern)

North America during the positive phase of the PDO.

Almost all local differences in the regression coefficients

are not statistically significant. In contrast, the CMIP5

models perform somewhat poorly in reproducing the

precipitation patterns over large parts of NorthAmerica,

although for high latitudes the observations are based on

very sparse station data, especially before the 1950s

(Zhang et al. 2000). Both observations (Fig. 18b) and

CMIP5 ensemble (Fig. 18d) produce a tripole pattern of

precipitation anomalies over the west coast of North

America. Large differences, however, are found in

eastern North America. In observations, the positive

phase of the PDO is associated with reduced wintertime

precipitation in the Tennessee and Ohio valleys, north-

eastern United States, and southeastern Canada

(Fig. 18b), but the CMIP5 ensemble fails to discern this

influence (Figs. 18d,f). Though of smaller magnitude,

significant differences also occur in central North

America (Fig. 18f). In spring [March–May (MAM)] the

largest differences in the precipitation regressions occur

along the coast of British Columbia, where observed

regressions indicate positive anomalies but the CMIP5

ensemble produces a pronounced negative anomaly (not

shown). Both observations and the CMIP5 ensemble

reproduce positive precipitation anomalies along the

West Coast and central plains of the United States.

b. AMO

The Atlantic multidecadal oscillation (AMO) is an

important mode of multidecadal climate variability

manifesting in North Atlantic SSTs (e.g., Kerr 2000;

Enfield et al. 2001). The AMO has significant regional

and global climate associations, such as northeast

Brazilian and Sahel rainfall (e.g., Folland et al. 1986;

Rowell et al. 1995; Wang et al. 2012), hurricane activity

in the North Atlantic and the eastern North Pacific

(Goldenberg et al. 2001; Wang and Lee 2009), and

North American and European summer climate (Enfield

et al. 2001; McCabe et al. 2004; Sutton and Hodson

2005). In spite of its importance, the mechanism of the

AMO is still unclear. Several studies have indicated

the role of variations in the Atlantic meridional over-

turning circulation (AMOC) and associated heat trans-

port fluctuations (Delworth andMann 2000; Knight et al.

2005). Some modeling studies indicate that solar vari-

ability and/or volcanoes are important (Hansen et al.

2005; Otter�a et al. 2003) or that aerosols can be a primary

driver (Booth et al. 2012), although the robustness of the

latter has been questioned (Zhang et al. 2013). A recent

observational study shows that a positive feedback be-

tween SSTs and dust aerosols in the North Atlantic via

Sahel rainfall variability may be a mechanism (Wang

et al. 2012).

The AMO index is defined as the detrended North

Atlantic SST during the Atlantic hurricane season of

June–November (JJASON) from the equator to 608N
and from 758 to 58W with the 11-yr running mean (e.g.,

Enfield et al. 2001; Knight et al. 2005). As shown in

TABLE 6. The RMSE and standard deviations of the AMO indices

in CMIP5 models. Observations are from the ERSST dataset.

Model name RMSE (8C) Standard deviation (8C)

ACCESS1.0 0.1846 0.1870

BCC-CSM1.1 0.1052 0.1528

CanESM2 0.1532 0.1442

CCSM4 0.1438 0.1198

CNRM-CM5 0.1529 0.1031

CSIRO Mk3.6.0 0.1609 0.1550

EC-EARTH 0.1501 0.0914

FGOALS-g2 0.1835 0.1083

GFDL CM3 0.1638 0.1598

GFDL-ESM2G 0.2110 0.1699

GFDL-ESM2M 0.1493 0.1273

GISS-E2-H 0.1376 0.0958

GISS-E2-R 0.1453 0.1054

HadCM3 0.1662 0.1421

HadGEM2-CC 0.1926 0.1895

HadGEM2-ES 0.1455 0.1517

INM-CM4.0 0.1485 0.0917

IPSL-CM5A-LR 0.1800 0.1760

IPSL-CM5A-MR 0.1374 0.1320

IPSL-CM5B-LR 0.2240 0.1879

MIROC5 0.1347 0.1335

MIROC-ESM 0.1375 0.1467

MIROC-ESM-CHEM 0.1544 0.1364

MPI-ESM-LR 0.2123 0.1794

MPI-ESM-P 0.1526 0.0993

MRI-CGCM3 0.1515 0.1234

NorESM1-M 0.1366 0.1118

MME mean 0.1598 0.1378

Observations 0 0.1761
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FIG. 20. Autumn [September–November (SON)] regressions of the AMO index on SST and precipitation from observations

(HadISSTv1.1 and CRU TS3.1) and 17 CMIP5 models for 1901–1999. The AMO index is the area-averaged SST anomalies over the

domain (08–608N, 758–58W), which are detrended and then smoothed via a 11-yr running mean. Regressions are calculated for the first

ensemble member for each model; observed and simulated anomalies have been regridded to a 1.58 3 1.58 grid for precipitation and

a 58 3 2.58 grid for SST. Blue (red) shading denotes negative (positive) SST anomalies, while brown (green) shading denotes negative

(positive) precipitation anomalies. Contour interval is 0.1K and 0.02mmday21, respectively.
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Fig. 19a, the individual models show highly varying

amplitudes and phases, with a large spread across

models. This is to be expected given that the AMO is

likely of internal origin. All models show the warming in

the last two decades when anthropogenic warming be-

comes influential. The MME mean tends to follow the

main variations in the earlier part of the record, albeit

subdued because of averaging across models, but fails to

show the warm period during 1926–65. Compared to the

CMIP3 results (Medhaug and Furevik 2011), the CMIP5

simulation of the AMO has generally improved, par-

ticularly after 1960. This may be due to higher resolu-

tion, improved parameterizations, and the addition of

time-evolving land cover. Results for individual models

(Table 6) indicate that the standard deviations are

comparable to or slightly weaker than the observations

with typical amplitudes ranging from 0.098 to 0.198C as

compared to about 0.188C in the observations, which is

an improvement from CMIP3 models (Ting et al. 2009).

The lagged autocorrelation of theAMO index for lags

zero to 35 yr (Fig. 19b) shows that the models generally

represent the quasi-periodic nature of the observed

AMO, with the peak oscillation at 30–35 yr in the ob-

servation but generally shorter for the models. The

persistence in the AMO index as defined as the maxi-

mum time lag when the autocorrelation first crosses the

significance line at the 10% level, and varies from 5 to

25 yr in the models, implying the potential for predicting

future SSTs (Corti et al. 2012; H.-M. Kim et al. 2012).

However, for most models the persistence is shorter

(;12 yr), which is nevertheless an improvement over

CMIP3 models, which have an average persistence of

about 5 yr (Medhaug and Furevik 2011).

The ability of the models to represent the AMO and

its impact on precipitation over North America is eval-

uated by regressing theAMO index on regional seasonal

precipitation and SSTs for 1901–99. The results are

shown for autumn in Fig. 20 and shown in more detail in

Kavvada et al. (2013). The SST signature of the AMO is

stronger in autumn than in summer and this is reflected

in its impact on central U.S. precipitation in observa-

tions (not shown). In both seasons the SST anomalies

reach a maximum over the mid-Atlantic, over the sub-

polar gyre region. The warm phase of the AMO induces

drying conditions over the central United States and wet

conditions over Florida and the U.S. Northeast in both

seasons but with more intensity in autumn. However,

there are seasonally contrasting conditions along the

Gulf of Mexico states where decreased precipitation

occurs in summer but increased precipitation occurs in

autumn.

In general, the models do not capture the SST sea-

sonality of the AMOwell. The simulated SST anomalies

are generally larger in summer than in autumn in the

majority of the models (not shown). While all models

tend to place themaximum SST anomalies over themid-

Atlantic Ocean, they do not replicate the observed

maximum south of Greenland and its spatial structure.

For example, CCSM4, GFDL-ESM, and MIROC5 em-

phasize anomalies over the Norwegian Sea and GFDL-

ESM, GISS-E2-R, and INM-CM4.0 do not show a signal

over the tropical Atlantic. The spatial correlation of the

TABLE 7. Spatial correlation between observed and CMIP5 regressed anomalies of the AMO on SST and precipitation in summer and

fall for 1901–99. The spatial domain for SST correlations is over theAtlanticOcean north of the equator (08–758N, 1308W–108E), while the
domain for precipitation is the American continent north of the equator (08–608N, 1308–608W). The observed datasets are the

HadISSTv1.1 and CRU TS3.1 for SST and precipitation, respectively.

Model Summer SST Fall SST Summer precipitation Fall precipitation

BCC-CSM1.1 20.132 20.205 0.131 0.293

CanESM2 0.459 0.597 0.080 20.172

CCSM4 0.224 0.332 20.092 20.172

CNRM-CM5.1 0.527 0.037 20.029 20.357

CSIRO Mk3.6.0 0.037 0.308 20.034 0.211

GFDL CM3 20.213 0.176 0.143 0.145

GFDL-ESM2M 0.325 0.461 0.129 0.014

GISS-E2-R 0.586 0.675 20.070 20.014

HadCM3 0.531 0.578 0.008 20.116

HadGEM2-ES 0.700 0.485 0.172 20.309

INM-CM4 20.337 20.126 20.183 0.025

IPSL-CM5A-LR 0.180 0.327 20.072 0.060

MIROC5 0.433 0.588 20.196 20.002

MIROC-ESM 0.430 0.384 20.168 20.033

MPI-ESM-LR 20.135 0.230 20.149 20.129

MRI-CGCM3 0.412 0.215 0.335 0.140

NorESM1-M 0.098 20.298 20.127 20.081

MME mean 0.577 0.651 20.012 20.033
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FIG. 21. (left) Observed and (right) MME-mean temperature trends (8Cdecade21) for North America (1930–2004) for (a) annual,

(b) summer, and (c) winter. Observations are from the CRUTS3.1 dataset. TheMMEmean is calculated from the first ensemblemember

of 17 models (BCC-CSM1.1, CanESM2, CCSM4, CNRM-CM5, CSIRO Mk3.6.0, GFDL CM3, GFDL-ESM2M, GISS-E2-R, HadCM3,

HadGEM2-ES, INM-CM4.0, IPSL-CM5A-LR,MIROC5,MIROC-ESM,MPI-ESM-LR,MRI-CGCM3, andNorESM1-M). Eastern and

western U.S. regions are shown by the boxes.
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anomalies (Table 7) shows higher correlations for

HadGEM2-ES and GISS-E2-R, although visually there

are large discrepancies in the spatial patterns.

The precipitation impact of the AMO is a bigger

challenge for the models (see Table 7 for individual

model spatial correlations for precipitation), and they

generally fail to represent the drier conditions over the

central United States and the wet conditions along the

coastal southern Atlantic U.S. States and southern

Mexico. The initial drying over the south-central United

States in summer is shown by a few models (BCC-

CSM1.1, HadGEM2-ES, IPSL-CM5A-LR, and MRI-

CGCM3), but the intensification of the drying into the

autumn is not replicated by most of the models. The wet

conditions over the southern Atlantic U.S. States in the

autumn are captured by a few models but to varying

degrees of agreement and some models show re-

gressions of the opposite sign (e.g., GISS-E2-R and

HadGEM2-ES) and despite their high SST correlations.

The increased precipitation over southern Mexico in

autumn is shown only by a handful of models (e.g.,

BCC-CSM1.1, CSIRO Mk3.6.0, IPSL-CM5A-LR, and

NorESM1-M).

Numerous studies have shown the importance of the

AMO in generating precipitation variability over the

region (e.g., Enfield et al. 2001; Sutton andHodson 2005;

Wang et al. 2006; Schubert et al. 2009; Nigam et al.

2011), with a key role played by the lower-level circu-

lation, which modulates the Great Plains low-level jet

and the convergence–divergence of moisture fluxes (see

section 5b). Thus, given the differences in the model

simulated structure of the AMO SST footprint, their

poor performance in the simulation of the hydroclimate

impact over the central United States is not surprising:

a situation that has not shown improvement since

CMIP3 (Ruiz-Barradas et al. 2013).

7. Multidecadal trends

a. Trends in temperature and the ‘‘warming hole’’
over the southeastern United States

A unique of feature of U.S. temperature change

during the twentieth century is the so-called warming

hole (WH) observed in the southeastern United States

(Pan et al. 2004). While the globe has warmed over the

twentieth century, the WH region experienced cooling,

especially in summer during the latter half of the cen-

tury. Studies have attributed the mechanisms for this

abnormal cooling (lack of warming) trend to large-scale

decadal oscillations such as PDO and AMO (Robinson

et al. 2002; Kunkel et al. 2006; Wang et al. 2009; Weaver

2013; Meehl et al. 2013) and to regional-scale hydro-

logical processes (Pan et al. 2004) and land surface

interactions (Liang et at. 2007). Portmann et al. (2009)

speculated that secondary organic aerosols during the

growing season could contribute to the cooling in the

WH region, while Christidis et al. (2010) emphasized

the role of internal climate variability.

We evaluate whether the CMIP5 models show the

warming hole as a forced response in Fig. 21, which

shows the annual and seasonal trends, in near-surface

air temperature from the observation and the CMIP5

multimodel mean from 17 models (see Fig. 21 caption).

Model and observation data are regridded to a com-

mon resolution 2.58 3 2.58 using area averaging. Trends
are calculated for the 1930–2004 period using the

Theil–Sen approach (Theil 1950; Sen 1968). The choice

of 1930–2004 gives a prominent WH signal in the ob-

servations starting from the warmest decade following

the Dust Bowl drought. Only one ensemble member

from each model is included in the analysis as ensemble

members from the same model show similar spatial

patterns of long-term trends (Kumar et al. 2013b). The

MME mean shows neither a cooling trend in the east-

ern United States nor lesser warming relative to the

western United States. This indicates that, similar to

CMIP3 (Kunkel et al. 2006) simulations, the CMIP5

simulations do not show the WH as a forced response

signal.

FIG. 22. The 30-yr running annual temperature trend for (a) the

eastern United States, (b) difference in trend between the eastern

and western United States. Regions are defined in Fig. 21. Shading

represents the 95% uncertainty range calculated from 17 models

(see Fig. 21), one ensemble member from each model. Black solid

line is the observation (CRUTS3.1) and blue solid line is theMME

median. The x axis represents the start of the 30-yr running period.

For example, the trend value at 1930 represents the trend from

1930 to 1959.

1 DECEMBER 2013 SHEFF I ELD ET AL . 9281



Figure 22 shows the temporal evolution of 30-yr

moving window annual temperature trends over the

eastern United States in the observational data and

CMIP5 simulations and relative to the western United

States. The multidecadal persistence of the WH is

clearly visible in the observational data: that is, most

negative temperature trends are clustered between 1925

and 1955. The 95% model spread range brackets the

observed multidecadal variability in the eastern U.S.

temperature trends and approximately 40% of the 95%

model spread range is negative. The multimodel median

captures the overall tendency of positive and negative

trend evolution (r2 5 0.58). Pan et al. (2013) found that

19 out of 100 CMIP5 historical ‘‘all forcings’’ simulations

showed negative temperature trends in the Southeast

United States, whereas simulations based on greenhouse

gas emissions forcing only showed a strong warming in

the central United States. These results suggest that

there is some fidelity with observations via external

forcings, but natural climate variability plays a major

role. Kumar et al. (2013a) found that the 30-yr running

temperature trend variability in the eastern United

States is significantly correlated (r2 5 0.76) with the

AMO and models that have relatively higher skill in

AMO simulations also have a higher chance of re-

producing theWH in the eastern United States. There is

essentially no skill in the model’s representation of the

difference in trends between the eastern and western

U.S. running trends (Fig. 22b).

b. Trends in DTR

Observed warming during the day and night has been

asymmetric, with nocturnal minimum surface air tem-

perature (Tmin) rising about twice as fast than daytime

FIG. 23. Comparison of (a) mean DTR and (b) DTR trend for the observations (CRU TS3.1) and MMEmean of the 17 models (right; see

Fig. 21) for 1951–2000 on facing pages. The contour lines are the intermodel standard deviation.
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maximum temperature (Tmax) during the second half of

twentieth century, mostly during 1950–80 (Vose et al.

2005). Changes in cloud cover, atmospheric water vapor,

soil moisture, and other factors account for 25%–50%of

the diurnal temperature range (DTR) reduction (Dai

et al. 1999). Cloud cover, soil moisture, precipitation,

and atmospheric/oceanic teleconnections account for up

to 80% of regional variance over 1901–2002. Over the

United States, cloud cover alone accounts for up to 63%

of regional annual DTR variability (Lauritsen and

Rogers 2012). During 1950–2004, summer Tmax and

Tmin over North America increased 0.078 and 0.128C,
respectively, resulting in a 20.058C decrease in DTR

(Vose et al. 2005). A similar decrease (20.068C) oc-

curred in winter. Over the WH region, summer Tmax

decreased sharply (20.138C) while Tmin increased

slightly (0.058C), yielding a DTR decrease of 0.188C.
Winter DTR also decreased by 0.138C.

Figure 23 shows a comparison of DTR magnitude

and the linear trend in DTR from 17 models against

the CRU TS3.1 observational dataset. The observed

mean DTR (Tmax – Tmin) is characterized by high

values over the western high mountainous regions in

summer and low values in high latitudes (Fig. 23a).

The MME-mean simulates this general pattern with

underestimation in the mountains. The observed DTR

trend is predominantly negative in the United States

and Mexico and largely positive in Canada in both

seasons (Fig. 23b). The largest decreasing DTR trend

up to 0.28Cdecade21 is over the southeastern U.S.

warming hole region in summer. The model DTR

trend is poorly reproduced, missing the extensive

negative trend over the southeastern region where

models simulated increasing DTR trend (Fig. 23b,

right). The pattern correlation between the observed

and simulated DTR is from 0.40 to 0.82, with a mean

FIG. 23. (Continued)

1 DECEMBER 2013 SHEFF I ELD ET AL . 9283



of 0.67 for the 17 models, but the correlation of

DTR trend is much lower, ranging from 0.19 to 20.26

(mean5 0.03). Themodel skill in simulatingDTR trends

does not appear to have improved from CMIP3 (Zhou

et al. 2010) and earlier model comparisons (e.g.,

Braganza et al. 2004); however, the role of anthropogenic

forcings appears to be essential in producing a decline in

DTR (Zhou et al. 2010), even if it is underestimated.

c. Trends in precipitation

Precipitation has generally increased over North

America in the last half of the twentieth century (Karl

and Knight 1998; Zhang et al. 2000). Trends in pre-

cipitation are positively correlated with streamflow

trends, thereby affecting water resource availability and

flood potential (Lettenmaier et al. 1994; McCabe and

Wolock 2002; Kumar et al. 2009). Figure 24 shows the

multimodel ensemble average precipitation trend for

1930–2004 from 17 models against the CRU observa-

tions. The multimodel average weakly captures the

wetting trend in North America, particularly at higher

latitudes. Note that the precipitation gauge density be-

fore the 1950s was very low, especially in high latitudes,

and the observational trends are very uncertain, espe-

cially in high latitudes, at least for the first part of the

time period. However, the MME-mean fails to capture

the trend magnitude: for example, the higher wetting

trend (.20mmdecade21) in the eastern United States.

Figures 25a,b show the 30-yr running trend during the

twentieth century in the eastern and western United

States, respectively. The 95%model spread brackets the

observed precipitation trend magnitude in both regions.

The higher wetting trend in the observations has slowed

down in the last decade in the easternUnited States. The

muted magnitude of the trend in Fig. 24 seems to be

a result of low signal to noise ratio (the multimodel

median line hovers around the zero line in Fig. 25),

rather than a robust feature of CMIP5 climate models.

Some individual models capture very well the observed

trend magnitude. Drying in Mexico is a dominant but

incorrect feature in the CMIP5 simulations, which is

symptomatic of CMIP3 models as well (Pachauri and

Reisinger 2007) and is likely driven by the inadequate

connection between increasing precipitation and global

SST warming, at least for summer, in the majority of

models as shown by R. Fu et al. (2013, unpublished

manuscript) for the southern United States.

8. Discussion and conclusions

This study has evaluated the simulated variability from

the CMIP5 multimodel ensemble at intraseasonal to

multidecadal time scales for North America and adjoining

seas. The results show a mixture of performance, with

some aspects of climate variability well reproduced (e.g.,

the spatial footprint of the PDO and its teleconnections),

others reproduced well by some models but not others

(e.g., ISV in the tropical Pacific; and ENSO teleconnections

and types), and others poorly bymostmodels (e.g., tropical

cyclone frequency; ENSO asymmetry; teleconnections

with the AMO; and long-term trends in DTR and pre-

cipitation). No one model stands out as better than the

others, but certain models do perform much better for

certain features. For example, the Hadley Centre models

do well for the Central America midsummer drought and

the SST footprint of the AMO; the MRI-CGCM3 model

does relatively well for intraseasonal and interannual var-

iability in the tropical Pacific and for tropical cyclone

counts. In general, higher-resolution models do better for

features such as tropical cyclones, but this does not appear

to be a dominant factor for other aspects of climate vari-

ability. Furthermore, no model stands out as being partic-

ularly unskillful, bolstering the argument to consider all

models irrespective of performance to encompass the

uncertainties (Knutti 2010). In fact, the range of pro-

cesses and metrics analyzed is a key advantage of this

study, because skill in one aspect does not necessarily

mean good performance in another. For example,

NorESM1.1 does very well at representing the two types

of ENSO and its teleconnections but does poorly at

representing ENSO asymmetry. As a consequence, an

overall ranking of models, albeit seemingly attractive, is

difficult given the challenges in quantitatively compar-

ing performance across different types of analysis, as

well as the logistical challenges of sampling the same set

of models across all analyses.

For the climate features and models analyzed here,

there does not appear to be a great deal of improvement

since CMIP3. For example, CMIP5 models still cannot

capture the seasonal timing of ENSO events, which tend

to peak in the fall and winter, and the spurious drying

signal in the southern United States and Mexico con-

tinues from CMIP3. However, some features continue

to be well simulated, such as the SST pattern of the

PDO, and features related to spatial resolution are likely

to have improved, such as the representation of TCs.

Overall, the models are less able to capture observed

variability and long-term trends than they are the mean

climate state as evaluated in Part I, although this may be

a result of model tuning to observations (R€ais€anen

2007). This is understandable for decadal to multi-

decadal variability, which is dependent on the models’

internal variability or the sensitivity to external forcing,

for which the observations can be very uncertain. Some

of the biases in variability, however, appear to be related

to problems in simulating the mean state, and there are
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encouraging signs that improvements in themodels or at

least the understanding of the sources of errors can be

made (e.g., biases in the depiction of the mean state of

tropical Pacific may be linked to biases in the ISV, the

lack of asymmetry in ENSO phases, and to tele-

connections with North American climate).

The results have implications for the interpretation

and robustness of the model projected future changes.

Part III evaluates the model projections for a subset of

the features analyzed here and in Part I. As noted in Part

I, the accurate simulation of historic climate features is

not sufficient for credible projections, although the de-

piction of large-scale climate features is necessary.

Several studies of future projections show only small

differences between models that do better at replicating

observations and those that do worse (e.g., Brekke et al.

2008; Knutti et al. 2010), while others have found re-

lationships between model performance and future

projections that can be related to physical processes

(e.g., Hall andQu 2006; Boe et al. 2009). However, these

types of studies are generally specific to certain climate

features that do not necessarily provide confidence or

pessimism in model skill in a broader sense.

The adequate depiction of the variability is never-

theless necessary because this is generally associated

with the more extreme aspects of climate that impose

the largest impacts. Furthermore, the depiction of the

teleconnections associated with large-scale variability is

especially important because the impacts of potential

changes in the variability of, say, ENSO (vanOldenborgh

et al. 2005; Muller and Roeckner 2008) are subject to

uncertainties in the representation of teleconnections

(Part III). Model variability can also have a large impact

on future changes because the signal to noise ratio can be

highly dependent on the model’s natural variability

resulting in misleading assessments of future changes and

uncertainties across models (Tebaldi et al. 2011). The

ability of the models to reproduce the observed trends

may be a better indicator of model reliability than de-

piction of the mean climate or even its variability, be-

cause this indicates the model’s sensitivity to an external

forcing that may continue into the future, such as

greenhouse gas concentrations. The problem here is that

FIG. 24. (left) Observed and (right) MME-mean annual precipitation trends (mmdecade21) for North America (1930–2004). Obser-

vations are from the CRU TS3.1 dataset. The MME mean is from 17 models (see Fig. 21), with 1 ensemble member from each model.

Eastern and western U.S. regions are shown by the boxes.

FIG. 25. The 30-yr running annual precipitation trend

(mmdecade21) for the (a) eastern and (b) western United States.

Regions are shown in Fig. 23. The shaded area is the 95% un-

certainty range calculated from 17 models (see Fig. 21), with 1

ensemble member from each model. Black solid line is the obser-

vation (CRU TS3.1) and blue solid line is the MMEmedian. The x

axis represents the start of the 30-yr running period. For example,

the trend value at 1930 represents the trend from 1930 to 1959.
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the trend analyzed is subject to uncertainties in the ob-

servations, the complications of natural variability in the

real world and models, and uncertainties in feedbacks

and how they may change in the future (R€ais€anen 2007;

Knutti 2010). The generally poor ability of the models to

reproduce the trends in precipitation, DTR, and some

features of regional temperature shown here are in-

dicative of this.
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