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ABSTRACT

This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIPS)
that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate.
Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing
observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability,
almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought
over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among
the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and
eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North
American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and
connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its
influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the
Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced.
Multidecadal trends such as the warming hole over the central-southeastern United States and precipitation increases are not replicated by the
models, suggesting that observed changes are linked to natural variability.
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= Z o 1. Introduction
S Q o
ol S = < S
g = g = 8 This is the second part of a three-part paper on
5] o £ 3 = phase 5 of the Coupled Model Intercomparison
& "E 3 g o Project (CMIPS; Taylor et al. 2012) model simulations
g g = Ex for North America. This second part evaluates the
= N> N CMIP5 models in their ability to replicate the ob-
served variability of North American continental and
T _ regional climate, and related climate processes.
23833 S < Sheffield et al. (2013, hereafter Part I) evaluate the
EEl representation of the climatology of continental and
~ regional climate features. The third part (Maloney et al.
2013, manuscript submitted to J. Climate hereafter Part
% 3 :5\ o o~ o IIT) describes the projected changes for the twenty-first
2555 < X » century.
g g g 5% o = 7 The CMIPS provides an unprecedented collection
Y of climate model output data for the assessment of

future climate projections as well as evaluations of
climate models for contemporary climate, the attri-
bution of observed climate change, and improved
understanding of climate processes and feedbacks. As
such, these data contribute to the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment
Report (AR5) and other global, regional, and national
assessments.

The goal of this study is to provide a broad evaluation
of CMIP5 models in their depiction of North American
climate variability. It draws from individual work by
investigators within the CMIP5 Task Force of the U.S.
National Oceanic and Atmospheric Administration
(NOAA) Modeling Analysis and Prediction Program
(MAPP) and is part of a Journal of Climate special
collection on North America in CMIP5. We draw from
individual papers within the special issue, which provide
more detailed analysis that can be presented in this
synthesis paper.

We begin in section 2 by describing the CMIPS5,
providing an overview of the models analyzed, the
historical simulations, and the general methodology for
evaluating the models. Details of the main observa-
tional datasets to which the climate models are com-
pared are also given in this section. The next five
sections focus on different aspects of North American
climate variability, organized by the time scale of the
climate feature. Section 3 covers intraseasonal vari-
ability with focus on variability in the eastern Pacific
Ocean and summer drought over the southern United
States and Central America. Atlantic and east Pacific
tropical cyclone activity is evaluated in section 4. In-
terannual climate variability is assessed in section 5.
Decadal variability and multidecadal trends are assessed
in sections 6 and 7, respectively. Finally, the results are
synthesized in section 8.

TABLE 1. (Continued)
and Technology, Atmosphere and

Ocean Research Institute (The
University of Tokyo) and National

Institute for Environmental

Studies, Japan
Max Planch Institute for Meteorology,

Germany
Meteorological Research Institute, Japan

Center
Japan Agency for Marine-Earth Science
Norwegian Climate Center, Norway

Coupled Atmosphere—Ocean General

Circulation Model, version 3

Norwegian Earth System Model,
version 1 (intermediate resolution)

Climate, Earth System Model,

Chemistry Coupled

Model expansion
Model for Interdisciplinary Research on
Model, low resolution
Meteorological Research Institute

Max Planck Institute Earth System

* GFDL-C180-HIRAM was run with prescribed boundary conditions from observed SSTs and sea ice concentrations.

Model
MIROC-ESM-CHEM

MPI-ESM-LR
MRI-CGCM3
NorESM1-M
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CanESM2
ccsma
CNRM_CM5
CSIRO_MK3
GFDL_CM3
GFDL_ESM2M
HadCM3
HadGEM2_CC
HadGEM2_ES
INMCM4

09 IPSL_CM5a_LR
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FIG. 1. Taylor diagram for summer-mean (May-September) rainfall over the eastern Pacific (5°S—
30°N, 150°-80°W) simulated in CMIP5 GCMs. The rainfall observations are based on TMPA data.

2. CMIPS5 models and simulations
a. CMIPS5 models

We use data from multiple model simulations of the
“historical” scenario from the CMIP5 database. The
CMIPS5 experiments were carried out by 20 modeling
groups representing more than 50 climate models with the
aim of further understanding past and future climate
change in key areas of uncertainty (Taylor et al. 2012). In
particular, experiments have been focused on un-
derstanding model differences in clouds and carbon feed-
backs, quantifying decadal climate predictability and why
models give different answers when driven by the same
forcings. The CMIPS5 builds on the previous phase [phase 3
of CMIP (CMIP3)] experiments in several ways. First,
a greater number of modeling centers and models have
participated. Second, the models are more comprehensive
in terms of the processes that they represent and are run at
higher spatial resolution, therefore hopefully resulting in
better skill in representing current climate conditions and
reducing uncertainty in future projections. Table 1 provides
an overview of the models used. The specific models used
vary for each individual analysis because of data avail-
ability at the time of this study, and so the model names are
provided within the results section where appropriate.

b. Overview of methods

Data from the historical CMIP5 scenario are evalu-
ated, which is a coupled atmosphere-ocean mode
simulation that is forced by historical estimates of
changes in atmospheric composition from natural and
anthropogenic sources, volcanoes, greenhouse gases,
and aerosols, as well as changes in solar output and land

cover. Historical scenario simulations were carried out
for the period from the start of the industrial revolution
to near present: 1850-2005. Our evaluations are generally
carried out for the last 30 yr of the simulations, depending
on the type of analysis and the availability of observa-
tions. For some analyses the only, or best available, data
are from satellite remote sensing which restricts the
analysis to the satellite period, which is generally from
1979 onward. In other cases the observational data are
very uncertain for particular regions and time periods (e.
g., precipitation in high latitudes in the first half of the
twentieth century) and this is noted in the relevant sub-
section. For other analyses, multiple observational data-
sets are available and are used to capture the uncertainty
in the observations. The observational datasets are sum-
marized in Table 2 and further details of the datasets and
data processing are given in the relevant subsections and
figure captions. Where the comparisons go beyond 2005
(e.g., 1979-2008), data from the model representative
concentration pathway 8.5 (RCP8.5) future projection
scenario simulation (as this is regarded as closest to the
business as usual trajectory) are appended to the model
historical time series. About half the models have multi-
ple ensemble members, but we select the first ensemble
member for simplicity and discuss the variability in the
results across the ensemble where appropriate.

3. Tropical intraseasonal variability

a. MJO-related variability over the eastern Pacific
and adjoining regions

It has been well documented that convection over the
eastern Pacific (EP) ITCZ and neighboring areas is
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FIG. 2. Spatial distribution of (a) amplitude and (b) phase of the CEOF1 based on 30-90-day bandpass filtered Tropical Rainfall
Measuring Mission (TRMM) rainfall during boreal summer (June-September) over the eastern Pacific. To make the spatial phase
patterns of the CEOF1 based on the observations and simulations comparable to each other, the spatial phase of CEOF1 for each dataset
is adjusted by setting the domain-averaged value to be 0 over a small box region of 10°~15°N, 110°-100°W. Contours are only displayed
where the local variance explained by CEOF1 exceeds 8 %. (c) On the x axis, pattern correlation coefficients of the CEOF1 mode between
TRMM observations and CMIP5 GCM simulations; on the y axis, relative amplitudes of CEOF1 in model simulations to their observed
counterparts. Both pattern correlations and amplitudes are derived by averaging over the area of 5°-25°N, 140°-80°W where the active

ISV is observed. The black star represents the TMPA observations.

characterized by pronounced intraseasonal variabil-
ity (ISV) during boreal summer (e.g., Knutson and
Weickmann 1987; Kayano and Kousky 1999; Maloney
and Hartmann 2000a; Maloney and Esbensen 2003,
2007; de Szoeke and Bretherton 2005; Jiang and Waliser
2008, 2009; Jiang et al. 2011). ISV over the EP exerts
broad impacts on regional weather and climate phe-
nomena, including tropical cyclone activity over the EP
and the Gulf of Mexico, the summertime gap wind near
the Gulfs of Tehuantepec and Papagayo, the Caribbean
low-level jet and precipitation, the midsummer drought
over Central America and Mexico, and the North
American monsoon (e.g., Magana et al. 1999; Maloney

and Hartmann 2000b,a; Maloney and Esbensen 2003;
Lorenz and Hartmann 2006; Serra et al. 2010; Martin
and Schumacher 2011).

Here, model fidelity in representing ISV over the EP
and intra-American sea (IAS) region is assessed by an-
alyzing daily output of rainfall and 850-hPa winds from
18 CMIPS models. Figure 1 displays a Taylor diagram
for summer-mean (May-September) precipitation from
the CMIP5 models over the EP domain (5°S-30°N,
150°-80°W) compared to the TMPA precipitation (see
Table 2 for expanded dataset names). While the two
HadGEM models (HadGEM2-CC and HadGEM2-ES;
see Table 1 for expanded model names) display the
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FIG. 3. Summertime (June-September) MSD strength (mm day ™) for three observational estimates: (top) (left)TRMM 3B43 and
(right) UNAM, and (middle left) GPCP. (middle right) The CMIP5 MME mean for 23 models (see Table 3). (bottom) (left) The MME
standard deviation and (right) histogram of the pattern correlations between individual models and the MME mean. All model output and
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TABLE 3. Spatial correlation of the MSD between the CMIP5
models and the MME mean, calculated for 1850-2005.

Model R
BCC-CSM1.1 0.45
CanCM4 0.37
CanESM2 0.42
CCSM4 0.17
CNRM-CM5 0.49
CSIRO MK3.6.0 0.51
GFDL CM3 0.29
GFDL-ESM2G 0.48
GFDL-ESM2M 0.27
GISS-E2-H 0.35
GISS-E2-R 0.34
HadCM3 0.75
HadGEM2-CC 0.79
HadGEM2-ES 0.81
INM-CM4.0 0.14
IPSL-CM5A-LR 0.40
IPSL-CM5A-MR 0.34
MIROC5 0.71
MIROC-ESM -0.04
MIROC-ESM-CHEM —0.04
MPI-ESM-LR 0.61
MRI-CGCM3 0.33
NorESM1-M 0.14

highest pattern correlations (~0.93), the MRI-CGCM3
show the smallest RMS because of its better skill in
simulating the spatial standard deviations of summer-
mean rainfall over the EP. In addition, four models
(MPI-ESM-LR, CSIRO Mk3.6.0, CanESM2, and CNRM-
CM5) also exhibit relatively better pattern correlations
than other models.

The leading ISV modes over the EP based on ob-
served and simulated rainfall fields are identified using
a complex empirical orthogonal function (CEOF) ap-
proach (Maloney et al. 2008). CEOF analyses were ap-
plied to 30-90-day bandpass filtered daily rainfall
anomalies and the spatial amplitude and phase for the
first CEOF mode (CEOF1) based on TMPA are illus-
trated in Figs. 2a,b. A single ensemble member was used
for each model for 1981-2005. The TMPA data are
available for a shorter time period (13 yr), but the sen-
sitivity of the results to different sample sizes (based on
data from a selected model) was found to be small.
Similar to Maloney et al. (2008), the maximum ampli-
tude of the observed rainfall CEOF1 occurs over the far
eastern part of the EP. Figure 2b illustrates the pattern
of spatial phase of observed rainfall CEOF1. In agree-
ment with previous studies, the observed leading ISV
mode associated with the CEOF1 largely exhibits an
eastward propagation, while a northward component is
also evident (e.g., Jiang and Waliser 2008; Maloney et al.
2008; Jiang et al. 2011).
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Next, the fidelity of the CMIP5 models in simulating
the leading EP ISV mode is assessed by calculating pat-
tern correlations of the simulated rainfall CEOF1 against
observations. To increase sampling, spatial patterns of
rainfall anomalies associated with the CEOF1 based on
both observations and model simulations are derived at
two quadratic phases by multiplying the CEOF1 ampli-
tude by the cosine and sine of spatial phase at each grid
point, respectively. The pattern correlations are then
calculated at both of these two quadratic phases. A final
pattern correlation for a particular model is derived by
averaging these two pattern correlation coefficients.
Figure 2c illustrates pattern correlations in depicting the
CEOF1 rainfall pattern for each model simulation versus
domain-averaged CEOF1 amplitude relative to obser-
vations, which provide measures of model performance
of variability in space and time, respectively. A majority
of the CMIP5 models tend to underestimate the ampli-
tude of the leading EP ISV mode associated with the
rainfall CEOF1, except CNRM-CM5, MIROCS, MPI-
ESM-LR, HadGEM2-CC, and HadGEM2-ES. Among
the 18 models examined, 8 models exhibit relative
higher pattern correlations (>0.75).

The models with relative better skill in representing the
leading EP ISV mode also largely exhibit better skill for
summer-mean rainfall (cf. Figs. 1, 2¢) and 850-hPa wind
patterns (not shown). A common feature among the more
skillful models is the presence of westerly or very weak
easterly mean low-level winds over the EP warm pool
region, as in the observations. Most of the models with
relatively lower skill exhibit a stronger easterly summer-
mean flow (>4ms"). This suggests that realistic repre-
sentation of the mean state could be crucial for improved
simulations of the EP ISV, which is in agreement with
a recent study by Rydbeck et al. (2013), and has also been
discussed for Madden-Julian oscillation (MJO) simula-
tions over the western Pacific and Indian Ocean (e.g., Kim
et al. 2009). One hypothesis is that a realistic mean state
produces the correct sign of surface flux anomalies relative
to intraseasonal precipitation, which helps to destabilize
the local intraseasonal disturbance (e.g., Maloney and
Esbensen 2005). Extended analyses of the EP ISV in
CMIP5 models are given in Jiang et al. (2012).

b. Midsummer drought over Central America

The rainy season in Central America and southern
Mexico spans roughly May through October. For most
of the region, the precipitation climatology features
maxima in June and September and a period of reduced
rainfall during July—August known as the midsummer
drought (MSD; Portig 1961; Magana et al. 1999). The
MSD is regular enough to be known colloquially and
plays an important role in farming practices (Osgood
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FIG. 4. (left) Storm track density and (right) mean strength for ERA-Interim and seven CMIP5 models (CanESM2, CCSM4, GFDL-
ESM2M, HadGEM2-ES, MIROCS5, MPI-ESM-LR, and MRI-CGCM3) on facing pages. Tracks are based on 6-hourly 850-hPa relative
vorticity smoothed to T42 spatial resolution to better capture the synoptic features of the vorticity field.

et al. 2009). A previous assessment of CMIP3 model
performance at simulating the MSD and future pro-
jections (Rauscher et al. 2008) suggested that many
models are capable of simulating the MSD despite an
overall dry bias and that the MSD is projected to become
stronger with an earlier onset. In this section, the CMIP5
performance at simulating summertime precipitation and
the MSD is evaluated. We evaluate 23 CMIP5 models
against the TMPA, GPCP, and UNAM observational
datasets. A simple algorithm for detecting and quantify-
ing the climatological MSD is used that does not assume
a priori which months are maxima and which months
constitute the MSD (Karnauskas et al. 2012).

Figure 3 shows the observational and CMIPS5 esti-
mates of the MSD and highlights the large uncertainties

in its spatial distribution among observational datasets.
The CMIPS multimodel ensemble (MME) does rea-
sonably well at representing the essence of the MSD
over much of the inter-Americas region. The maxi-
mum strength of the MSD in the MME is found just
offshore of El Salvador and represents a midsummer
precipitation minimum that is ~2.5 mm day ' less than the
early and late summer peaks. Significant differences in the
location and strength of the MSD between the various
observational datasets preclude a definitive evaluation of
the CMIP5 MME, but it is clear that the strength of the
MSD is underestimated in some regions, including along
the Pacific coast of Central America, the western Carib-
bean, the major Caribbean islands, and Florida. Figure 3
also shows the MME standard deviation and a histogram of
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the spatial correlations of individual models with the MME
mean. The largest uncertainties are collocated with the re-
gions of largest magnitude of the MSD indicating that much
of the model disagreement is in the magnitude. Several
models stand out as outliers in representing the spatial
distribution of the MSD relative to the MME mean
(Table 3), such as MIROC-ESM and MIROC-ESM-CHEM,
while the Hadley Centre models do particularly well.

4. East Pacific and Atlantic tropical storm track
and cyclone activity

a. Tropical storm track

The density of traveling synoptic-scale disturbances
across the tropics, referred to in the literature as the

tropical storm track (e.g., Thorncroft and Hodges 2001;
Serra et al. 2008, 2010), is examined in this section. These
systems serve as precursors to a majority of tropical
storms and hurricanes in the Atlantic and eastern North
Pacific and their frequency at 850 hPa over Africa and the
eastern Atlantic has been shown to be positively corre-
lated with Atlantic hurricane activity (Thorncroft and
Hodges 2001). As global models better resolve these
systems than tropical cyclones, they provide an advantage
over direct tracking of tropical cyclones to assess model
tropical storm activity (see section 4b). As in Serra et al.
(2010), the tropical storm track density is calculated
based on the method of Hodges (1995, 1999) using
smoothed, 6-hourly, 850-hPa relative vorticity. Only
positive vorticity centers with a minimum threshold of
0.5 X 10~ °s™! that persist for at least 2 days and have
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TABLE 4. Spatial correlations of model fields with ERA-Interim
for the months indicated and for 1979-2005. Correlations of the
850-hPa wind components and geopotential height have been
combined into one index R_ZUV850, while 850-hPa track density
and strength correlations have been combined into a second index
R_TRKS850 to simplify the comparisons. Values in boldface are the
upper 25th percentile of the nine models shown.

May-October May-November

R_ZUVS850 R_TRKS850
BCC-CSM1.1 0.76 0.69
CanESM2 0.83 0.63
CCSM4 0.77 0.57
CNRM-CM5 0.90 0.84
GFDL-ESM2M 0.75 0.77
HadGEM2-ES 0.85 0.90
MIROC5 0.82 0.86
MPI-ESM-LR 0.82 0.85
MRI-CGCM3 0.79 0.86
75th percentile 0.83 0.86

tracks of at least 1000 km in length are included in the
analysis. This method primarily identifies westward
moving disturbances such as easterly waves (e.g., Serra
et al. 2010), although more intense storms that could
potentially reach hurricane intensity are not excluded.
We analyze a single ensemble member from nine
CMIPS5 models and compared the track statistics to the
ERA-Interim (Fig. 4, left). These models were selected
based on whether the 6-hourly pressure level data were
available at the time of the analysis. Mean track
strength, the mean of the smoothed 850-hPa vorticity
along the track, is also examined (Fig. 4, right).

The multimodel mean track density is in good agree-
ment with ERA-Interim; however, significant differ-
ences are seen with the individual models. The most
apparent discrepancies are with the BCC-CSM1.1,
CanESM2, and CCSM4 models, which strongly over-
estimate activity across the eastern Pacific and suggest
a more longitudinally oriented track (CanESM2 and
CCSM4) shifted south from what is observed. BCC-
CSM1.1, HadGEM2-ES, and MIROCS underestimate
tracks in the west Atlantic, while GFDL-ESM2M un-
derestimates tracks throughout the region except near
130°W. MPI-ESM-LR also underestimates tracks across
the region as well as shifts their location southward. The
track density maximum off the west coast of Mexico is
best captured by HadGEM2-ES, while the overall
smallest magnitude differences are seen with CNRM-
CMS5. The multimodel mean track strength maximum in
the eastern Pacific lies along the west coast of Mexico
similar to ERA-Interim; however, it is broader in scale
and of larger magnitude than the observations (Fig. 4,
left). On the other hand, the multimodel mean strength
in the Gulf of Mexico and western Atlantic along the
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East Coast of the United States is strongly under-
estimated compared to ERA-Interim. Unlike for track
density, these biases are fairly consistent among the
models, with the exception of BCC-CSM1.1, which
strongly overestimates mean strength across the region.

To better understand the biases in mean track den-
sity and strength, we examine the spatial correlations of
850- and 500-hPa winds and heights, as well as track
density and strength with ERA-Interim. While all nine
models have relatively good spatial correlations in the
wind components and heights at 500 hPa (not shown),
there is a wide spread in performance at the 850-hPa
level that corresponds reasonably well with the rank-
ings for the combined track density and strength cor-
relations (Table 4). In particular, the top two models for
the combined 850-hPa wind and height correlations
(CNRM-CMS5 and HadGEM2-ES) are also among the
highest ranked for the combined track density and strength
correlations. On the other hand, CanESM2 has a high
ranking in the combined 850-hPa index but is one of the
poorer models with respect to track density and spatial
correlations, suggesting that there are other important
factors contributing to the track statistics than just the
large-scale low-level heights and winds across the region.

b. Tropical cyclones in the North Atlantic and eastern
North Pacific

It is well known since the 1970s that climate models
are able to simulate tropical cyclone-like storms (e.g.,
Manabe et al. 1970; Bengtsson et al. 1982), which are
generally formed at the scale of the model grid when
conditions are unstable enough and other factors, such
as vertical wind shear, are favorable. As the resolution
of the climate models increases, the modeled storm
characteristics become more realistic (e.g., Zhao et al.
2009). Analysis of CMIP3 models showed that the
tropical cyclone-like storms produced still had many
biases common of low-resolution models (Walsh et al.
2010). Therefore, various dynamical and statistical
techniques for downscaling tropical cyclone activity us-
ing only the CMIP3 large-scale variables have been
employed (Emanuel et al. 2008; Knutson et al. 2008).
Recent studies suggest that when forced by observed
SSTs and sea ice concentration, a global atmospheric
model with a resolution ranging from 50 to 20km can
simulate many aspects of tropical cyclone (TC)-
hurricane frequency variability for the past few decades
during which reliable observations are available (e.g.,
Oouchi et al. 2006; Bengtsson et al. 2007; Zhao et al.
2009). The success is not only a direct evaluation of
model capability but also an indication of the dominant
role of SST variability on TC-hurricane frequency var-
iability. When assuming a persistence of SST anomalies,
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FI1G. 5. Tracks of tropical cyclone-like storms in the CMIPS5 historical runs in the period 1950-2005 [GFDL-ESM2M (1 ensemble
member), HadGEM2 (1 ensemble member), MPI-ESM-LR (3 ensemble members), MRI-CGCM3 (5 ensemble members), and MIROCS
(1 ensemble member)] and in observations for the same period. The number of storms in each case is given in the bottom-right corner of

each panel. One ensemble member is used for each model.

some of the models were also shown to exhibit signifi-
cant skill in hurricane seasonal forecast (e.g., Zhao et al.
2010; Vecchi et al. 2011).

Tropical storms and cyclones in this study are identified
using the tracking method of Camargo and Zebiak (2002),
which uses low-level vorticity, surface winds, surface
pressure, and atmospheric temperature and considers only
warm core storms. The method uses model-dependent
(and resolution) thresholds and storms have to last at least
2 days. Only a subset of the tropical disturbances examined
in the previous section will intensify enough to be identi-
fied by this tracking method and the percentage that this

occurs will vary among different models. As will be shown,
the CMIPS5 standard models have trouble simulating the
number of tropical cyclones, which can be attributed in
part to their coarse resolution. Therefore, we also show
results from the GFDL high-resolution model.

TC-type structures were tracked in five models for
1950-2005. We compare with observations from best-
track datasets of the National Hurricane Center (Fig. 5).
The number of TCs in all models is much lower than in
observations, which is common to many low-resolution
global climate models (e.g., Camargo et al. 2005, 2007).
The HadGEM2-ES has the largest low bias, and the
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FIG. 6. Mean number of TCs per month in models [GFDL-ESM2M, HadGEM2-ES (in the figure HGEM2), MPI-ESM-LR, MRI-
CGCM3, and MIROCS] and observations in (top left) the North Atlantic and (top right) eastern North Pacific, using only ensemble 1 for
MRI-CGCM3. Number of TCs per year in the period 1950-2005 in models and observations for (bottom left) the North Atlantic and
(bottom right) the eastern North Pacific. The blue box shows the 25th-75th percentile range, with the median shown as a red line. The

whiskers and red crosses show the data outside of middle quartiles.

MPI-ESM-LR model has the most realistic tracks in
the Atlantic basin. The MRI-CGCM3 model tracks in
the Atlantic are mostly in the subtropical region, with
very few storms in the deep tropics. In contrast, in the
eastern North Pacific the MRI-CGCM3 has storm ac-
tivity too near the equator. In the eastern North Pacific,
very few storms (in all models) have westward tracks.
The models seem to have an easier time in producing
storms that are in the northwestward direction parallel
to the Central American coast.

Figure 6 shows the mean number of TCs per month for
the North Atlantic and eastern North Pacific. In some
cases, the models produce too many storms in the off-
season, while all models produce too few storms in the

peak season. The bottom panels show the spread of the
number of storms per year, emphasizing the low number
of storms per year in all models. The highest-resolution
model MRI-CGCM3 (1.1° X 1.1°) has the least bias
relative to the observations and the highest bias is for the
coarsest-resolution model (GFDL-ESM2M; 2.5° X 2.0°).
However, resolution cannot explain the rankings for all
models, with the HadGEM2-ES and MPI-ESM-LR
models having relatively large and small biases, respec-
tively, despite both having intermediate resolutions. The
model dynamical core, convection scheme and their in-
teractions are other factors that have been shown to be
important (Camargo 2013). Examination of variability
across ensemble members in producing tropical cyclones
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FIG. 7. (top) Comparison of observed and C180-HIRAM (one realization) simulated hurricane tracks for the North Atlantic and eastern
Pacific for 1981-2008. (middle) Comparison of observed and C180-HIRAM simulated annual hurricane count statistics. Blue boxes show
the 25th-75th percentile range, with the median shown as a red line and the mean shown as a red star. The whiskers show the maximum
and minimum values. The annual statistics are computed based on a 3-member ensemble mean for 1981-2008. (bottom) Observed and
model simulated seasonal cycle (number of hurricanes per month) for (left) the North Atlantic and (right) eastern Pacific from the

3-member ensemble mean (1 = January; 12 = December).

was carried out for five member runs of the MRI-
CGCM3 model (not shown) but was much less than
among different models.

Figure 7 shows results for the GFDL-C180-HIRAM
model, which has a higher resolution (~50km) than the
standard coupled GFDL CM3 model and differs in some
aspects of the physics such as the convection scheme.
The model was run for a CMIPS5 timeslice experiment
forced by observed interannually and seasonally varying

SSTs and sea ice concentration from HadISST (I. M.
Held et al. 2013, unpublished manuscript). The tracking
algorithm of Zhao et al. (2009) was used to identify TCs
with near-surface wind speed reaching hurricane in-
tensity. The model reproduces the observed statistics
with the ratio of observed to model variances of in-
terannual variability in both the North Atlantic and
eastern Pacific not statistically different from one, ac-
cording to an F test at the 5% significance level that
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assumes that the annual frequencies are normally dis-
tributed. Figure 7 also shows that the model captures the
observed seasonal cycle in both the North Atlantic and
eastern Pacific. The model can also reproduce the ob-
served seasonal cycle in the North Atlantic and eastern
Pacific as well as the observed year-to-year variation of
annual hurricane counts and the decadal trend for both
basins for this period (Zhao et al. 2009; I. M. Held et al.
2013, unpublished manuscript). The quality of the
model’s present-day simulation increases our confi-
dence in the future projections, although the uncertainty
in the projections is dominated by uncertainty in pro-
jected changes in SST boundary conditions across the
CMIPS standard-resolution models (Part I1I). Although
not analyzed here, MIROC4h has a similar spatial res-
olution (0.56°) to C180-HIRAM. Evaluations by
Sakamoto et al. (2012) show that MIROC4h can re-
produce the global number of TCs, in part because of
realistic SSTs, but severely underestimates the fre-
quency in the North Atlantic, suggesting that higher
model resolution is necessary but not sufficient to re-
produce observed frequencies.

5. Interannual to decadal variability
a. ENSO

The El Nino-Southern Oscillation (ENSO) is the
most important driver of global climate variability
on interannual time scales. It impacts many regions
worldwide through climate teleconnections (Ropelewski
and Halpert 1987), which link the tropical Pacific to
higher latitudes through shifts in midlatitude weather
patterns. The impact of ENSO on North American cli-
mate is felt most strongly in the wintertime, with El Nino
events bringing warmer temperatures to much of the
northern part of the continent and wetter conditions in
the southern United States and northern Mexico. La
Nina events tend to bring drier weather to the southern
United States. Evaluation of the ability of CMIP5
models to simulate ENSO is carried out for several
aspects of ENSO variability and for teleconnections
with North American climate.

1) EVALUATION OF ENSO TELECONNECTIONS

We examine how well the historical simulations of
CMIP5 models reproduce the composite near-surface
air temperature (SAT) and precipitation patterns over
North America during El Nino and La Nina episodes. In
both model and observed data, we define ENSO epi-
sodes similarly to the Climate Prediction Center (CPC).
A monthly ENSO index is calculated from detrended
and high-pass filtered SSTs over the Nino-3.4 region
(5°S-5°N, 170°-120°W) from ERSST.v3b observations

JOURNAL OF CLIMATE

VOLUME 26

and CMIP5 models. An El Nino (La Nina) episode is
defined as any sequence of months where the 3-month
running mean Nino-3.4 SST is >0.5°C (<—0.5°C) for at
least 5 consecutive 3-month running seasons.

In observations, approximately 90% of El Nino and
89% of La Nina episodes feature peak amplitudes in fall
or winter. In the CMIP5 ensemble of the historical
simulations, however, only 68% of El Nino and 65% of
La Nina episodes have peak amplitudes in fall or winter,
although several of the models (CanESM2, CNRM-
CMS5, HadCM3, and NorESM1-M) do have fall-winter
peak frequencies exceeding 80% for both El Nino and
La Nina episodes. This finding suggests that CMIP5
models do not fully reproduce the phase locking of
ENSO to the seasonal cycle, a deficiency noted in
CMIP3 models as well (Guilyardi et al. 2009). The fol-
lowing analysis focuses on those episodes that do peak in
fall or winter. In the ensemble mean, the frequency of
ENSO episodes and the mean peak amplitude are sim-
ilar to observed values (not shown).

Because the dynamics of extratropical ENSO tele-
connections are tied to upper-tropospheric processes
and because these teleconnections are strongest during
boreal winter, we examine how well CMIP5 models
reproduce the December—February (DJF) composite
300-hPa geopotential height patterns in the NCEP-
NCAR reanalysis. In addition, we attempt to identify what
characteristics distinguish higher from lower performance
models, where performance is based on the El Nino (La
Nina) composites of all height fields for which the de-
trended Nino-3.4 SST anomaly is >0.5°C (<—0.5°C). The
high performance models are defined as those with a pat-
tern correlation that exceeds 0.6 and an RMS difference less
than 13 m between the model and observed composites for
both El Nino and La Nina (Fig. 8). This subjective parti-
tioning is used as a means of discerning general properties
that distinguish higher from lower performance models.
Overall, 10 (11) models are characterized as high (low)
performance based on these criteria.

Figure 9 shows the composites of 300-hPa geo-
potential height, SAT, precipitation, and tropical SST
for El Nino. The corresponding composites for La Nina
(not shown) are quite similar but of opposite sign. The
higher performance ensemble performs rather well in
capturing the basic El Nino geopotential height, SAT,
and precipitation teleconnections over the North Pacific
and North America, with the exception being the failure
to capture the negative precipitation anomaly in the
Tennessee and Ohio valleys. The lower performance
ensemble features a much weaker teleconnection pat-
tern and an Aleutian low anomaly that is shifted about
10° too far west. The composite El Nino SST anomalies
(Figs. 2k,1), however, are quite similar.
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To gain insight into possible reasons for the discrep-
ancies between the higher and lower performance en-
semble, Fig. 10a shows composite differences in tropical
precipitation. The higher performance ensemble ex-
hibits much higher precipitation anomalies in the central
and eastern equatorial Pacific Ocean, which suggests
that the enhanced convection in these regions could help
to explain the stronger and eastward shifted tele-
connection pattern relative to the lower performance
ensemble. This enhanced convection may be explained
in part by stronger SST anomalies in the higher perfor-
mance ensemble (Fig. 10b), but most of the large precip-
itation differences actually occur where the SST anomaly
differences are quite small. Instead, a more significant
difference appears to be the difference in SST clima-
tology, as the lower performance ensemble exhibits cli-
matological SSTs more than 1°C cooler than the high
performance ensemble over the eastern Pacific cold
tongue region (Fig. 10c). Indeed, the lower performance
ensemble features a negative SST climatology bias of
more than 1.5°Cin the equatorial central Pacific (Fig. 10e),
where the El Nino convection anomalies generally are
strongest. The bias for the higher performance ensemble
in this region (Fig. 10d) is much weaker. Thus, in the lower
performance ensemble, the convection anomalies in the
eastern Pacific likely are too insensitive to ENSO SST
anomalies because the climatological SSTs are too low. This
finding suggests that simulation of ENSO teleconnections

in some climate models might benefit from improving cli-
matological SSTs rather than interannually varying ENSO
SST anomalies. As discussed in Li and Xie (2012), tropical
SST biases in CMIP models are linked to model errors
in cloud cover and ocean dynamics, with equatorial cold
tongue biases closely tied to errors in thermocline depth
and upwelling.

2) EAST PACIFIC-CENTRAL PACIFIC ENSO
AND TELECONNECTIONS WITH U.S. WINTER
SURFACE AIR TEMPERATURE

It has been increasingly recognized that different
types of ENSO occur in the tropical Pacific (e.g., Wang
and Weisberg 2000; Trenberth and Stepaniak 2001;
Larkin and Harrison 2005; Yu and Kao 2007; Ashok
et al. 2007; Kao and Yu 2009; Kug et al. 2009). Two
particular types that have been emphasized are the EP
type that produces SST anomalies near the South
America coast and the central Pacific (CP) type that
produces anomalies near the international date line.
While the EP ENSO is the conventional type of ENSO,
the CP ENSO has gradually increased its occurrence
during the past few decades (e.g., Lee and McPhaden
2010). Recent observational studies have indicated that
the impacts produced by these two types of ENSO on
North American climate can be different (e.g., Mo 2010;
Yu et al. 2012; Yu and Zou 2013). Here the ENSO tele-
connection over the United States simulated in the
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FIG. 10. Composite DJF El Nifio (a) precipitation (mm day ') and (b) SST (°C) difference
between the high and low performance CMIP5 ensemble described in Fig. 8. Stippling indicates
differences that are statistically significant at the 5% level. (c) DJF SST climatology difference
(°C) between the high and low performance ensemble and (d) high and (e) low performance

SST climatology bias (°C) for the 1951-2000 period.

CMIP5 models are further examined according to the
ENSO type. Following Kao and Yu (2009) and Yu and
Kim (2010), a regression-EOF analysis is used to iden-
tify the CP and EP types from monthly SSTs. The SST
anomalies regressed with the Nino-1+2 SST index were
removed before the EOF analysis was applied to obtain
the spatial pattern of the CP ENSO. Similarly, we sub-
tracted the SST anomalies regressed with the Nino-4
SST index before the EOF analysis was applied to
identify the leading structure of the EP ENSO. The
principal components of the leading EOF modes

represent the ENSO strengths and are defined as the CP
ENSO index and the EP ENSO index. The observed
winter (DJF) SAT anomalies regressed to these two
indices are different over the United States (Fig. 11)
with a warm northeast to cold southwest pattern for the
EP El Nino and a warm northwest to cold southeast
pattern for the CP El Nino. Adding these two impact
patterns together results in a pattern that resembles the
well-known warm north—cold south pattern of El Nino
impact. The robustness of these two different impact
patterns has been examined in Yu et al. (2012) using
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numerical model experiments and case studies. They
showed that impact patterns similar to those shown in
Fig. 11 can be reproduced in two ensemble AGCM ex-
periments forced separately by the EP and CP ENSO
SST anomalies (see their Fig. 1). The regressed impact
patterns can also be identified in U.S. winter tempera-
ture anomalies during the four strongest EP El Nino
events (i.e., 1997/98, 1982/83, 1972/73, and 1986/87) and
three of the four strongest CP El Nino events (i.e., 2009/
10, 1957/58, and 2002/03).

We repeated the EOF and regression analyses to
evaluate how well the CMIP5 models reproduce the
different U.S. impacts to the two types of ENSO, while
recognizing the uncertainty in the observational impacts
due to the limited number of events in the observational

record. The regressed winter SAT anomaly patterns cal-
culated from 22 CMIP5 models are shown in Fig. 11. The
observed patterns are well simulated by some models, such
as the MIROCS5 and MRI-CGCM3 for the EP ENSO and
the NorESM1-M and HadGCM2-ES for the CP ENSO.
However, some models show an impact pattern that is
almost opposite to that observed, such as HadCM3 for the
CP ENSO and INM-CM4.0 for the EP ENSO. To quan-
tify how well the impact patterns are simulated, pattern
correlation coefficients were calculated between the
model regressed patterns and the NCEP regressed pat-
terns. As shown in Fig. 12a, there is a cluster of 11 CMIP5
models (CSIRO Mk3.6.0, GFDL CM3, GFDL-ESM2G,
GFDL-ESM2M, HadGEM2-CC, HadGEM2-ES, IPSL-
CMS5A-MR MIROCS, MPI-ESM-LR, MPI-ESM-P, and
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FIG. 11. (Continued)

NorESM1-M) that have higher pattern correlation
coefficients for both the EP ENSO and the CP ENSO
than the rest of the models. This group of the CMIP5
models is considered as the models whose regressed
U.S. winter temperature patterns are close to the ob-
served patterns for the two types of ENSO. We also
examine in Fig. 12b the intensities of the simulated EP
and CP ENSO events, which are determined using an
EOF-regression method (Yu and Kim 2010; Kim and
Yu 2012). Models with realistically strong events are
identified using the lower limit of the 95% confidence
interval of the observed intensities (using an F test) as the
criteria (0.78°C for EP and 0.51°C for CP). Based on these
criteria, 10 of the 22 models simulate both EP and CP
ENSO events with realistically strong intensities. In-
terestingly, 9 of these models are also among the 11 models

that realistically produce U.S. winter temperature pat-
terns for the two types of ENSO. Therefore, at least
9 out of 22 models can more realistically produce the
two types of ENSO with higher intensities and their
different impacts on U.S. winter temperatures: GFDL
CM3, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-
CC, HadGEM2-ES, MIROCS, MPI-ESM-LR, MPI-
ESM-P, and NorESM1-M.

3) ENSO WARM—COLD EVENTS ASYMMETRY

ENSO asymmetry refers to the fact that the two
phases of ENSO are not mirror images of each other
(Burgers and Stephenson 1999). The asymmetry shows
up in both the surface and subsurface fields (Rodgers
et al. 2004; Schopf and Burgman 2006; Sun and Zhang
2006; Zhang et al. 2009). Causes for such an asymmetry
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FIG. 12. (a) Scatterplot of pattern correlations between the regression patterns from the
CMIP5 models and those from the observations (NCEP-NCAR reanalysis and HadISST da-
taset) for EP vs CP ENSO. (b) Scatterplot of the intensities of the EP-CP ENSO from the
CMIP5 models and the observation (ERSST). The values shown are the maximum standard
deviations of the EOF patterns of the two types of the ENSO calculated using a regression-
EOF method. The blue dashed lines indicate the lower limit of the 95% confidence interval of
the observed ENSO intensities based on an F test.

are not yet clearly understood, but accumulating evi-
dence suggests that it is likely a consequence of non-
linearity of ocean dynamics (Jin et al. 2003; Sun 2010,
Liang et al. 2012). Asymmetry is also linked to the time-
mean effect of ENSO (Sun and Zhang 2006; Schopf and
Burgman 2006; Sun 2010; Liang et al. 2012). Understanding
the causes and consequences of ENSO asymmetry may
hold the key to understanding decadal variability in the
tropics and beyond (Rodgers et al. 2004; Sun and Yu 2009;
Liang et al. 2012). Figure 13 shows the sum of the SST

anomalies between the warm and cold phases of ENSO
from HadISST observations and CMIP5 models. The
threshold value used for defining the warm and cold phase
anomalies is set as +0.5° and —0.5°C, respectively. This
sum has also been called the SST anomaly residual and has
been a common measure of the ENSO asymmetry in the
SST field. All models underestimate the observed positive
SST residual (and therefore the asymmetry) over the
eastern Pacific. Measured by the skewness of Nino-3 SST
anomalies (which is a more customary measure of
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the calculation is 50 yr for all the models and observations (1950-99).
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were calculated for a 50-yr moving window over 100 yr of the model run for a total of 601 samples. The
figure shows the mean of the samples and the standard deviation across the samples. Data used are the

same as for Fig. 13.

asymmetry), all the models also underestimate the ob-
served ENSO asymmetry (Fig. 14). The figure also shows
that the stronger variability of ENSO (measured by vari-
ance) does not guarantee a stronger asymmetry in ENSO
(measured by skewness).

Lack of ENSO asymmetry remains a common bias in
climate models that has continued since CMIP3 (van
Oldenborgh et al. 2005) with implications for simulating
tropical decadal variability. The causes are of current
debate, but recent results indicate that it is related to the
mean state and the excessive cold tongue in the models
(D.-Z. Sun 2013, unpublished manuscript), which was
also noted in CMIP3 models (Y. Sun et al. 2013), al-
though there is evidence that the mean state could in
turn be determined by the statistics of ENSO via non-
linearities in the system (Sun and Zhang 2006; Sun 2010;

Liang et al. 2012; D.-Z. Sun et al. 2013, manuscript
submitted to J. Climate; Ogata et al. 2013). On other
hand, both the bias in the mean state and the bias in the
asymmetry may be a consequence of a more funda-
mental reason: a weak thermal forcing relative to the
dissipation (Sun 2000; Liang et al. 2012). Together, these
results raise the question whether the coupled tropical
system in the models is in a different dynamical regime
to reality (Sun and Bryan 2010).

b. Persistent droughts and wet spells over Great
Plains and the southern-tier states

Persistent dry and wet summers are features of the
U.S. Great Plains and southern United States. We
evaluate how the CMIP5 models describe the processes
that cause such persistent anomalies in terms of low-level
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FIG. 16. As in Fig. 15, but for CCSM4 simulation results.

circulation and moisture flux anomalies by comparing
with the NCEP-NCAR reanalysis. This complements
the evaluations of the average seasonal circulation in
the region, such as the low-level southerly jet as shown in
Part 1. Persistent wet and dry summers are defined by
June-August (JJA) precipitation anomalies averaged

over the Great Plains region from 90° to 105°W and from
30° to 50°N during 1971-2000. Wet (dry) summers are
identified as having normalized JJA precipitation larger
(smaller) than 0.6 (—0.6) standard deviation. The re-
analysis data identify 8 wet and 7 dry summers in 1971-
2000, and the models identify between 7 and 12 wet or
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dry events, depending on the model. We show the
composites of vertically integrated moisture from the
surface to top of the troposphere, the 850-hPa geo-
potential height, and near-surface winds at 925 hPa for
the wet and dry summers and their differences for the
reanalysis (Fig. 15) and for a single model, CCSM4, as
an example (Fig. 16).

Comparison of the two figures indicates some simi-
larities but also very different processes causing the
persistent wet or dry summers. The integrated moisture
fluxes in both datasets indicate high moisture in an av-
eraged cyclonic rotation in the troposphere in persistent
wet summers (Figs. 15a, 16a) but anticyclonic rotation in
dry summers (Figs. 15b, 16b) in the Great Plains.
However, the sources of the moisture and the low-level
dynamic structure are quite different. For the reanalysis,
the convergence of moisture in the central Great Plains
during wet summers results from southerly flow anom-
alies in the enhanced subtropical high pressure system in
the North Atlantic and northerly flow anomalies in low
pressure anomalies centered in the Midwest (Fig. 15d).
These anomalies suggest a frontal system along the de-
pression from the Midwest to the Southwest. A nearly
reversed pattern of flow anomalies is shown during the
dry summers (Figs. 15e,f). The model simulations show

a different pattern of flow anomalies (Figs. 16d,e). In wet
summers, the moisture is primarily from the east along
the easterly and southeasterly quadrants of a high
pressure anomaly center in the Great Lakes areas, in-
stead of from the south as in the reanalysis result
(Fig. 16a versus Fig. 15a). In dry summers, the model
shows dry flows from the Mexican plateau off the Sierra
Madre Oriental in Mexico. These contrasts are shown in
Fig. 16f. The other CMIP5 models also simulate differ-
ent tropospheric circulation patterns from those in the
reanalysis for both wet and dry summers in the Great
Plains.

Although the integrated moisture fluxes in the models
resemble those in the reanalysis estimates in wet and dry
summers, the sources of moisture differ considerably,
suggesting that the models are not correctly represent-
ing the mechanisms that force variability in the Great
Plains. Controls on summertime Great Plains pre-
cipitation have been found to depend strongly on
moisture transport from the Gulf of Mexico via the
Great Plains low-level jet (GPLLIJ; e.g., Ruiz-Barradas
and Nigam 2006; Cook et al. 2008; Weaver and Nigam
2008) whose variability in turn may be related to remote
SST forcing in the Pacific (e.g., Schubert et al. 2004;
Ruiz-Barradas and Nigam 2010; McCabe et al. 2008)
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TABLE 5. Error statistics for the CMIPS PDO regressions on North American seasonal SAT (°C) and precipitation (mm day ). Pattern
correlations lie above the RMS difference. Regression differences at each grid point are evaluated with a two-sided ¢ test, for which the
effective degrees of freedom are adjusted for the lag-1 autocorrelation in the residuals, as in Santer et al. (2000). Boldface values indicate
regression pattern differences that are statistically significant at the 5% level based on a false discovery rate field significance test (Wilks 2006).

DJF DIJF MAM MAM JJIA JJIA SON SON
Model SAT precipitation SAT precipitation SAT precipitation SAT precipitation

BCC-CSM1.1 0.90 0.33 0.67 0.20 0.48 0.07 0.05 0.06
0.18 0.07 0.12 0.05 0.08 0.10 0.16 0.07

CanESM2 0.63 0.31 0.76 0.24 0.45 0.04 -0.11 -0.07
0.19 0.06 0.10 0.05 0.07 0.06 0.12 0.07

CCSM4 0.85 0.44 0.69 0.23 0.29 -0.15 0.10 0.11
0.16 0.06 0.20 0.06 0.09 0.08 0.29 0.10

CNRM-CM5 0.54 0.30 0.64 0.20 0.31 —0.04 0.44 -0.02
0.22 0.07 0.18 0.06 0.11 0.07 0.09 0.08

CSIRO Mk3.6.0 0.70 0.11 0.51 —0.05 0.31 —0.01 0.30 0.16
0.19 0.07 0.20 0.11 0.14 0.19 0.18 0.12

FGOALS-s2 0.72 0.02 0.41 0.09 0.26 0.00 0.34 —0.08
0.16 0.08 0.15 0.06 0.10 0.06 0.14 0.07

GFDL CM3 0.53 0.24 0.19 -0.11 0.22 0.01 0.19 0.10
0.20 0.07 0.18 0.06 0.10 0.06 0.14 0.06

GFDL-ESM-2G 0.82 0.06 0.53 —0.01 0.28 —0.06 0.28 0.14
0.25 0.07 0.23 0.07 0.12 0.09 0.18 0.09

GFDL-ESM-2M 0.52 0.26 0.22 -0.17 0.35 0.03 0.01 0.07
0.30 0.08 0.22 0.08 0.11 0.11 0.14 0.09

GISS-E2-R 0.70 0.41 0.57 0.18 0.04 —0.04 0.11 —0.04
0.17 0.06 0.16 0.06 0.12 0.10 0.11 0.08

HadGEM2-CC 0.76 0.52 0.55 0.26 0.37 —0.03 0.42 0.19
0.16 0.06 0.20 0.06 0.11 0.08 0.09 0.06

HadGEM2-ES 0.39 0.20 0.62 0.10 0.26 —0.09 0.07 0.08
0.22 0.08 0.19 0.07 0.09 0.11 0.12 0.09

HadCM3 0.73 0.30 0.75 0.28 0.21 0.04 0.27 0.20
0.20 0.07 0.13 0.05 0.11 0.08 0.14 0.08

INM-CM4 0.15 0.13 0.14 -0.14 0.05 —0.02 0.20 0.05
0.25 0.07 0.19 0.07 0.10 0.07 0.09 0.06

IPSL-CMS5A-LR 0.87 0.21 0.40 -0.13 0.14 -0.14 0.19 0.09
0.15 0.09 0.23 0.08 0.10 0.07 0.13 0.07

IPSL-CM5A-MR 0.74 0.18 0.42 -0.09 0.11 —0.10 0.42 —0.06
0.17 0.09 0.17 0.07 0.10 0.07 0.11 0.07

MIROC5 0.65 0.23 0.69 0.26 0.29 0.00 0.05 —0.02
0.19 0.11 0.14 0.06 0.10 0.08 0.15 0.09

MIROC-ESM 0.48 -0.07 0.13 -0.22 0.33 -0.11 0.31 0.05
0.21 0.07 0.17 0.06 0.07 0.06 0.09 0.06

MPI-ESM-LR 0.77 0.20 0.34 -0.03 0.00 0.00 0.20 0.10
0.18 0.07 0.18 0.07 0.13 0.08 0.14 0.08

MRI-CGCM3 —0.47 0.11 0.09 0.10 0.14 —0.04 —0.64 —0.04
0.34 0.08 0.24 0.08 0.08 0.08 0.21 0.08

NorESM1-M 0.76 0.14 0.52 -0.01 0.39 —0.07 —0.05 —0.09
0.24 0.08 0.17 0.06 0.09 0.07 0.16 0.07

MME mean 0.91 0.47 0.63 0.10 0.37 —0.06 0.22 0.14
0.11 0.06 0.13 0.05 0.07 0.06 0.10 0.06

and Atlantic (e.g., Enfield et al. 2001; Sutton and
Hodson 2005; McCabe et al. 2008) with contrasting
anomalies in each basin associated with extreme con-
ditions in the Great Plains (e.g., Hoerling and Kumar
2003; Schubert et al. 2009). Some of the models have
shown improvement, compared to the CMIP3 models,
in simulating the GPLLJ and the seasonal transitions
(see Part I), a result largely attributable to the higher

spatial resolution of CMIP5 models, but most models
struggle to represent observed teleconnections between
precipitation and Atlantic SSTs (see section 6). Even so,
the transport of moisture transport is not the whole story
and local dynamic processes (e.g., Veres and Hu 2013),
as well as land—atmosphere feedbacks (Ruiz-Barradas and
Nigam 2006), are important to initiate and further organize
regional circulations that can transform the moisture into
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FIG. 18. December-February PDO SAT and precipitation regression patterns over North America. Regressions of DJF (a),(c) SAT and
(b),(d) precipitation on the PDO index in (a),(b) observations and (c),(d) the CMIP5 ensemble. (e),(f) The differences between the
regression patterns (CMIP5 minus observations). The contour interval is 0.1°C for the SAT regressions in (a),(c),(e) and 0.05 mm day !
for the precipitation regressions in (b),(d),(f). Stippling in (e),(f) correspond to differences that are significantly different at the 5%
significance level based on a two-sided ¢ test with adjustment of the effective degrees of freedom for the lag-1 autocorrelation in the
residuals (Santer et al. 2000). To focus on multidecadal variability, a Butterworth 10-yr low-pass filter is applied to each PDO index time
series, which is then restandardized and detrended. The SAT and precipitation anomalies are then regressed on the filtered index for each
season. The observations are the CRU TS3.1 temperature and precipitation datasets.
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F1G. 19. The JJASON AMO index in CMIP5 models compared to observations for (a) the
time series and (b) autocorrelations. The AMO index is defined as the 11-yr running mean of
the detrended North Atlantic SST during the Atlantic hurricane season of JJASON from the
equator to 60°N and from 75° to 5°W. SST observations are from the ERSST dataset.

precipitation. Notably, previous studies focused on climate
models find that they tend to overestimate the role of re-
cycled precipitation over advected moisture (e.g., Ruiz-
Barradas and Nigam 2006) for the Great Plains with
implications for the modeled precipitation variability.

6. Decadal variability
a. PDO and its influence on North American climate

On interdecadal time scales, variability in the tropical
and extratropical North Pacific, particularly that of the
Pacific decadal oscillation (PDO), has significant physi-
cal and ecological impacts over North America (Mantua
et al. 1997; Higgins et al. 2000; Meehl et al. 2013). We
examine the PDO and its relationships with North
American temperature and precipitation for 21 CMIP5
models. We define the PDO as the leading empirical
orthogonal function of extended winter (November—
April) monthly-mean SST anomalies in the North Pacific
poleward of 20°N (Zhang et al. 1997; Mantua et al. 1997)

for 1900-93 and subtract the monthly global mean SST.
We then calculate the PDO index by projecting monthly
North Pacific SST anomalies onto the PDO pattern for
all available months and then standardizing the resulting
time series. Figure 17 illustrates the PDO patterns in
both observations and the CMIP5 ensemble (see Table 5
for a list of models) obtained by regressing the unfiltered
monthly SST anomalies onto the PDO index for all cal-
endar months. As in the CMIP3 models (Oshima and
Tanimoto 2009; Furtado et al. 2011), the CMIP5 models
reproduce the basic PDO horseshoe SST pattern. The
most notable difference is the westward shift of the
North Pacific center of action in models with respect to
observations (Fig. 17c). The regions with the largest
differences also correspond with regions of relatively
high intermodel variability (Fig. 17d).

For each set of seasonal temperature and precip-
itation regressions, we calculate the centered pattern
correlations and RMS differences between the observed
and CMIP5 model regressions (Table 5). Despite fairly
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TABLE 6. The RMSE and standard deviations of the AMO indices
in CMIP5 models. Observations are from the ERSST dataset.

Model name RMSE (°C)  Standard deviation (°C)
ACCESS1.0 0.1846 0.1870
BCC-CSM1.1 0.1052 0.1528
CanESM2 0.1532 0.1442
CCSM4 0.1438 0.1198
CNRM-CM5 0.1529 0.1031
CSIRO MKk3.6.0 0.1609 0.1550
EC-EARTH 0.1501 0.0914
FGOALS-g2 0.1835 0.1083
GFDL CM3 0.1638 0.1598
GFDL-ESM2G 0.2110 0.1699
GFDL-ESM2M 0.1493 0.1273
GISS-E2-H 0.1376 0.0958
GISS-E2-R 0.1453 0.1054
HadCM3 0.1662 0.1421
HadGEM2-CC 0.1926 0.1895
HadGEM2-ES 0.1455 0.1517
INM-CM4.0 0.1485 0.0917
IPSL-CMS5A-LR 0.1800 0.1760
IPSL-CM5A-MR 0.1374 0.1320
IPSL-CM5B-LR 0.2240 0.1879
MIROC5 0.1347 0.1335
MIROC-ESM 0.1375 0.1467
MIROC-ESM-CHEM 0.1544 0.1364
MPI-ESM-LR 0.2123 0.1794
MPI-ESM-P 0.1526 0.0993
MRI-CGCM3 0.1515 0.1234
NorESM1-M 0.1366 0.1118
MME mean 0.1598 0.1378
Observations 0 0.1761

low pattern correlations in many cases, for most models
and most seasons the differences in the regression pat-
terns are not statistically significant. This may be due to
a combination of small effective sample size, large un-
certainty in the regression coefficients, a relatively
modest impact of the PDO on seasonal SAT and pre-
cipitation, and the ability of the models to capture the
general PDO behavior during the winter and spring
when the PDO impacts are strongest. In particular, the
full ensemble performs well in capturing the winter and
spring PDO SAT patterns, but substantial differences
in the precipitation regressions are evident, particularly
in spring.

Figure 18 shows the DJF SAT and precipitation re-
gressions in observations and the CMIP5 ensemble. The
CMIP5 models do rather well in capturing the PDO
influence on North American SAT, with positive (neg-
ative) SAT anomalies in northwestern (southeastern)
North America during the positive phase of the PDO.
Almost all local differences in the regression coefficients
are not statistically significant. In contrast, the CMIP5
models perform somewhat poorly in reproducing the
precipitation patterns over large parts of North America,
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although for high latitudes the observations are based on
very sparse station data, especially before the 1950s
(Zhang et al. 2000). Both observations (Fig. 18b) and
CMIPS ensemble (Fig. 18d) produce a tripole pattern of
precipitation anomalies over the west coast of North
America. Large differences, however, are found in
eastern North America. In observations, the positive
phase of the PDO is associated with reduced wintertime
precipitation in the Tennessee and Ohio valleys, north-
eastern United States, and southeastern Canada
(Fig. 18b), but the CMIP5 ensemble fails to discern this
influence (Figs. 18d,f). Though of smaller magnitude,
significant differences also occur in central North
America (Fig. 18f). In spring [March-May (MAM)] the
largest differences in the precipitation regressions occur
along the coast of British Columbia, where observed
regressions indicate positive anomalies but the CMIP5
ensemble produces a pronounced negative anomaly (not
shown). Both observations and the CMIP5 ensemble
reproduce positive precipitation anomalies along the
West Coast and central plains of the United States.

b. AMO

The Atlantic multidecadal oscillation (AMO) is an
important mode of multidecadal climate variability
manifesting in North Atlantic SSTs (e.g., Kerr 2000;
Enfield et al. 2001). The AMO has significant regional
and global climate associations, such as northeast
Brazilian and Sahel rainfall (e.g., Folland et al. 1986;
Rowell et al. 1995; Wang et al. 2012), hurricane activity
in the North Atlantic and the eastern North Pacific
(Goldenberg et al. 2001; Wang and Lee 2009), and
North American and European summer climate (Enfield
et al. 2001; McCabe et al. 2004; Sutton and Hodson
2005). In spite of its importance, the mechanism of the
AMO is still unclear. Several studies have indicated
the role of variations in the Atlantic meridional over-
turning circulation (AMOC) and associated heat trans-
port fluctuations (Delworth and Mann 2000; Knight et al.
2005). Some modeling studies indicate that solar vari-
ability and/or volcanoes are important (Hansen et al.
2005; Ottera et al. 2003) or that aerosols can be a primary
driver (Booth et al. 2012), although the robustness of the
latter has been questioned (Zhang et al. 2013). A recent
observational study shows that a positive feedback be-
tween SSTs and dust aerosols in the North Atlantic via
Sahel rainfall variability may be a mechanism (Wang
et al. 2012).

The AMO index is defined as the detrended North
Atlantic SST during the Atlantic hurricane season of
June-November (JJASON) from the equator to 60°N
and from 75° to 5°W with the 11-yr running mean (e.g.,
Enfield et al. 2001; Knight et al. 2005). As shown in
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TABLE 7. Spatial correlation between observed and CMIP5 regressed anomalies of the AMO on SST and precipitation in summer and
fall for 1901-99. The spatial domain for SST correlations is over the Atlantic Ocean north of the equator (0°~75°N, 130°W-10°E), while the
domain for precipitation is the American continent north of the equator (0°-60°N, 130°-60°W). The observed datasets are the
HadISSTv1.1 and CRU TS3.1 for SST and precipitation, respectively.

Model Summer SST Fall SST Summer precipitation Fall precipitation
BCC-CSM1.1 -0.132 —-0.205 0.131 0.293
CanESM2 0.459 0.597 0.080 -0.172
CCSM4 0.224 0.332 —0.092 -0.172
CNRM-CM5.1 0.527 0.037 -0.029 -0.357
CSIRO Mk3.6.0 0.037 0.308 -0.034 0.211
GFDL CM3 -0.213 0.176 0.143 0.145
GFDL-ESM2M 0.325 0.461 0.129 0.014
GISS-E2-R 0.586 0.675 —0.070 -0.014
HadCM3 0.531 0.578 0.008 -0.116
HadGEM2-ES 0.700 0.485 0.172 —0.309
INM-CM4 -0.337 -0.126 -0.183 0.025
IPSL-CM5A-LR 0.180 0.327 -0.072 0.060
MIROCS 0.433 0.588 -0.196 —0.002
MIROC-ESM 0.430 0.384 —0.168 —0.033
MPI-ESM-LR -0.135 0.230 —0.149 -0.129
MRI-CGCM3 0.412 0.215 0.335 0.140
NorESM1-M 0.098 -0.298 -0.127 —0.081
MME mean 0.577 0.651 —0.012 —0.033

Fig. 19a, the individual models show highly varying
amplitudes and phases, with a large spread across
models. This is to be expected given that the AMO is
likely of internal origin. All models show the warming in
the last two decades when anthropogenic warming be-
comes influential. The MME mean tends to follow the
main variations in the earlier part of the record, albeit
subdued because of averaging across models, but fails to
show the warm period during 1926-65. Compared to the
CMIP3 results (Medhaug and Furevik 2011), the CMIP5
simulation of the AMO has generally improved, par-
ticularly after 1960. This may be due to higher resolu-
tion, improved parameterizations, and the addition of
time-evolving land cover. Results for individual models
(Table 6) indicate that the standard deviations are
comparable to or slightly weaker than the observations
with typical amplitudes ranging from 0.09° to 0.19°C as
compared to about 0.18°C in the observations, which is
an improvement from CMIP3 models (Ting et al. 2009).

The lagged autocorrelation of the AMO index for lags
zero to 35 yr (Fig. 19b) shows that the models generally
represent the quasi-periodic nature of the observed
AMO, with the peak oscillation at 30-35yr in the ob-
servation but generally shorter for the models. The
persistence in the AMO index as defined as the maxi-
mum time lag when the autocorrelation first crosses the
significance line at the 10% level, and varies from 5 to
25 yr in the models, implying the potential for predicting
future SSTs (Corti et al. 2012; H.-M. Kim et al. 2012).
However, for most models the persistence is shorter
(~12yr), which is nevertheless an improvement over

CMIP3 models, which have an average persistence of
about 5 yr (Medhaug and Furevik 2011).

The ability of the models to represent the AMO and
its impact on precipitation over North America is eval-
uated by regressing the AMO index on regional seasonal
precipitation and SSTs for 1901-99. The results are
shown for autumn in Fig. 20 and shown in more detail in
Kavvada et al. (2013). The SST signature of the AMO is
stronger in autumn than in summer and this is reflected
in its impact on central U.S. precipitation in observa-
tions (not shown). In both seasons the SST anomalies
reach a maximum over the mid-Atlantic, over the sub-
polar gyre region. The warm phase of the AMO induces
drying conditions over the central United States and wet
conditions over Florida and the U.S. Northeast in both
seasons but with more intensity in autumn. However,
there are seasonally contrasting conditions along the
Gulf of Mexico states where decreased precipitation
occurs in summer but increased precipitation occurs in
autumn.

In general, the models do not capture the SST sea-
sonality of the AMO well. The simulated SST anomalies
are generally larger in summer than in autumn in the
majority of the models (not shown). While all models
tend to place the maximum SST anomalies over the mid-
Atlantic Ocean, they do not replicate the observed
maximum south of Greenland and its spatial structure.
For example, CCSM4, GFDL-ESM, and MIROCS em-
phasize anomalies over the Norwegian Sea and GFDL-
ESM, GISS-E2-R, and INM-CM4.0 do not show a signal
over the tropical Atlantic. The spatial correlation of the
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(a) Annual Temperature Trend (°C/decade), 1930-2004
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(b) Summer (JJA) Temperature Trend (°Cldecade), 1930 2004
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(c) Winter (DJF) Temperature Trend (°Cldecade) 1930-2004
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FIG. 21. (left) Observed and (right) MME-mean temperature trends (°C decade ') for North America (1930-2004) for (a) annual,
(b) summer, and (c) winter. Observations are from the CRU TS3.1 dataset. The MME mean is calculated from the first ensemble member
of 17 models (BCC-CSM1.1, CanESM2, CCSM4, CNRM-CMS5, CSIRO Mk3.6.0, GFDL CM3, GFDL-ESM2M, GISS-E2-R, HadCM3,
HadGEM2-ES, INM-CM4.0, IPSL-CM5A-LR, MIROC5, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, and NorESM1-M). Eastern and
western U.S. regions are shown by the boxes.
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anomalies (Table 7) shows higher correlations for
HadGEM2-ES and GISS-E2-R, although visually there
are large discrepancies in the spatial patterns.

The precipitation impact of the AMO is a bigger
challenge for the models (see Table 7 for individual
model spatial correlations for precipitation), and they
generally fail to represent the drier conditions over the
central United States and the wet conditions along the
coastal southern Atlantic U.S. States and southern
Mexico. The initial drying over the south-central United
States in summer is shown by a few models (BCC-
CSM1.1, HadGEM2-ES, IPSL-CM5A-LR, and MRI-
CGCM3), but the intensification of the drying into the
autumn is not replicated by most of the models. The wet
conditions over the southern Atlantic U.S. States in the
autumn are captured by a few models but to varying
degrees of agreement and some models show re-
gressions of the opposite sign (e.g., GISS-E2-R and
HadGEM2-ES) and despite their high SST correlations.
The increased precipitation over southern Mexico in
autumn is shown only by a handful of models (e.g.,
BCC-CSM1.1, CSIRO Mk3.6.0, IPSL-CM5A-LR, and
NorESM1-M).

Numerous studies have shown the importance of the
AMO in generating precipitation variability over the
region (e.g., Enfield et al. 2001; Sutton and Hodson 2005;
Wang et al. 2006; Schubert et al. 2009; Nigam et al.
2011), with a key role played by the lower-level circu-
lation, which modulates the Great Plains low-level jet
and the convergence—divergence of moisture fluxes (see
section 5b). Thus, given the differences in the model
simulated structure of the AMO SST footprint, their
poor performance in the simulation of the hydroclimate
impact over the central United States is not surprising:
a situation that has not shown improvement since
CMIP3 (Ruiz-Barradas et al. 2013).

7. Multidecadal trends

a. Trends in temperature and the “warming hole”
over the southeastern United States

A unique of feature of U.S. temperature change
during the twentieth century is the so-called warming
hole (WH) observed in the southeastern United States
(Pan et al. 2004). While the globe has warmed over the
twentieth century, the WH region experienced cooling,
especially in summer during the latter half of the cen-
tury. Studies have attributed the mechanisms for this
abnormal cooling (lack of warming) trend to large-scale
decadal oscillations such as PDO and AMO (Robinson
et al. 2002; Kunkel et al. 2006; Wang et al. 2009; Weaver
2013; Meehl et al. 2013) and to regional-scale hydro-
logical processes (Pan et al. 2004) and land surface
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FI1G. 22. The 30-yr running annual temperature trend for (a) the
eastern United States, (b) difference in trend between the eastern
and western United States. Regions are defined in Fig. 21. Shading
represents the 95% uncertainty range calculated from 17 models
(see Fig. 21), one ensemble member from each model. Black solid
line is the observation (CRU TS3.1) and blue solid line is the MME
median. The x axis represents the start of the 30-yr running period.
For example, the trend value at 1930 represents the trend from
1930 to 1959.

interactions (Liang et at. 2007). Portmann et al. (2009)
speculated that secondary organic aerosols during the
growing season could contribute to the cooling in the
WH region, while Christidis et al. (2010) emphasized
the role of internal climate variability.

We evaluate whether the CMIP5 models show the
warming hole as a forced response in Fig. 21, which
shows the annual and seasonal trends, in near-surface
air temperature from the observation and the CMIP5
multimodel mean from 17 models (see Fig. 21 caption).
Model and observation data are regridded to a com-
mon resolution 2.5° X 2.5° using area averaging. Trends
are calculated for the 1930-2004 period using the
Theil-Sen approach (Theil 1950; Sen 1968). The choice
of 1930-2004 gives a prominent WH signal in the ob-
servations starting from the warmest decade following
the Dust Bowl drought. Only one ensemble member
from each model is included in the analysis as ensemble
members from the same model show similar spatial
patterns of long-term trends (Kumar et al. 2013b). The
MME mean shows neither a cooling trend in the east-
ern United States nor lesser warming relative to the
western United States. This indicates that, similar to
CMIP3 (Kunkel et al. 2006) simulations, the CMIP5
simulations do not show the WH as a forced response
signal.
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F1G. 23. Comparison of (a) mean DTR and (b) DTR trend for the observations (CRU TS3.1) and MME mean of the 17 models (right; see
Fig. 21) for 1951-2000 on facing pages. The contour lines are the intermodel standard deviation.

Figure 22 shows the temporal evolution of 30-yr
moving window annual temperature trends over the
eastern United States in the observational data and
CMIP5 simulations and relative to the western United
States. The multidecadal persistence of the WH is
clearly visible in the observational data: that is, most
negative temperature trends are clustered between 1925
and 1955. The 95% model spread range brackets the
observed multidecadal variability in the eastern U.S.
temperature trends and approximately 40% of the 95%
model spread range is negative. The multimodel median
captures the overall tendency of positive and negative
trend evolution (7> = 0.58). Pan et al. (2013) found that
19 out of 100 CMIPS5 historical ““all forcings” simulations
showed negative temperature trends in the Southeast
United States, whereas simulations based on greenhouse
gas emissions forcing only showed a strong warming in

the central United States. These results suggest that
there is some fidelity with observations via external
forcings, but natural climate variability plays a major
role. Kumar et al. (2013a) found that the 30-yr running
temperature trend variability in the eastern United
States is significantly correlated (+* = 0.76) with the
AMO and models that have relatively higher skill in
AMO simulations also have a higher chance of re-
producing the WH in the eastern United States. There is
essentially no skill in the model’s representation of the
difference in trends between the eastern and western
U.S. running trends (Fig. 22b).

b. Trends in DTR

Observed warming during the day and night has been
asymmetric, with nocturnal minimum surface air tem-
perature (Tmin) rising about twice as fast than daytime
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FIG. 23. (Continued)

maximum temperature (Tmax) during the second half of
twentieth century, mostly during 1950-80 (Vose et al.
2005). Changes in cloud cover, atmospheric water vapor,
soil moisture, and other factors account for 25%-50% of
the diurnal temperature range (DTR) reduction (Dai
et al. 1999). Cloud cover, soil moisture, precipitation,
and atmospheric/oceanic teleconnections account for up
to 80% of regional variance over 1901-2002. Over the
United States, cloud cover alone accounts for up to 63%
of regional annual DTR variability (Lauritsen and
Rogers 2012). During 1950-2004, summer Tmax and
Tmin over North America increased 0.07° and 0.12°C,
respectively, resulting in a —0.05°C decrease in DTR
(Vose et al. 2005). A similar decrease (—0.06°C) oc-
curred in winter. Over the WH region, summer Tmax
decreased sharply (—0.13°C) while Tmin increased
slightly (0.05°C), yielding a DTR decrease of 0.18°C.
Winter DTR also decreased by 0.13°C.

Figure 23 shows a comparison of DTR magnitude
and the linear trend in DTR from 17 models against
the CRU TS3.1 observational dataset. The observed
mean DTR (Tmax — Tmin) is characterized by high
values over the western high mountainous regions in
summer and low values in high latitudes (Fig. 23a).
The MME-mean simulates this general pattern with
underestimation in the mountains. The observed DTR
trend is predominantly negative in the United States
and Mexico and largely positive in Canada in both
seasons (Fig. 23b). The largest decreasing DTR trend
up to 0.2°Cdecade ' is over the southeastern U.S.
warming hole region in summer. The model DTR
trend is poorly reproduced, missing the extensive
negative trend over the southeastern region where
models simulated increasing DTR trend (Fig. 23b,
right). The pattern correlation between the observed
and simulated DTR is from 0.40 to 0.82, with a mean
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of 0.67 for the 17 models, but the correlation of
DTR trend is much lower, ranging from 0.19 to —0.26
(mean = 0.03). The model skill in simulating DTR trends
does not appear to have improved from CMIP3 (Zhou
et al. 2010) and earlier model comparisons (e.g.,
Braganza et al. 2004); however, the role of anthropogenic
forcings appears to be essential in producing a decline in
DTR (Zhou et al. 2010), even if it is underestimated.

c. Trends in precipitation

Precipitation has generally increased over North
America in the last half of the twentieth century (Karl
and Knight 1998; Zhang et al. 2000). Trends in pre-
cipitation are positively correlated with streamflow
trends, thereby affecting water resource availability and
flood potential (Lettenmaier et al. 1994; McCabe and
Wolock 2002; Kumar et al. 2009). Figure 24 shows the
multimodel ensemble average precipitation trend for
1930-2004 from 17 models against the CRU observa-
tions. The multimodel average weakly captures the
wetting trend in North America, particularly at higher
latitudes. Note that the precipitation gauge density be-
fore the 1950s was very low, especially in high latitudes,
and the observational trends are very uncertain, espe-
cially in high latitudes, at least for the first part of the
time period. However, the MME-mean fails to capture
the trend magnitude: for example, the higher wetting
trend (>20 mm decade ') in the eastern United States.
Figures 25a,b show the 30-yr running trend during the
twentieth century in the eastern and western United
States, respectively. The 95% model spread brackets the
observed precipitation trend magnitude in both regions.
The higher wetting trend in the observations has slowed
down in the last decade in the eastern United States. The
muted magnitude of the trend in Fig. 24 seems to be
a result of low signal to noise ratio (the multimodel
median line hovers around the zero line in Fig. 25),
rather than a robust feature of CMIPS5 climate models.
Some individual models capture very well the observed
trend magnitude. Drying in Mexico is a dominant but
incorrect feature in the CMIP5 simulations, which is
symptomatic of CMIP3 models as well (Pachauri and
Reisinger 2007) and is likely driven by the inadequate
connection between increasing precipitation and global
SST warming, at least for summer, in the majority of
models as shown by R. Fu et al. (2013, unpublished
manuscript) for the southern United States.

8. Discussion and conclusions
This study has evaluated the simulated variability from

the CMIP5 multimodel ensemble at intraseasonal to
multidecadal time scales for North America and adjoining
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seas. The results show a mixture of performance, with
some aspects of climate variability well reproduced (e.g.,
the spatial footprint of the PDO and its teleconnections),
others reproduced well by some models but not others
(e.g., ISV in the tropical Pacific; and ENSO teleconnections
and types), and others poorly by most models (e.g., tropical
cyclone frequency; ENSO asymmetry; teleconnections
with the AMO; and long-term trends in DTR and pre-
cipitation). No one model stands out as better than the
others, but certain models do perform much better for
certain features. For example, the Hadley Centre models
do well for the Central America midsummer drought and
the SST footprint of the AMO; the MRI-CGCM3 model
does relatively well for intraseasonal and interannual var-
iability in the tropical Pacific and for tropical cyclone
counts. In general, higher-resolution models do better for
features such as tropical cyclones, but this does not appear
to be a dominant factor for other aspects of climate vari-
ability. Furthermore, no model stands out as being partic-
ularly unskillful, bolstering the argument to consider all
models irrespective of performance to encompass the
uncertainties (Knutti 2010). In fact, the range of pro-
cesses and metrics analyzed is a key advantage of this
study, because skill in one aspect does not necessarily
mean good performance in another. For example,
NorESM1.1 does very well at representing the two types
of ENSO and its teleconnections but does poorly at
representing ENSO asymmetry. As a consequence, an
overall ranking of models, albeit seemingly attractive, is
difficult given the challenges in quantitatively compar-
ing performance across different types of analysis, as
well as the logistical challenges of sampling the same set
of models across all analyses.

For the climate features and models analyzed here,
there does not appear to be a great deal of improvement
since CMIP3. For example, CMIP5 models still cannot
capture the seasonal timing of ENSO events, which tend
to peak in the fall and winter, and the spurious drying
signal in the southern United States and Mexico con-
tinues from CMIP3. However, some features continue
to be well simulated, such as the SST pattern of the
PDO, and features related to spatial resolution are likely
to have improved, such as the representation of TCs.
Opverall, the models are less able to capture observed
variability and long-term trends than they are the mean
climate state as evaluated in Part I, although this may be
a result of model tuning to observations (Raisdnen
2007). This is understandable for decadal to multi-
decadal variability, which is dependent on the models’
internal variability or the sensitivity to external forcing,
for which the observations can be very uncertain. Some
of the biases in variability, however, appear to be related
to problems in simulating the mean state, and there are
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FIG. 24. (left) Observed and (right) MME-mean annual precipitation trends (mm decade ') for North America (1930-2004). Obser-
vations are from the CRU TS3.1 dataset. The MME mean is from 17 models (see Fig. 21), with 1 ensemble member from each model.

Eastern and western U.S. regions are shown by the boxes.

encouraging signs that improvements in the models or at
least the understanding of the sources of errors can be
made (e.g., biases in the depiction of the mean state of
tropical Pacific may be linked to biases in the ISV, the
lack of asymmetry in ENSO phases, and to tele-
connections with North American climate).

The results have implications for the interpretation
and robustness of the model projected future changes.
Part III evaluates the model projections for a subset of
the features analyzed here and in Part I. As noted in Part
1, the accurate simulation of historic climate features is
not sufficient for credible projections, although the de-
piction of large-scale climate features is necessary.
Several studies of future projections show only small
differences between models that do better at replicating
observations and those that do worse (e.g., Brekke et al.
2008; Knutti et al. 2010), while others have found re-
lationships between model performance and future
projections that can be related to physical processes
(e.g., Hall and Qu 2006; Boe et al. 2009). However, these
types of studies are generally specific to certain climate
features that do not necessarily provide confidence or
pessimism in model skill in a broader sense.

The adequate depiction of the variability is never-
theless necessary because this is generally associated
with the more extreme aspects of climate that impose
the largest impacts. Furthermore, the depiction of the
teleconnections associated with large-scale variability is
especially important because the impacts of potential
changes in the variability of, say, ENSO (van Oldenborgh
et al. 2005; Muller and Roeckner 2008) are subject to
uncertainties in the representation of teleconnections
(Part IIT). Model variability can also have a large impact
on future changes because the signal to noise ratio can be
highly dependent on the model’s natural variability

resulting in misleading assessments of future changes and
uncertainties across models (Tebaldi et al. 2011). The
ability of the models to reproduce the observed trends

may be a better indicator of model reliability
piction of the mean climate or even its variab
cause this indicates the model’s sensitivity to an
forcing that may continue into the future,

than de-
ility, be-
external
such as

greenhouse gas concentrations. The problem here is that
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1), with 1
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vation (CRU TS3.1) and blue solid line is the MME median. The x
axis represents the start of the 30-yr running period. For example,
the trend value at 1930 represents the trend from 1930 to 1959.
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the trend analyzed is subject to uncertainties in the ob-
servations, the complications of natural variability in the
real world and models, and uncertainties in feedbacks
and how they may change in the future (Réisianen 2007,
Knutti 2010). The generally poor ability of the models to
reproduce the trends in precipitation, DTR, and some
features of regional temperature shown here are in-
dicative of this.
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